JPS6068320A - Waveguide type optical modulator - Google Patents

Waveguide type optical modulator

Info

Publication number
JPS6068320A
JPS6068320A JP15312683A JP15312683A JPS6068320A JP S6068320 A JPS6068320 A JP S6068320A JP 15312683 A JP15312683 A JP 15312683A JP 15312683 A JP15312683 A JP 15312683A JP S6068320 A JPS6068320 A JP S6068320A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
optical modulator
piezoelectric film
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15312683A
Other languages
Japanese (ja)
Inventor
Mitsuteru Kimura
光照 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP15312683A priority Critical patent/JPS6068320A/en
Publication of JPS6068320A publication Critical patent/JPS6068320A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Abstract

PURPOSE:To make production easier and to improve responsiveness and uniformity of characteristic by forming plural layers of optical waveguides in tight contact with piezoelectric films and using said waveguides as at least one of branch optical paths. CONSTITUTION:Ridge-shaped optical waveguides 3a, 3b consisting of hardened photoresist having width W=50mum and height h=3mum are formed to the central part of a pair of piezoelectric films 2a, 2b consisting of PVDF (polyvinyl chloride) having, for example, length l=8.5mm. and thickness d=9mm. of an optical waveguide 1. Al electrodes 4a, 4b having length m=4mm. are formed to cover the central part. Al electrode films 5a, 5b are formed on the opposite side faces of the films 2a, 2b and the films are joined to each other by means of an adhesive agent 6.

Description

【発明の詳細な説明】 本発明は、光路長変化を利用した分岐干渉型光変調器に
関し、特に圧電体フィルムの伸縮を効果的に光路長変化
に利用した光導波路型光変調器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a branching interference type optical modulator that utilizes changes in optical path length, and particularly to an optical waveguide type optical modulator that effectively utilizes expansion and contraction of a piezoelectric film to change optical path length.

光通信の発展と多様化に伴い、光変調゛の必要性は、ま
すます増大している。このような目的で開発されている
光変調器の一種として、分岐干渉型光変調器がある。こ
の分岐干渉型光変調器は、単一の光源からのコヒーシン
光を二重」二の光路に分岐し、そのうち少なくとも−の
光路を通る光に位相変化を与えたのち、再結合させ光路
間の位相差に基づく干渉により変調を行うものである。
With the development and diversification of optical communications, the need for optical modulation is increasing. One type of optical modulator that has been developed for this purpose is a branching interference type optical modulator. This branching interference type optical modulator splits cohesin light from a single light source into two optical paths, applies a phase change to the light passing through at least one of the two optical paths, and then recombines the light between the optical paths. Modulation is performed by interference based on phase differences.

従来、この分岐干渉型光変調器においては、はとんどの
場合において他の多くの光変調器と同様に、分岐光に位
相変化を与えるためには、分岐光に電気光学的結晶を透
過させ、この電気光学的結晶に与える電気的入力により
結晶の屈折率を変化させて位相変化を与える方式が採ら
れている。
Conventionally, in this branching interference type optical modulator, in most cases, as in many other optical modulators, in order to give a phase change to the branched light, it is necessary to pass the branched light through an electro-optic crystal. , a method is adopted in which the refractive index of the crystal is changed by electrical input applied to the electro-optic crystal to provide a phase change.

これに対し、上記のような電気光学効果を利用する方式
では、光導波路をその電気光学的結晶内に形成する必要
があり、光導波路材料に任意性がないため、その結晶の
吸収帯にある波長の光の変調ができないこと、結晶自体
が比較的高価であること、などの欠点を除くために、近
年、光路長の変化を与える方式が提案されている。この
ような提案には、例えば、分岐光路(光導波路)を与え
る光ファイバーを圧電体フィルムで接触挟持するも(7
) (K、P、Koo他、ELECTORONTC9L
ETTER9,Vol。
On the other hand, in the method using the electro-optic effect as described above, it is necessary to form the optical waveguide within the electro-optic crystal, and the optical waveguide material is not arbitrary. In order to eliminate drawbacks such as the inability to modulate the wavelength of light and the fact that the crystal itself is relatively expensive, methods that change the optical path length have been proposed in recent years. Such proposals include, for example, sandwiching an optical fiber that provides a branched optical path (optical waveguide) between piezoelectric films (7).
) (K, P, Koo et al., ELECTORONTC9L
ETTER9, Vol.

