JPS6069923A - Method for constituting base station zone in mobile communication - Google Patents

Method for constituting base station zone in mobile communication

Info

Publication number
JPS6069923A
JPS6069923A JP58178526A JP17852683A JPS6069923A JP S6069923 A JPS6069923 A JP S6069923A JP 58178526 A JP58178526 A JP 58178526A JP 17852683 A JP17852683 A JP 17852683A JP S6069923 A JPS6069923 A JP S6069923A
Authority
JP
Japan
Prior art keywords
cell
sector
cells
base station
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58178526A
Other languages
Japanese (ja)
Other versions
JPH0247903B2 (en
Inventor
Eiji Niikura
新倉 頴二
Kazuki Hoshino
一樹 星野
Eiji Omori
英二 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58178526A priority Critical patent/JPS6069923A/en
Publication of JPS6069923A publication Critical patent/JPS6069923A/en
Publication of JPH0247903B2 publication Critical patent/JPH0247903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2621Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE:To increase talking traffic by dividing a communication zone in the form of a hexagonal cell into unit cells, forming cell clusters in the unit of three cells and directing the directivity of an antenna provided at the center of each cell toward each vertex of the hexagon. CONSTITUTION:The service area consisting of hexagons of equal area of a base station zone is divided to each sector and the zone is constituted by distributing all talkings usable to each sector and control channels to it. Three adjacent hexagonal cells are formed as a three-leaf where one side of a cell is in contact with that of the other two and used as one set of the cell cluster, which is used as one unit, and the clusters are stacked in the directions of east and west, 30 deg. to northeast and 30 deg. to northwest so as to cause no clearance to each other. The base station is provided to the center of each sector, the six directive antennas are installed so that the main beam of the antennas is directed toward each vertex of the hexagonal cells thereby forming independent talking areas respectively. The east sector of each cell is named as A1, B1 and C1 and the radio channel is allocated while the sector number is made correspond clockwise.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、自動車電話等の移動通信における基地局ゾー
ン構成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a base station zone configuration method in mobile communications such as car telephones.

従来例の構成とその問題点 従来、自動車電話方式の無線ゾーンの構成においては無
指向性アンテナを使用したチャネル配置が用いられ、(
無線)セルの形状としては各セルの中心にアンテナを有
する幾伺学的図形、例えば正3角形、正4角形、正6角
形を用いる。これ以外にも複雑な形状のものが考えられ
るが、これらの内で最も円に近い6角形セルによって通
信サービス地域を分割し、隣り合う無線セルに異なる無
線チャネルを割当て個別の通信を行なわせることが多い
Conventional configuration and its problems Traditionally, in the wireless zone configuration of the car telephone system, a channel arrangement using omnidirectional antennas was used.
The shape of the wireless (wireless) cells is a geometric figure, such as a regular triangle, a regular quadrangle, or a regular hexagon, with an antenna at the center of each cell. Other complex shapes are possible, but among these, the communication service area is divided into hexagonal cells that are closest to a circle, and adjacent wireless cells are assigned different wireless channels to perform individual communications. There are many.

自動車電話のように面サービスを行なう場合の無線セル
の数は3セル、4セル、7セル、9セル。
The number of wireless cells when providing surface service like a car phone is 3 cells, 4 cells, 7 cells, or 9 cells.

12セル・・・・・23セル等のゾーン構成方法がある
が、限られた無線チャネルを有効利用するにはできるだ
け小さな無限セルの集団(セルクラスタ)を作り、各無
線セルに出来るだけ多数の無線チャネルをセルクラスタ
毎に繰り返して割当てることによって通話トラフィック
を増加させる必要がある。
There are zone configuration methods such as 12 cells...23 cells, but in order to make effective use of limited wireless channels, create a group of infinite cells (cell cluster) as small as possible, and assign as many cells as possible to each wireless cell. It is necessary to increase call traffic by repeatedly allocating radio channels to each cell cluster.

面サービスにおける最小のものは3セルクラスタである
が、隣接する無線セル間で別の通信に使用される同じ周
波数の干渉妨害比に一定値を無指向性アンテナで確保す
るには最小7セル以上とする必要がある。しかし、大都
市のように通話トラフイラクが集中する地域では前記6
角形の(無線)セルをさらに細分化して通信トラフィッ
クの増加を図る必要がある。一方で(無線)セルを細分
化するには基地局の増加が必要であり、これに件なう基
地局の局舎や敷地、基地局間を結合する通信設備も増大
する。またこれらの通信設備を常に良好な状態に維持す
るだめの保守作業にも非常に大きな費用がかかるため、
細分化を経済的に実施する方法が問題であった。
The minimum for area service is a three-cell cluster, but in order to ensure a constant value for the interference/disturbance ratio of the same frequency used for different communications between adjacent wireless cells using an omnidirectional antenna, a minimum of seven cells or more is required. It is necessary to do so. However, in areas where telephone traffic congestion is concentrated, such as large cities,
It is necessary to further subdivide the rectangular (wireless) cells to increase communication traffic. On the other hand, subdividing a (wireless) cell requires an increase in the number of base stations, which requires an increase in base station buildings, grounds, and communication equipment that connects the base stations. In addition, the maintenance work required to keep these communication facilities in good condition is extremely expensive.
The problem was how to carry out subdivision economically.

これを経済的に実現する方法として1つの基地局に複数
の指向性アンテナを設けて、その無線ゾーンを複数の小
ゾーン(セクター)に分割して無線ゾーンの細分化を行
ない、通話トラフィックの増加を図る試みが1968年
頃より提案され、実施されている。それは、例えば日本
鉄道公社(■NR)の列車電話方式である。これは新幹
線無線電話方式として広く知られている。鉄道通信は線
状サービスであるため1つの基地局は上り、下り複数の
指向性アンテナでサービスエリアを分割シ、異なる周波
数を用いて通信を行なっている。鉄道は線状ザービスの
ため、その分割は2または3方向の通信であるが、少な
くとも1つの基地局が指向性アンテナを用いて複数の無
線ゾーンの通信を取扱うのは1960年代の日本におい
ては公知であった。
To achieve this economically, one base station is equipped with multiple directional antennas, and the wireless zone is subdivided into multiple small zones (sectors) to increase call traffic. Attempts to achieve this goal have been proposed and implemented since around 1968. An example of this is the train telephone system of the Japan Railway Corporation (NR). This is widely known as the Shinkansen wireless telephone system. Since railway communication is a linear service, one base station divides its service area using multiple uplink and downlink directional antennas, and communicates using different frequencies. Since railways are linear services, the division is for communication in two or three directions, but it was well known in Japan in the 1960s that at least one base station handles communication in multiple radio zones using a directional antenna. Met.