1?、No、11.380−3112頁)、あるいは光
ファイツク−を圧電体樹脂で被覆するもの(L、J、D
onalds他、ELECTORON[:S LETT
ER9,Vol、18.No、8 、328−327頁
)がある。これらは、いずれも、圧電体に電気的入力を
与え、生ずる寸法変化を光ファイツク一に伝達して光路
長を変化させるものである。
1? , No., pp. 11.380-3112), or those in which the optical fiber is coated with piezoelectric resin (L, J, D
onalds et al., ELECTORON[:S LETT
ER9, Vol. 18. No. 8, pp. 328-327). All of these devices apply electrical input to the piezoelectric material and transmit the resulting dimensional change to the optical fiber, thereby changing the optical path length.

しかしながら、本発明者の研究によれば、」二連した光
ファイバーを光導波路とする方式は、電気的入力に対す
る応答性および特性の安定性等について問題がある。こ
れは、光ファイバーには光導波路を形成するコアに加え
てクラッド部が形成されているため、このクラッド部に
よる質量増加が光導波路の寸法変化を妨たげ、更に応答
速度を低下させていることによるでいることによる。ま
た、光ファイバーは、その断面形状が木質的に円形であ
り、このことも、それを挟持し、あるいは包囲する形態
で圧電体層を与える上で、応力伝達効率の低下、あるい
は均一な厚みの被覆形成の困難さによる特性の不均質化
等の問題を生ずる原因になる。
However, according to research conducted by the present inventors, the system in which two optical fibers are used as an optical waveguide has problems with respect to responsiveness to electrical input and stability of characteristics. This is because optical fibers have a cladding in addition to the core that forms the optical waveguide, and the increase in mass due to the cladding prevents dimensional changes in the optical waveguide and further reduces the response speed. It depends on being. In addition, optical fibers have a wooden circular cross-sectional shape, which also causes problems such as a decrease in stress transmission efficiency or a coating with a uniform thickness when applying a piezoelectric layer to sandwich or surround the optical fibers. This may cause problems such as non-uniformity of properties due to difficulty in formation.

本発明は上述した事情に鑑み、製造が簡単で且つ応答性
の良い、分岐干渉型光変調器に属する光導波路型光変調
器を提供することを目的とする。
In view of the above-mentioned circumstances, an object of the present invention is to provide an optical waveguide type optical modulator belonging to the branching interference type optical modulator, which is easy to manufacture and has good responsiveness.

本発明者は上述の目的で研究した結果、光導波路を薄層
化し、直接圧電体フィルム上に形成することにより、上
述した光ファイバーを光導波路とする導波路型光変調器
の問題点が解決されることを見出した。
As a result of research for the above-mentioned purpose, the inventor of the present invention has found that the problems of the above-mentioned waveguide type optical modulator using an optical fiber as an optical waveguide can be solved by thinning the optical waveguide and forming it directly on a piezoelectric film. I discovered that.

本発明の導波路型光変調器は、このような知見に基づく
ものであり、より詳しくは、単一のコヒーレント光源か
ら分岐された少なくとも二重上の光導波路を再結合し透
過光の干渉により変調を行う導波路型光変調器において
、少なくとも−の光導波路が薄層をなし、圧電体フィル
ム上に形成されて圧電体フィルムへの電気的入力により
可変長化されていることを特徴とするものである。
The waveguide type optical modulator of the present invention is based on such knowledge, and more specifically, it recombines at least two optical waveguides branched from a single coherent light source and generates a signal by interference of transmitted light. A waveguide type optical modulator that performs modulation is characterized in that at least the - optical waveguide is a thin layer, is formed on a piezoelectric film, and is made variable in length by electrical input to the piezoelectric film. It is something.

以下、本発明の光導波路型光変調器を、実施例について
、図面を参照しつつ、更に詳細に説明する。
Embodiments of the optical waveguide type optical modulator of the present invention will be described in more detail below with reference to the drawings.