また、面サービスを必要とする自動車電話方式について
は、1つの基地局に複数の指向アンテナを設けて異なる
周波数(チャネル)の無線ゾーンに分割する方法は例え
ば、特公昭52−14122等により知られている。
In addition, for car telephone systems that require area service, a method of installing multiple directional antennas in one base station and dividing it into wireless zones of different frequencies (channels) is known, for example, from Japanese Patent Publication No. 14122/1983. ing.

無線セル構成の優劣の判断は大都市に集中して発生する
通話トラフィック増に如何に対応できるか、また如何に
経済的にゾーン構成が実現できるかに関わるものである
。日本におけるように土地が極めて高価である場合には
、1つの基地局で複数の無線ゾーンの通信を受け持つこ
とが経済的に優れている。
Judging the merits and demerits of a wireless cell configuration is related to how it can cope with the increase in call traffic concentrated in large cities, and how economically a zone configuration can be realized. In cases where land is extremely expensive, such as in Japan, it is economically advantageous to have one base station handle communications for multiple wireless zones.

また、6角形セルを1つの無線ゾーンとして使用するか
、これを2分割、3分割・・・・n分割するかは自由で
ある。その場合分割によって隣接間層波数チャネルから
の干渉比が所望値以上に保たれるか、また通話トラフィ
ック(量)を増加させることができるか、干渉比の大き
さと干渉波の多少や通話トラフィックの増加の多少が評
価の対象となる。
Further, it is free to use the hexagonal cell as one wireless zone, or to divide it into two, three, . . . n. In that case, whether the interference ratio from adjacent interlayer wavenumber channels can be kept above the desired value by division, and whether it is possible to increase the call traffic (amount), the magnitude of the interference ratio, the amount of interference waves, and the call traffic The amount of increase will be subject to evaluation.

従来、無指向性アンテナを用いた6角形セルを使用した
チャネル配置では許容される干渉比を確保するには7セ
ル構成以上が必要とされていた。
Conventionally, a channel arrangement using hexagonal cells using omnidirectional antennas requires a seven-cell configuration or more to ensure an acceptable interference ratio.

これに対して、指向性アンテナを用い、4個の6角形無
線セルを用いた構成方法は例えば米国特許明細書第41
28740号によれば第1図のようになる。同図で、4
個のセル(w、x、y、z)はそれぞれ6個の3角形セ
クターに分割されている。6個の3角形セクターは共通
の中心位置に設けた6個の指向性アンテナビームにより
各々構成サレ、指向性アンテナビームの最大方向は隣接
するセルの中心方向を向いている。また、前記6個のセ
ルの内、W、X、Yは時計廻りにセクターの番号が増す
が、Zについては、Z3を起点として時計廻りに、z2
.zl、z5.z4.z6の順に配置されている。
On the other hand, a configuration method using a directional antenna and four hexagonal wireless cells is disclosed in, for example, US Pat.
According to No. 28740, it is as shown in Figure 1. In the same figure, 4
Each cell (w, x, y, z) is divided into 6 triangular sectors. The six triangular sectors each consist of six directional antenna beams located at a common center position, with the maximum direction of the directional antenna beams pointing toward the center of adjacent cells. Furthermore, among the six cells, the sector numbers increase clockwise for W, X, and Y, but for Z, the sector numbers increase clockwise starting from Z3, z2
.. zl, z5. z4. They are arranged in the order of z6.

上記従来例の構成では、無指向性アンテナを用いた7セ
ル構成の通話トラフィックより呼損率0.5係でわずか
に14チの改善効果しか得られなかつた。
In the conventional configuration described above, an improvement effect of only 14 channels with a call loss rate of 0.5 was obtained compared to the call traffic of a 7-cell configuration using omnidirectional antennas.

また、前記4セル構成で、各セルを6分割する方式では
4セルの内の1つのセルZのチャネル(セクター)配置
は他の3つのセルのチャネル(セクター)と異なる必要
があり、簡単な規則性を適用できない欠点があった。
In addition, in the method of dividing each cell into 6 in the 4-cell configuration described above, the channel (sector) arrangement of one cell Z among the 4 cells must be different from the channels (sectors) of the other three cells. There was a drawback that regularity could not be applied.

また、前記4セル構成に使用する指向性アンテナの主ビ
ームは隣接セルの通信域内にまで展開するため、隣接セ
ルと重複する部分が大きく、指向性アンテナの利得を効
果的に利用することができなかった。従って、電波使用
上の規則等によって実効放射電力(ERP)が制限され
る場合にどうしても通信エリアの半径が小さくなる欠点
があった。
In addition, since the main beam of the directional antenna used in the 4-cell configuration extends into the communication range of adjacent cells, there is a large overlap with the adjacent cells, making it possible to effectively utilize the gain of the directional antenna. There wasn't. Therefore, when the effective radiated power (ERP) is limited due to regulations regarding the use of radio waves, the radius of the communication area inevitably becomes smaller.

発明の目的 本発明は前記従来例の欠点を除去するものであり、従来
の4セルで指向性アンテナを用いた通信方式に対して、
出来るだけ小数のセル構成を可能とし、従って、トラフ
ィックが増加出来、しかも経済的な基地局ゾーン構成方
法を提供することを目的とする。
Purpose of the Invention The present invention eliminates the drawbacks of the conventional example, and has the following advantages over the conventional communication system using four cells and directional antennas.
It is an object of the present invention to provide an economical method for configuring a base station zone, which allows the number of cells to be configured as small as possible, thereby increasing traffic.