第1図は1本発明の導波路型光変調器の好ましい一実施
例の分解斜視図であり、第2図はその接合状態の光導波
路延長方向を含む断面図である。
FIG. 1 is an exploded perspective view of a preferred embodiment of the waveguide type optical modulator of the present invention, and FIG. 2 is a cross-sectional view including the direction in which the optical waveguide is in a bonded state.

この例の光変調器1において、各々長さ!=約8.5m
m、厚さd=約91の一対のPVDF (ポリビニリデ
ンフロライド、呉羽化学工業■製)装用電体フィルム2
a 、2bの、互いに対向する面の長さ方向中央部には
、それぞれ巾W=約50%■、高さh=約37L11の
ゴム+ビスアジド系樹脂(東京応化工業(株)製フォト
レジストOMR83の硬化物)製のリッジ状光導波路3
a、3bが形成され、また、それらの中央部を覆って、
長さm=4mmc7)AI電極(厚さ約0.1mm)4
aおよび4bが形成されている。また圧電体フィルム2
a、2bのそれぞれの逆側の面にはAt電極膜5a、5
bが形成されている。更にこれら一対の圧電体フィルム
2a、2bは、光導波路3aの両側端部に塗布された接
着剤6により互いに接合され、第2図に側面図を示すよ
うな光変調器lを与えている。
In the optical modulator 1 of this example, each length! = about 8.5m
A pair of PVDF (polyvinylidene fluoride, manufactured by Kureha Chemical Industry ■) electrical film 2 with thickness d = approx.
In the longitudinal center of the opposing surfaces of a and 2b, rubber + bisazide resin (photoresist OMR83 manufactured by Tokyo Ohka Kogyo Co., Ltd.) with a width W = approximately 50%■ and a height h = approximately 37L11 are respectively placed. ridge-shaped optical waveguide 3 made of cured product of
a, 3b are formed, and also cover their central parts,
Length m = 4mmc7) AI electrode (thickness approximately 0.1mm) 4
a and 4b are formed. Also, the piezoelectric film 2
At electrode films 5a and 5 are provided on opposite surfaces of electrodes a and 2b, respectively.
b is formed. Further, the pair of piezoelectric films 2a and 2b are bonded to each other by an adhesive 6 applied to both ends of the optical waveguide 3a, thereby providing an optical modulator l as shown in a side view in FIG.

上記した光変調器1の変調特性を、第3図に示すような
測定系で評価した。すなわちHe −Neレーザー31
からの波長6328人の光を、25)tzチョッパー3
2、ミラー33を経て集光レンズ34により、光変調器
1の一端の光導波路にカップリングさせた。また、一方
の光導波路3aおよび圧電体フィルムを挟持する一対の
電極4a 。
The modulation characteristics of the optical modulator 1 described above were evaluated using a measurement system as shown in FIG. That is, He-Ne laser 31
25) tz chopper 3
2. The light was coupled to the optical waveguide at one end of the optical modulator 1 through the mirror 33 and the condensing lens 34 . Also, a pair of electrodes 4a sandwiching one optical waveguide 3a and a piezoelectric film.

5a間には、可変DC電源35より種々の大きさの直流
電圧を印加した。一方、光変調器1からの出力光は、光
ファイバー36にカー2ブリングさせ、光電増倍管37
により受光し、ロックイン・アンプ38により変調光を
計測した。
Direct current voltages of various magnitudes were applied from a variable DC power supply 35 between 5a and 5a. On the other hand, the output light from the optical modulator 1 is curved into the optical fiber 36, and the photomultiplier tube 37
The modulated light was measured by the lock-in amplifier 38.