発明の構成 本発明は上記目的を達成するために、通信サービスを提
供する通信地域を6角形セルを単位に分割し、前記6角
形セル3個を単位として、三葉形のセルクラスタを形成
し、また前記6角形セルを構成する6個のダイヤマーク
形のセクターを6角形セルの中心位置に設けた6組の指
向性アンテナビームにより形成し、かつ前記指向性アン
テナビームの中心(最大)方向を6角形セルの各頂角方
向に向けることにより隣接するセルの中心を避けるよう
に構成し、また前記各セクター間のチャネル総数に一定
の規則性を与えることにより3セル構成でも従来の4セ
ル以上の特性が得られるように構成したものである。
Structure of the Invention In order to achieve the above object, the present invention divides a communication area in which communication services are provided into units of hexagonal cells, and forms a trilobal cell cluster using three hexagonal cells as a unit. In addition, the six diamond mark-shaped sectors constituting the hexagonal cell are formed by six sets of directional antenna beams provided at the center position of the hexagonal cell, and the center (maximum) direction of the directional antenna beam is is arranged in the direction of each apex of the hexagonal cell to avoid the center of adjacent cells, and by giving a certain regularity to the total number of channels between each sector, even in a 3-cell configuration, it is possible to avoid the center of adjacent cells. The structure is such that the above characteristics can be obtained.

実施例の説明 以下に本発明の一実施例の構成について、図面と共に説
明する。
DESCRIPTION OF EMBODIMENTS The configuration of an embodiment of the present invention will be described below with reference to the drawings.

第2図は移動通信サービスを提供するサービスエリアの
構成を示す図であり、以下説明の便宜上第2図の上方を
北(N)、下方を南(S)、右を東(E)、左を西(W
)として、等面積の正6角形によりサービスエリアを各
セクターに分割し、これに使用可能な全通話及び制御チ
ャネル(無線チャネル)を分配している。次に、隣接す
る6角形セル3個を互に他の2個と一辺が接するように
三葉状に形成したものを1組のセルクラスタ(塊)とし
、このセルクラスタを一単位として互にすきまを生じな
いように東西(EW)方向および北東(NE)300方
向および北西(NW)so°方向に積み重ねている。
Figure 2 is a diagram showing the configuration of a service area that provides mobile communication services.For convenience of explanation below, the upper part of Figure 2 is north (N), the lower part is south (S), the right is east (E), and the left is to the west (W
), the service area is divided into sectors by regular hexagons of equal area, and all available communication and control channels (wireless channels) are distributed to these sectors. Next, three adjacent hexagonal cells are formed in a trilobal shape so that one side touches the other two cells, forming a set of cell clusters (clumps), and this cell cluster is considered as a unit with a gap between each other. They are stacked in the east-west (EW) direction, the northeast (NE) 300 direction, and the northwest (NW) so° direction so as not to cause

次に、前記正6角形セルの各々の中心点(第1の中心点
)を基準にして北南(NS)方向、北西(NW)e○0
方向、北東(NE)600方向に分割線を引き、前記正
6角形セルをダイヤマーク状(D i a mo n 
d) の6個のセクターに分割する。
Next, with reference to the center point (first center point) of each of the regular hexagonal cells, proceed in the north-south (NS) direction, northwest (NW) e○0
A dividing line is drawn in the northeast (NE) direction, and the regular hexagonal cell is shaped like a diamond mark (Diamon).
d) Divide into six sectors.

これは各セクターの中心に基地局を設け、6基の指向性
アンテナの主ビームを前記6角形セルの各々6つの頂角
に合わせて設置し、前記各指向性アンテナを用いて、そ
れぞれ独立の通信域を形成させている。
In this method, a base station is installed at the center of each sector, and the main beams of six directional antennas are aligned with the six apex angles of each of the hexagonal cells. It forms a communication area.

次に第2図のように、正6角形3個1組のセルクラスタ
の各セルはAセル(第1のセル)、南側のBセル(第2
のセル)、東側のCセル(第3のセルフとし、各セルの
内の東の位置にあるセクターをA1.B1.C1とし、
時計例りにA2.A3 ・・A6、B2.B3.、、、
、、B6、C2,C3−C6と名付けて各セルのセクタ
ーの番号を対応させ、これに第3図のように無線チャネ
ルの割当をする。
Next, as shown in Figure 2, each cell in a set of three regular hexagonal cell clusters is cell A (first cell), cell B on the south side (second cell),
cell), the east side C cell (the third self, and the sector in the east position of each cell is A1.B1.C1,
A2. A3...A6, B2. B3. ,,,
, , B6, C2, C3-C6, the sector numbers of each cell correspond to each other, and radio channels are assigned to these as shown in FIG.

なお、同図で、A1−C6は各セクター名、数字はチャ
ネル(番号)を表わす。前記チャネルは通話チャネル(
CH)と、制御CHに大別される。
In the figure, A1 to C6 represent the names of each sector, and the numbers represent channels (numbers). Said channel is a call channel (
CH) and control CH.

従って、セクターA1 には22・−・・328の18
個の通話チャネルと1個の制御チャネル(1CH)が割
当てられている。他も同様であるが、斜線部はチャネル
総数の制限により割当の無い個所を表わす。
Therefore, sector A1 has 22...328 18
1 communication channel and 1 control channel (1CH) are allocated. The same is true for the others, but the shaded areas represent areas where no allocation is made due to the limit on the total number of channels.

次に、第4図は各セクターの構成方法を示す図であって
、参考の為に第1図に記載した従来例との対比で示しで
ある。同図で基地局アンテナ位置を01第2図に記載し
た6角形セルをN1〜N6で又第1図に記載した6角形
セルをM1〜M6で表わすものとする。
Next, FIG. 4 is a diagram showing a method of configuring each sector, and is shown in comparison with the conventional example shown in FIG. 1 for reference. In the figure, the base station antenna position is 01, and the hexagonal cells shown in FIG. 2 are represented by N1 to N6, and the hexagonal cells shown in FIG. 1 are represented by M1 to M6.