光変調器にO〜200Vの電圧を印加し、得られた印加
電圧と出力光の相対強度(最大強度を1.0とする)と
の関係を、第4図にプロットする。印加電圧がO〜20
0■の範囲で出力光強度が最大になったのは、75V、
145Vのときであり、減衰が最大となったのは、35
V、110V、180Vの時であった。これより光の位
相がπラジアンだけシフトするのに要する半減長電圧は
、約36Vであることがわかった。また、最大変調度は
、約60%であった。PVDFの圧電特性からめた半波
長電圧の理論値は、約22Vであり、上記した光変調器
は応答性が極めて優れていることがわかる。また、応答
性は、約2.6×104ラジアン/ (V / m )
 / m−長であり、前記した光ファイバーを光導波路
とするDonalds他の計測結果の、約2.3X10
−’ラジアン/(V/m)/m長に比べて大巾に改善さ
れていることがわかる。
A voltage of 0 to 200 V is applied to the optical modulator, and the relationship between the applied voltage and the relative intensity of the output light (maximum intensity is 1.0) is plotted in FIG. Applied voltage is O~20
The maximum output light intensity in the range of 0■ was 75V,
145V, and the maximum attenuation was at 35V.
V, 110V, and 180V. From this, it was found that the half-length voltage required to shift the phase of light by π radians is approximately 36V. Moreover, the maximum modulation degree was about 60%. The theoretical value of the half-wave voltage determined from the piezoelectric characteristics of PVDF is about 22 V, and it is understood that the above-mentioned optical modulator has extremely excellent responsiveness. In addition, the response is approximately 2.6 × 104 radian/(V/m)
/ m-length, which is approximately 2.3×10 as measured by Donalds et al. using the above-mentioned optical fiber as an optical waveguide.
-' Radian/(V/m)/m length It can be seen that this is greatly improved.

」二記においては本発明の光変調器を、その好ましい一
実施例について説明したが、本発明の範囲内で」二記実
施例を各種変形して実施することができる。
In Section 2, the optical modulator of the present invention has been described with reference to a preferred embodiment thereof, but the embodiment described in Section 2 can be implemented with various modifications within the scope of the present invention.

たとえば、上記例においては、一対の光導波路を使用し
たが、一般にエリ上の光導波路を用いることにより同様
な原理で光変調が可能である。また上記例においては、
一対の光導波路の支持体として同様な圧電体フィルムを
用いた。これは、一対の光導波路の非電圧印加状態にお
ける位相特性を調和させる意味で好ましいが、一方の支
持体を非圧電体で形成できることは云うまでもない。他
方、上記の例のように、一対の支持体をともに圧電体フ
ィルムで構成しているときは、両者に逆極性の電圧を印
加することにより、更に半波長電圧を低下させることも
可能である。また、上記例のように、リッジ状の光導波
路をフォトレジストにより構成することは、圧電体フィ
ルムの伸縮変形に対する追随性の良い薄層構造を簡単か
つ精密に形成し得る点で好ましいが、必要な寸法特性を
与え得る限りにおいて、他のプラスチックフィルムある
いは他の光透過性材料で、好ましくは圧電体よりも大な
る屈折率を有する材料のフィルムを貼付したものであっ
てもよい。ここで、光導波路が薄層であるとは、圧電体
フィルムよりも厚さが実質的に薄いことを意味する。光
導波路出力端において、充分に干渉を行なわせるには、
単一モードの光導波路とすることが望ましく、光導波路
の薄層化は、単一モード化の点で重要である。一方、光
導波路の巾についても、単一モード化のため狭い方が望
ましい。
For example, although a pair of optical waveguides were used in the above example, optical modulation is generally possible using a similar principle by using an optical waveguide on an area. Also, in the above example,
A similar piezoelectric film was used as a support for a pair of optical waveguides. This is preferable in the sense of harmonizing the phase characteristics of the pair of optical waveguides in the non-voltage applied state, but it goes without saying that one of the supports can be formed of a non-piezoelectric material. On the other hand, when the pair of supports are both made of piezoelectric films, as in the example above, it is also possible to further reduce the half-wave voltage by applying voltages of opposite polarity to both. . In addition, as in the above example, it is preferable to construct the ridge-shaped optical waveguide using photoresist because it is possible to easily and precisely form a thin layer structure that follows the expansion and contraction deformation of the piezoelectric film, but it is not necessary. As long as it can provide suitable dimensional characteristics, other plastic films or other light-transmitting materials, preferably films of materials having a larger refractive index than the piezoelectric material, may be attached. Here, the optical waveguide being a thin layer means that it is substantially thinner than the piezoelectric film. To achieve sufficient interference at the output end of the optical waveguide,
It is desirable to have a single mode optical waveguide, and making the optical waveguide thinner is important from the point of view of achieving a single mode. On the other hand, it is also desirable that the width of the optical waveguide be narrow in order to achieve a single mode.