さらに、6角形セルの一つを構成する第2図のダイヤ 
(マーク)形のセクターを082N1s1で、また第1
図の3角形のセクターを0M6M1を示す。
Furthermore, the diamond in Fig. 2 that constitutes one of the hexagonal cells
(mark) type sector with 082N1s1, and the first
The triangular sector in the figure is 0M6M1.

この時、ダイヤ形のセクターの指向性アンテナのビーム
を3.3角形のセクターの指向性アンテナのビームを2
、また以下の説明に使用する無指向性アンテナのビーム
を1で表わす。同図において特徴的なことは、指向性ア
ンテナビーム3の中心方向く従って最大方向)は軸x1
方向を向いているのに対し、指向性アンテナビーム2の
中心方向は軸Y1方向であシ、両者は互いに30度の角
度能れている。さらに、同図で81(B2)点及びMl
(M2)点におけるアンテナ利得は、最大値に対して半
分(半値巾−±3Q0)になるように規定される。
At this time, the beam of the directional antenna in the diamond-shaped sector is 3. The beam of the directional antenna in the triangular sector is 2.
, and the beam of the omnidirectional antenna used in the following explanation is represented by 1. What is characteristic in this figure is that the center direction (and thus the maximum direction) of the directional antenna beam 3 is along the axis x1.
In contrast, the center direction of the directional antenna beam 2 is in the direction of the axis Y1, and both are at an angle of 30 degrees to each other. Furthermore, in the same figure, point 81 (B2) and Ml
The antenna gain at point (M2) is defined to be half (half width - ±3Q0) of the maximum value.

次に、指向性アンテナビーム2,3と無指向性アンテナ
ビーム1のそれぞれの到達距離について説明する。例え
ば0CTHに規定する陸上移動無線用伝播曲線を使用し
、実効放射電力(ERP)が100W、アンテナ高を1
60mとした時の無指向性アンテナ1の電界強度が39
 dBμV/mになる距離(セル半径)RoをめるとO
U1=R0−12kmになる。一方、指向性アンテナビ
ーム3に対応するセル半径RNば0N1−11Jan、
また指向性アンテナビーム2に対応するセル半径RMは
、0M。
Next, the respective reach distances of the directional antenna beams 2 and 3 and the omnidirectional antenna beam 1 will be explained. For example, using the propagation curve for land mobile radio specified in 0CTH, the effective radiated power (ERP) is 100W, and the antenna height is 1.
The electric field strength of omnidirectional antenna 1 when set at 60m is 39
If we add the distance (cell radius) Ro that becomes dBμV/m, we get O
U1=R0-12km. On the other hand, if the cell radius RN corresponding to directional antenna beam 3 is 0N1-11Jan,
Further, the cell radius RM corresponding to directional antenna beam 2 is 0M.

(0M6) −9、5Janとなる。即ち、指向性アン
テナビーム3では、同図の斜線領域が指向性アンテナビ
ーム2の斜線領域よりも小さいこと、換言すれば指向性
アンテナビーム2の向きでは領域(I)から隣接する領
域(n)へ移っても電界強度が低下せず重複領域が大き
いことになる。
(0M6) -9, 5Jan. That is, for directional antenna beam 3, the shaded area in the figure is smaller than the shaded area for directional antenna beam 2. In other words, in the direction of directional antenna beam 2, the area (I) to the adjacent area (n) Even if it moves to , the electric field strength does not decrease and the overlapping region becomes large.

次に、同一周波数が繰返される隣接セクターまでの距離
を3角形のセクター2、ダイヤマーク形のセクター3で
それぞれめると第1図で4,5の間、また第2図で6,
7間の距離になり、これらをDM、DNで表わすと、第
1図、第2図から明らかなように、DM=2−、/TR
M =32.9 k7n 。
Next, if we calculate the distance to the adjacent sector where the same frequency is repeated in triangular sector 2 and diamond mark sector 3, it will be between 4 and 5 in Figure 1, and 6 and 5 in Figure 2.
7, and when these are expressed as DM and DN, as is clear from Figures 1 and 2, DM = 2-, /TR.
M = 32.9 k7n.

DN=3RN=33knとなりDMとDNはほとんど等
しくなり、両者の干渉を起す距離間隔はほぼ等しいこと
を示している。
DN=3RN=33kn, so DM and DN are almost equal, indicating that the distance intervals at which interference occurs between them are almost equal.

即ち上記構成では、各セクターを構成するアンテナのビ
ームがいずれも隣接するセルの中心を避けるように構成
することによって干渉を小さくし、その結果、従来の4
セル構成に対し3セル構成によって4セルと同等な干渉
軽減を行わせることが出来る。
That is, in the above configuration, interference is reduced by configuring the antenna beams constituting each sector to avoid the center of adjacent cells, and as a result, compared to the conventional 4
Compared to the cell configuration, a 3-cell configuration can achieve interference reduction equivalent to that of a 4-cell configuration.

しかしながら、指向性アンテナの指向性の方向を考慮す
ると、上記距離においても2個の指向性アンテナ4と5
及び6と7はそれぞれ逆方向を向いており、指向性の前
後比(F/B)を25 dBとすれば、背面通信距離D
aは、Da=1.81cmとなり、妨害基地局から上記
地点捷での距離は、B3−Da=31.9−1+ 8=
30.11cInとなり、両者の干渉比(S/I)は約
15dBとなる。
However, considering the direction of directivity of the directional antennas, even at the above distance, the two directional antennas 4 and 5
and 6 and 7 are facing in opposite directions, and if the front-back ratio (F/B) of the directivity is 25 dB, the back communication distance D is
a is Da=1.81 cm, and the distance from the interfering base station to the above point is B3-Da=31.9-1+8=
30.11 cIn, and the interference ratio (S/I) between the two is about 15 dB.

また、本発明は各セクター、セルの配置は一定法則によ
り決定されるので、全てのセクター間のS/I比を同じ
値に確保できるのである。すなわち、指向性アンテナに
より無線チャネルを割当てる場合は例えば、各セルA、
B、Cの東方向のセクターをA1.B1.C1として6
00間隔でA1.A2ない。勿論A1.B1およびC1
を地図上の方位の別の方位に基点を置いても、まだ、チ
ャネル割当てを時計方向と逆の反時計方向に回転するよ
うに無線チャネル配置をしても同等の結果が得られる。
Furthermore, in the present invention, since the arrangement of each sector and cell is determined according to a fixed rule, the S/I ratio between all sectors can be maintained at the same value. That is, when allocating wireless channels using directional antennas, for example, each cell A,
The eastward sectors of B and C are A1. B1. 6 as C1
A1 at 00 intervals. There is no A2. Of course A1. B1 and C1
Even if the base point is placed in a different direction on the map, the same result can still be obtained even if the wireless channel allocation is performed so that the channel assignment is rotated in a counterclockwise direction.

ここで、実施例の構成を実現するだめの基地局設備につ
いて、第5図により説明する。51はアンテナ鉄塔、6
2は基地局アンテナ、66はアンテナリフレクタ−で、
利得半値幅が600以上の指向性アンテナ52A〜s2
Fにより各セクターを通信域としている。53A〜53
Fは送受信共用器で、各アンテナ毎に用いて各セクター
毎の送受信周波数の共用を行なっている。54A〜54
Fは前記各アンテナ52A〜52Fと前記送受信共用器
を結合する同軸ケーブルまたは導波管(数GHz の場
合)、65A〜65Fは各アンテナ毎の送信共用器、6
6a〜56nは各アンテナ毎の複数のチャネル周波数を
送出する複数台の送信機、57A〜57Fは受信共用器
で、各アンテナ毎に設けられ、無線受信機58a〜58
nに各アンテナの受信電力を損失なく均等に分配する。
Here, base station equipment for realizing the configuration of the embodiment will be explained with reference to FIG. 5. 51 is the antenna tower, 6
2 is a base station antenna, 66 is an antenna reflector,
Directional antennas 52A to s2 with a gain half width of 600 or more
F makes each sector a communication area. 53A~53
F is a transmitting/receiving duplexer, which is used for each antenna to share the transmitting/receiving frequency for each sector. 54A~54
F is a coaxial cable or waveguide (in the case of several GHz) that couples each of the antennas 52A to 52F and the transmission/reception duplexer, 65A to 65F is a transmission duplexer for each antenna, and 6
6a to 56n are multiple transmitters that transmit a plurality of channel frequencies for each antenna, 57A to 57F are reception duplexers provided for each antenna, and radio receivers 58a to 58
The received power of each antenna is distributed equally to n without loss.

59は基地局制御装置(CS U)で、移動無線電話機
と有線電話加入者を交換接続するだめの種々の制御信号
の送受信、移動無線電話機の追跡、チャネル切替等、無
線通信独特の各種制御を行なう装置である。6oは複数
のC3Uを制御する電話交換機(MTSO)で、移動無
線電話機62A・・・・・62Nと市外電話網63およ
び対地の市内交換局64を介して電話加入者(電話機)
65と接続されるこ7図は3セルクラスタ(A、B、C
)の各セクターへ(無線)チャネル(グループ番号)を
配置する方法を示した図であり、任意のセクターA1 
を最も若い番号のセクター、C6を最も大きい番号のセ
クターと(7て、名セクターに(無線)チャネルを割当
てる」場合に、無線チャネルをA1.B1.C1゜A2
の順に(無、1iりセルAの各セクターA1〜八〇には
3チャネル飛びでチャネルグループ番号が増加するよう
に1.4,7,10,13.16を割当てる。(無線)
セルBの各セクターB1〜B6にはセルへのチャネル配
置をセルBに平行にスライドしてセクターA1 をセク
ターB1 に重ね、セルAのチャネルグループ番号1〜
16に1を加算したチャネルグループ番号2,5,8,
11,14゜17をセクターB1〜B6に割当てる。次
に、セルCの各セクターに対してセルBと同時にセクタ
ーA1 をセクター01 に重ね、セルAのチャネルグ
ループ番号1〜16に2を加算したチャネルグループ番
号3,6,9,12,15.18を割当てた状態を示し
ている。破線矢印、実線矢印は番号の増加する方向を示
している。
Reference numeral 59 denotes a base station control unit (CSU), which performs various controls peculiar to wireless communication, such as sending and receiving various control signals for switching and connecting mobile radio telephones and wired telephone subscribers, tracking mobile radio telephones, and switching channels. It is a device that performs 6o is a telephone exchange (MTSO) that controls a plurality of C3Us, and connects telephone subscribers (telephones) via mobile radio telephones 62A...62N, a long-distance telephone network 63, and a local exchange 64 at the destination.
Figure 7 shows a 3-cell cluster (A, B, C) connected to 65.
) is a diagram showing a method of arranging (wireless) channels (group numbers) to each sector of
Assign a (wireless) channel to the lowest numbered sector, C6 to the highest numbered sector, and assign a (wireless) channel to the first sector, A1.B1.C1゜A2.
1.4, 7, 10, 13.16 are assigned to each sector A1 to 80 of cell A in order of (none, 1i) so that the channel group number increases in 3-channel increments. (Wireless)
For each sector B1 to B6 of cell B, slide the channel arrangement to the cell parallel to cell B so that sector A1 overlaps sector B1, and channel group numbers 1 to B6 of cell A are assigned.
Channel group number 2, 5, 8, which is 16 plus 1
11,14°17 are assigned to sectors B1 to B6. Next, for each sector of cell C, sector A1 is overlapped with sector 01 at the same time as cell B, and channel group numbers 3, 6, 9, 12, 15, . 18 is shown. Broken arrows and solid arrows indicate the direction in which the numbers increase.