更に、上記例においては、一対の光導波路を形成した支
持体はそれらの光導波路の端部で接合されている。この
ような形態は、光変調器を小形化し、且つ光変調器の出
入口でのカップリングを容易とする上で好ましいが、そ
れぞれ光導波路を全く別体゛としても、光変調は可能で
あることは通常の分岐干渉型光変調器が、そうであるこ
とから云って容易に理解できよう。
Further, in the above example, the supports forming a pair of optical waveguides are joined at the ends of the optical waveguides. Such a configuration is preferable in terms of downsizing the optical modulator and facilitating coupling at the entrance and exit of the optical modulator, but it is also possible to perform optical modulation even if the optical waveguides are completely separate. It is easy to understand that this is the case with a normal branching interference type optical modulator.

また、別の実施例として回路部を含む模式斜視図を第5
図に示すように、一対の光導波路3a、3bを、一枚の
圧電体フィルム上に形成することもできる。この例にお
いては、これら一対の光導波路3a、3bは、それぞれ
圧電体フィルム2とともに、電極4aおよび5間、ある
いは4bと5間に挟持され、可変直流電源35aあるい
は35bにより互いに逆極性の電圧を印加される。これ
により、光導波路3a、3bは、一方が延び、他方が縮
む変形を受け、生ずる光路差により光変調が行なわれる
In addition, as another example, a schematic perspective view including a circuit section is shown in Fig. 5.
As shown in the figure, a pair of optical waveguides 3a and 3b can also be formed on a single piezoelectric film. In this example, the pair of optical waveguides 3a and 3b are sandwiched together with the piezoelectric film 2 between electrodes 4a and 5, or between electrodes 4b and 5, and are supplied with voltages of opposite polarity by a variable DC power source 35a or 35b. applied. As a result, the optical waveguides 3a and 3b are deformed such that one of them is extended and the other is contracted, and optical modulation is performed by the resulting optical path difference.

更に、圧電体フィルムとしては、PVDFを包含するフ
ッ化ビニリデン系樹脂をはじめとする高分子圧電体フィ
ルムを用いることが、必要な伸縮変形特性を与える上で
好ましいが、必要な薄膜を与えることができる限りにお
いて無機質圧電体フィルムも用いられるほか、微細な無
機質圧電体を分散させた高分子フィルムも好適に用いら
れる。
Further, as the piezoelectric film, it is preferable to use a polymeric piezoelectric film such as vinylidene fluoride resin including PVDF in order to provide the necessary stretching and deformation characteristics, but it is difficult to provide the necessary thin film. Inorganic piezoelectric films are used as much as possible, and polymer films in which fine inorganic piezoelectric materials are dispersed are also preferably used.

なお、上記実施例において示した、各部の寸法は、単な
る例示であり、本発明の趣旨の範囲で適宜、変更できる
ことは云うまでもない。
It should be noted that the dimensions of each part shown in the above embodiments are merely illustrative, and it goes without saying that they can be changed as appropriate within the spirit of the present invention.

また上記においては、光導波路は、圧電体フィルムとは
異材料で圧電体フィルム上に突出するりフジ状に形成し
た例を説明した。このような構造は、第1図のVI−V
I線を含む断面(すなわち、光導波路3aの延長方向と
直交する圧電体フィルム2aの厚さ方向断面)の断面図
として、第6図に示される。しかしながら、このような
突出したりフジ状の光導波路は、第7図に示すように圧
電体フィルムZaa自体の突出部3aaとしても形成し
得る。なぜならば、光導波路は、その輪郭の相当部分に
おいて周囲材料(第6図および第7図においては、空気
(屈折率n。:l))に比べて大なる屈折率の材料から
形成されていれば、必要な程度の光閉じ込め効果は発揮
し得るからである。第7図のような光導波路形状は、た
とえば、その両側の圧電体をスパッタエツチング等によ
り除去すれば得られる。また、光導波路は、第8図に示
すように、圧電体フィルム2abの表層に、これにより
1 大なる屈折率材料層3abを埋め込んだ形態でもよい。
Further, in the above description, an example has been described in which the optical waveguide is made of a material different from the piezoelectric film and is formed in a protruding or ridge shape on the piezoelectric film. Such a structure is shown in FIG.
FIG. 6 shows a cross-sectional view of a cross-section including the I-line (that is, a cross-section in the thickness direction of the piezoelectric film 2a orthogonal to the extending direction of the optical waveguide 3a). However, such a protruding or ridge-shaped optical waveguide can also be formed as a protrusion 3aa of the piezoelectric film Zaa itself, as shown in FIG. This is because the optical waveguide must be made of a material with a larger refractive index than the surrounding material (air (refractive index n.:l) in FIGS. 6 and 7) in a considerable part of its outline. For example, the necessary degree of light confinement effect can be achieved. The optical waveguide shape as shown in FIG. 7 can be obtained, for example, by removing the piezoelectric material on both sides of the waveguide by sputter etching or the like. Further, the optical waveguide may have a form in which a layer 3ab of material with a refractive index of 1 is embedded in the surface layer of the piezoelectric film 2ab, as shown in FIG.