なお、セルAのセクターA1 をチャネルグループ番号
の最も大きく選び、A1.A2・ ・A6の順に3チャ
ネル間隔でチャネル割当てをしてもよい。
Note that sector A1 of cell A is selected with the largest channel group number, and A1. Channels may be allocated in the order of A2, . . . A6 at three channel intervals.

例えば、A1=18.A2=16.A3−12.A4=
9゜A6:6 、 A6:3 とし、セルBの各セクタ
ーはセルAから1を差引いた番号、セルBの各セクター
はセルAから差引いた番号としてもよい。
For example, A1=18. A2=16. A3-12. A4=
9°A6:6, A6:3, each sector of cell B may be a number obtained by subtracting 1 from cell A, and each sector of cell B may be a number subtracted from cell A.

第8図はセル内のチャネル割当てをセルAのセクターA
1から反時創廻転に割当てだ例である。
Figure 8 shows channel allocation within a cell in sector A of cell A.
This is an example of assigning from 1 to anti-time rotation.

例えばチャネルグループ番号をA1−1.A6=4゜A
5=7.A4−10.A3=13 、A2=16とし、
セルBもセルA、!=In、セルAのチャネルグループ
番号に1を加算し、セルCもセルAと同様セルAのチャ
ネルグループ番号に2を加算した番号のチャネルをセク
ターB1.C1を基点としてカえるものであり、破線矢
印、実線矢印はチャネルグループ番号の増加方向を示し
ている。
For example, if the channel group number is A1-1. A6=4゜A
5=7. A4-10. A3=13, A2=16,
Cell B and cell A! =In, 1 is added to the channel group number of cell A, and cell C, like cell A, also assigns a channel whose number is obtained by adding 2 to the channel group number of cell A to sector B1. The channel group number increases from C1 as a base point, and the broken line arrow and solid line arrow indicate the increasing direction of the channel group number.

なお、第7図と同様にセクターA1 のチャネルグルー
プを最も大きい番号に選び、順次3チヤネル毎に小さい
番号の割当てをしてもよい。
Incidentally, similarly to FIG. 7, the channel group in sector A1 may be selected as the largest number, and smaller numbers may be sequentially assigned to every three channels.

第9図はセルA、B、Cへのチャネルグループの割当て
を第8図の廻転方向と反対にセルA、C。
FIG. 9 shows the assignment of channel groups to cells A, B, and C in the opposite direction to the rotation direction of FIG. 8.

Bとし、セクターA1 をチャネルグループ番号1、B
1 を3、C1を2とし、各セル内では時計廻りにチャ
ネルグループ番号を増加させた例である。
B, sector A1 is channel group number 1, B
In this example, 1 is set to 3, C1 is set to 2, and channel group numbers are increased clockwise within each cell.

なお、セクターAつ に最高のチャネルグループ番号を
割当ててA1.B1.C1およびA1〜A6.B1〜B
6.C1〜C6方向に小さな番号を割当ててもよいO 第10図はチャネルグループ番号の割当てを各セルA、
C,B各セクターA1. A6. A5. A4. A
3゜A2.B1.B6〜B2.cl、c6〜c2のよう
に反時旧廻転に割当でたもので、セクターA1 を最大
番号と1〜だ場合はチャネルグループ番号を前記と反対
に低下することを示し7ている。
Note that the highest channel group number is assigned to sector A, and A1. B1. C1 and A1-A6. B1-B
6. Small numbers may be assigned in the direction of C1 to C6.O Figure 10 shows the assignment of channel group numbers to each cell A,
C, B each sector A1. A6. A5. A4. A
3゜A2. B1. B6-B2. cl, c6 to c2, which are assigned in anti-chronological rotation, and sector A1 is the maximum number and 1 to 1 indicates that the channel group number is decreased in the opposite manner to the above.

本発明のセルクラスタ構成においてkJl、チャネルグ
ループを割当てる際の基点はセル八、 B、 Cの中の
任意のセクターとして前記の様な方則でチャネルグルー
プ番月の割当てができる。
In the cell cluster configuration of the present invention, the base point for allocating kJl and channel groups is any sector among cells 8, B, and C, and channel group numbers can be allocated in the manner described above.

第11図はチャネル割当ての基点をセルAのセクターA
4から行な−)だ状態を/トシている。破線矢印、実線
矢印はセクターおよびセルへのチャネル割当て方向を示
したもので、矢印の方向に向けて増加または減少するこ
とを示している。
Figure 11 shows that the base point for channel allocation is sector A of cell A.
Starting from 4, the state is /toshi. Dashed line arrows and solid line arrows indicate the direction of channel allocation to sectors and cells, indicating that the channel allocation increases or decreases in the direction of the arrow.

次に、12セル方式、7セル方式、4セル6分割方式、
3セル6分割方式の通話呼量及び呼量比を通話チャネル
数312個(333〜21)、呼損率0.5%として計
算すると第6図のようになる。
Next, 12 cell method, 7 cell method, 4 cell 6 division method,
When the call volume and call volume ratio of the 3-cell 6-division system are calculated assuming that the number of call channels is 312 (333 to 21) and the call loss rate is 0.5%, the results are as shown in FIG.

即ち、本発明のセル構成によれば、無指向性アンテナを
用いたγセル方式に対して約1.74倍、12セル方式
に対しては約3.5−[)ラフイック増加が可能となる
。従来の4セル6分割方式と比較しても1.5倍強のト
ラフィックの増加を得たことになる。この事は限られた
周波数帯域を使用する通信方式においては特に重要であ
る。また、本発明によれば指向性アンテナの使用により
無指向性アンテナによる3セル方式に比較して干渉波の
数を%に減少させることになるので、干渉の点について
も利益が得られる。
That is, according to the cell configuration of the present invention, it is possible to increase the roughness by about 1.74 times compared to the γ cell system using omnidirectional antennas, and by about 3.5 - [) rough times compared to the 12 cell system. . Even compared to the conventional 4-cell 6-division system, the traffic has increased by more than 1.5 times. This is particularly important in communication systems that use limited frequency bands. Further, according to the present invention, the number of interference waves can be reduced by 20% compared to the 3-cell system using omnidirectional antennas by using a directional antenna, so that advantages can also be obtained in terms of interference.

発明の効果 本発明は前記のような構成であり、基地局の数を増加さ
せないで、セルのトラフィックを向上させる場合に以下
に示す効果が得られる。
Effects of the Invention The present invention has the above-described configuration, and provides the following effects when improving cell traffic without increasing the number of base stations.

(a)3セルを6分配することによって各セクターアン
テナへの通話チャネルの分配数を増加することができ、
各セルの通話トラフィックを大幅に増大することが可能
となる。例えば、無指向性アンテナを用いた7セル構成
のセルクラスタの通話トラフィックに対して、4セル、
6分割方式は通話トラフィックの増加はわずか14チで
あるのに対して、本発明のクラスタ構成によれば74多
の増加を得ることができるため、通話トラフィック改善
効果は太きい。
(a) By distributing 3 cells to 6, the number of communication channels distributed to each sector antenna can be increased,
It becomes possible to significantly increase call traffic in each cell. For example, for call traffic in a cell cluster with 7 cells using omnidirectional antennas, 4 cells,
In the 6-division system, the increase in call traffic is only 14 times, but with the cluster configuration of the present invention, an increase of 74 times can be obtained, so the effect of improving call traffic is significant.

(b) 基地局数を増加せずに通話トラフィックを増加
させる方法として経済性及び特性の点から特に優れてい
る。
(b) This method is particularly advantageous in terms of economy and characteristics as a method for increasing call traffic without increasing the number of base stations.

(C)クラスタ内の各セルの各セクターへの通話チャネ
ルの配置を時計廻シ方向または反時計廻り方向に規則的
に行なうことができ、不規則な配置をする必要がないの
でシステムの構成を単純にできる利点がある。
(C) Communication channels can be arranged regularly in each sector of each cell in a cluster in a clockwise or counterclockwise direction, and there is no need for irregular arrangement, so the system configuration can be improved. It has the advantage of being simple.

(d) 無指向性アンテナ3セル方式に対しては干渉波
の数を%に減少させることが可能となり、4セル方式に
比較してセルの数が少ない3セル繰返し方式を使用可能
とした点は移動通信の周波数利用の上で極めて利点が大
きい。
(d) Compared to the 3-cell omnidirectional antenna system, it is possible to reduce the number of interference waves by 1.9%, and the 3-cell repetition system, which has fewer cells than the 4-cell system, can be used. is extremely advantageous in terms of frequency utilization for mobile communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例のセル配置を示す図、第2図は本発明の
一実施例における基地局ゾーン構成方法のセル配置およ
びチャネル配置を示す図、第3図は同方法で副配列であ
るセクターに割当てるチャネルの規則性を示す図、第4
図は同方法の通信地域と従来例の通信地域を比較するだ
めの図、第5図は本発明の方法を実施する基地局設備の
構成を示す図、第6図は各種セル方式における呼量を比
較するだ゛めの図、第7図、第8図、第9図、第10図
、第11図はそれぞれ本発明の他の実施例のチャネル割
当方法を説明するだめの図である。 A、B、C・・セル A −C−・・・セクター、1 
1 6 51 ・・・アンテナ鉄塔、62A〜52F ・ 基地
局アンテナ、53A〜53F・・・・送受信共用器、5
5A〜66F ・送信共用器、56 a 〜56 n・
・・送信機、57A〜57F・・・受信共用器、58a
〜58n・・ ・無線受信機、59・ ・基地局制御装
置、6o ・・電話交換機、62A〜62N・・・・移
動無線電話機、64・・・・市内交換局、66・・・−
・・電話加入者(電話機)、66・山・アンテナリフレ
クタ−8 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2 ■ 第4図 ×l 第5図 、52D 第7図 第8図 第9図 第10図
FIG. 1 is a diagram showing a cell arrangement in a conventional example, FIG. 2 is a diagram showing a cell arrangement and a channel arrangement in a base station zone configuration method according to an embodiment of the present invention, and FIG. 3 is a diagram showing a sub-array in the same method. Diagram showing the regularity of channels allocated to sectors, 4th
The figure is a diagram comparing the communication area of the same method and the conventional example, Figure 5 is a diagram showing the configuration of base station equipment implementing the method of the present invention, and Figure 6 is the traffic volume in various cell systems. FIGS. 7, 8, 9, 10, and 11 are diagrams for explaining channel allocation methods according to other embodiments of the present invention, respectively. A, B, C...Cell A-C-...Sector, 1
1 6 51...Antenna tower, 62A to 52F Base station antenna, 53A to 53F...Transmission/reception duplexer, 5
5A ~ 66F ・Transmission duplexer, 56 a ~ 56 n・
...Transmitter, 57A to 57F...Reception duplexer, 58a
~58n... Radio receiver, 59... Base station controller, 6o... Telephone exchange, 62A~62N... Mobile radio telephone, 64... Local exchange, 66...-
...Telephone subscriber (telephone), 66, mountain, antenna reflector - 8 Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 ■ Figure 4 ×l Figure 5 , 52D Figure 7 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 第1の中心点の廻りに配置した基地局毎の6個の指向性
アンテナビームによりそれぞれダイヤマーク形のセクタ
ーを有する6角形のセルを形成すると共に、前記指向性
アンテナビームを前記6角形のセルの頂角方向と一致さ
せ、前記6角形のセル3個を一単位としてその第1のセ
ルに隣接して右廻り又は左廻りに第2.第3のセルを設
けてセルクラスタを構成すると共に、前記3個のセルで
同一方向のセクター同志を対応させ、前記セルクラスタ
を平行移動して異るセルクラスタの同一番号のセル同志
が隣接しないように通信ゾーン内に複数個配列し、前記
セルクラスタ単位に複数チャネルを繰返し使用し、前記
複数のチャネルはチャネル番号の増加或いは減少方向に
順次繰返し割当てて18個のチャネルグループ番号を付
与し、前記第1のセルの中の任意のセクターを基準とし
て、時開廻り又は反時訓廻り方向に3チャネル飛びにチ
ャネルグループ番号を割当てると共に、前記第2、第3
のセルに対しては、前記第1のセルの対応するセクター
に一方は前記チャネルグループ番号に1、他方には2を
加えたチャネルグループ番号を割当てて通信ゾーンを形
成することを特徴とする移動通信における基地局ゾーン
構成方法。
six directional antenna beams for each base station arranged around a first center point form hexagonal cells each having a diamond-shaped sector; The three hexagonal cells are made into one unit, and the second hexagonal cell is adjacent to the first cell, clockwise or counterclockwise. A third cell is provided to form a cell cluster, and the three cells make sectors in the same direction correspond to each other, and the cell cluster is moved in parallel so that cells with the same number of different cell clusters are not adjacent to each other. A plurality of channels are arranged in a communication zone, a plurality of channels are repeatedly used for each cell cluster, and the plurality of channels are sequentially and repeatedly assigned in the direction of increasing or decreasing channel numbers to give 18 channel group numbers, Channel group numbers are assigned to every three channels in the clockwise or counterclockwise direction with reference to an arbitrary sector in the first cell, and
For the cell, a communication zone is formed by allocating a channel group number obtained by adding 1 to the channel group number and 2 to the corresponding sector of the first cell. Base station zone configuration method in communications.
JP58178526A 1983-09-27 1983-09-27 Method for constituting base station zone in mobile communication Granted JPS6069923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178526A JPS6069923A (en) 1983-09-27 1983-09-27 Method for constituting base station zone in mobile communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178526A JPS6069923A (en) 1983-09-27 1983-09-27 Method for constituting base station zone in mobile communication