このような高屈折率材料層は、たとえばPvDF圧電体
を用いる場合、そのフッ素原子の一部を、イオンスパッ
タリング等により、原子量のより大なる塩素等の原子を
注入して、置換する等の方法により形成し得る。木明細
書において、「薄層光導波路を圧電体フィルム上に形成
する」の表現は、このような一連の状態を包含するもの
として用いられている。
For example, when using a PvDF piezoelectric material, such a high refractive index material layer can be formed by replacing some of the fluorine atoms by implanting atoms such as chlorine, which have a larger atomic weight, by ion sputtering or the like. It can be formed by In the specification, the expression "forming a thin-layer optical waveguide on a piezoelectric film" is used to include such a series of conditions.

」−述したように、本発明によれば、圧電体フィルムに
密着して薄層の先導波路を形成して分岐光路の少なくと
も−として用いることにより、製造が簡単で、良好な応
答性ならびに均質な特性を有する導波路型光変調器が提
供される。
As described above, according to the present invention, by forming a thin-layer leading waveguide in close contact with a piezoelectric film and using it as at least one of the branching optical paths, manufacturing is simple, and good response and uniformity can be achieved. A waveguide type optical modulator having such characteristics is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる光変調器の分解斜視
図、第2図は同光変調器の組立状態における光導波路を
含む厚さ方向模式断面図、第3図は光変調器の変調特性
評価のための光学測定系配置図、第4図は評価結果を示
すグラフ、第5図は2 本発明の光変調器の他の実施例を駆動回路とともに示す
模式斜視図、第6図は第1図のV−v線を含む断面図、
第7図および第8図はそれぞれ本発明の光導波路の他の
断面形状の例を示す断面図である。 1.1a・・・光変調器 2a、2b、2.2aa、2ab 、・・PVDF圧電体フィルム 3a 、 3b 、 3aa、3ab・・・光導波路4
a 、 4b −−−A I電極 5a 、5b 、5−A I電極 6・・・接着剤 第 2 図 第 4 国 I′17511 iJ圧(V) 第6 図 弗7 @
FIG. 1 is an exploded perspective view of an optical modulator according to an embodiment of the present invention, FIG. 2 is a schematic cross-sectional view in the thickness direction including an optical waveguide in an assembled state of the optical modulator, and FIG. 3 is an optical modulator in an assembled state. FIG. 4 is a graph showing the evaluation results; FIG. 5 is a schematic perspective view showing another embodiment of the optical modulator of the present invention together with a drive circuit; FIG. The figure is a sectional view including the V-v line in Figure 1,
7 and 8 are cross-sectional views showing examples of other cross-sectional shapes of the optical waveguide of the present invention, respectively. 1.1a... Optical modulators 2a, 2b, 2.2aa, 2ab,... PVDF piezoelectric film 3a, 3b, 3aa, 3ab... Optical waveguide 4
a, 4b ---A I electrode 5a, 5b, 5-A I electrode 6... Adhesive No. 2 Figure 4 Country I'17511 iJ pressure (V) Figure 6 弗7 @

Claims (1)