Publications (2)

Publication Number Publication Date
JPS6069923A true JPS6069923A (en) 1985-04-20
JPH0247903B2 JPH0247903B2 (en) 1990-10-23

Family

ID=16050012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178526A Granted JPS6069923A (en) 1983-09-27 1983-09-27 Method for constituting base station zone in mobile communication

Country Status (1)

Country Link
JP (1) JPS6069923A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004616A1 (en) * 1989-09-19 1991-04-04 Nippon Telegraph And Telephone Corporation System for judging a sector in which a mobile station exists
US6980806B2 (en) 2000-03-22 2005-12-27 Hitachi Kokusai Electric Inc. Radio system
WO2007119432A1 (en) * 2006-03-20 2007-10-25 Ntt Docomo, Inc. Channel identifier allocating method, peripheral information notifying method, base station and mobile device
JP2008099293A (en) * 2006-10-13 2008-04-24 Samsung Electronics Co Ltd Device and method for reassigning segment in wideband radio communication system
US7746196B2 (en) 2004-12-22 2010-06-29 Telefonaktiebolaget L M Ericsson (Publ) Arrangement relating to antenna communication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637265B1 (en) * 2010-11-01 2016-07-08 현대자동차 주식회사 Sub-frame of vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004616A1 (en) * 1989-09-19 1991-04-04 Nippon Telegraph And Telephone Corporation System for judging a sector in which a mobile station exists
US5230081A (en) * 1989-09-19 1993-07-20 Nippon Telegraph And Telephone Corporation Method and apparatus for locating which zone and sector of a mobile communication system a mobile station is in
US6980806B2 (en) 2000-03-22 2005-12-27 Hitachi Kokusai Electric Inc. Radio system
US7746196B2 (en) 2004-12-22 2010-06-29 Telefonaktiebolaget L M Ericsson (Publ) Arrangement relating to antenna communication
WO2007119432A1 (en) * 2006-03-20 2007-10-25 Ntt Docomo, Inc. Channel identifier allocating method, peripheral information notifying method, base station and mobile device
JP2008099293A (en) * 2006-10-13 2008-04-24 Samsung Electronics Co Ltd Device and method for reassigning segment in wideband radio communication system
JP4496245B2 (en) * 2006-10-13 2010-07-07 三星電子株式会社 Segment reassignment apparatus and method in broadband wireless communication system
US8041357B2 (en) 2006-10-13 2011-10-18 Samsung Electronics Co., Ltd Apparatus and method for reallocating segments in broadband wireless communication system

Also Published As

Publication number Publication date
JPH0247903B2 (en) 1990-10-23

Similar Documents

Publication Publication Date Title
US5546443A (en) Communication management technique for a radiotelephone system including microcells
US4128740A (en) Antenna array for a cellular RF communications system
US5649292A (en) Obtaining improved frequency reuse in wireless communication systems
US5715516A (en) Method and apparatus for wireless communication employing collector arrays
JP3407671B2 (en) Wireless communication system and base station thereof
EP0616481A2 (en) Method of allocating radio channels for mobile communication system
JPS62136930A (en) Mobile radiotelephony system
US5850608A (en) Directional frequency assignment in a cellular radio system
EP0359535A2 (en) High capacity sectorized cellular communication system
US6035219A (en) Frequency assignment among antennas in a cellular communications network
US6078814A (en) Means of increasing capacity in cellular radio (mobile and fixed) systems
US5603083A (en) Microcell base station antenna pattern for dense urban areas
JPS6069923A (en) Method for constituting base station zone in mobile communication
JPS6333743B2 (en)
US5970411A (en) N=4 directional frequency assignment in a cellular radio system
JPH0447722A (en) Radio channel assignment control method in mobile communication
JPH08265839A (en) Mobile radio communication system
Faruque Directional frequency reuse for cellular communications
CA2237492C (en) Means of increasing capacity in cellular radio (mobile & fixed) systems
JPH08265840A (en) Mobile radio communication system
Eade Performance engineering of cellular radio systems
JPS60178731A (en) Constitution method of radio zone for mobile communication
JPH0337336B2 (en)
JPH08265251A (en) Mobile radio communication system
JPH03201727A (en) Channel arrangement system for cellar system