【特許請求の範囲】 1、 単一のコヒーレント光源から分岐された少なくと
も二重上の光導波路を再結合し透過光の干渉により変調
を行う導波路型光変調器において、少なくとも−の光導
波路が薄層をなし、圧電体フィルム上に形成されて圧電
体フィルムへの電気的入力により可変長化されているこ
とを特徴とする導波路型光変調器。 2、 光導波路が一対の薄層体であり、それぞれ一対の
支持体フィルムの−の上に形成されており、かく光導波
路を形成した支持体フィルムの少なくとも−が圧電体フ
ィルムからなる特許請求の範囲第1項記載の光変調器。 3、 各々光導波路を形成した一対の支持体フィルムが
、各々の光導波路延長端部において光導波路形成面を内
側として接合されてなる特許請求の範囲第2項記載の光
変調器。 4、 前記二重上の光導波路が、一枚の圧電体フィルム
上に形成゛され、且つその少なくとも−を形成した圧電
体フィルム部分辷電気的入力が加えられるように構成し
てなる特許請求の範囲第1項記載の光変調器。 5、 薄層光導波路が本質的にプラスチックからなる特
許請求の範囲第1項ないし第4項のいずれかに記載の光
変調器。 6、 薄層光導波路が圧電体フィルム上にリッジ状に形
成されてなる特許請求の範囲第1項ないし第5項のいず
れかに記載の光変調器。 7、 該リッジ状薄層光導波路がホトレジストにより与
えられる特許請求の範囲第6項記載の光変調器。 8、 薄層光導波路が圧電体フィルムの表層に埋め込ま
れた状態で形成されてなる特許請求の範囲第1項ないし
第5項のいずれかに記載の光変調器。 9、 圧電体が高分子圧電体からなる特許請求の範囲第
1項ないし第8項のいずれかに記載の光変調器。 lOl 圧電体がフッ化ビニリデン系樹脂からなる特許
請求の範囲第9項に記載の光変調器。
[Claims] 1. In a waveguide type optical modulator that recombines at least two optical waveguides branched from a single coherent light source and performs modulation by interference of transmitted light, at least - 1. A waveguide type optical modulator comprising a thin layer, formed on a piezoelectric film, and having a variable length by electrical input to the piezoelectric film. 2. The optical waveguide is a pair of thin layers, each formed on a pair of support films, and at least one of the support films forming the optical waveguide is a piezoelectric film. The optical modulator according to range 1. 3. The optical modulator according to claim 2, wherein a pair of support films each having an optical waveguide formed thereon are joined at each optical waveguide extension end with the optical waveguide forming surface inside. 4. The above-mentioned double optical waveguide is formed on a single piezoelectric film, and an electrical input is applied to at least a portion of the piezoelectric film forming the double optical waveguide. The optical modulator according to range 1. 5. The optical modulator according to any one of claims 1 to 4, wherein the thin-layer optical waveguide essentially consists of plastic. 6. The optical modulator according to any one of claims 1 to 5, wherein the thin-layer optical waveguide is formed in a ridge shape on a piezoelectric film. 7. The optical modulator according to claim 6, wherein the ridge-shaped thin layer optical waveguide is provided by photoresist. 8. The optical modulator according to any one of claims 1 to 5, wherein the thin-layer optical waveguide is formed in a state embedded in the surface layer of a piezoelectric film. 9. The optical modulator according to any one of claims 1 to 8, wherein the piezoelectric material is made of a polymeric piezoelectric material. 10. The optical modulator according to claim 9, wherein the piezoelectric body is made of vinylidene fluoride resin.
JP15312683A 1983-08-24 1983-08-24 Waveguide type optical modulator Pending JPS6068320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15312683A JPS6068320A (en) 1983-08-24 1983-08-24 Waveguide type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15312683A JPS6068320A (en) 1983-08-24 1983-08-24 Waveguide type optical modulator

Publications (1)

Publication Number Publication Date
JPS6068320A true JPS6068320A (en) 1985-04-18

Family

ID=15555544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15312683A Pending JPS6068320A (en) 1983-08-24 1983-08-24 Waveguide type optical modulator

Country Status (1)

Country Link
JP (1) JPS6068320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279274A (en) * 2004-03-29 2005-10-13 General Electric Co <Ge> Ultrasound system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279274A (en) * 2004-03-29 2005-10-13 General Electric Co <Ge> Ultrasound system

Similar Documents

Publication Publication Date Title
CA1249657A (en) Single mode fiber optic single sideband modulator
Bulmer Sensitive, highly linear lithium niobate interferometers for electromagnetic field sensing
US20210048721A1 (en) Integrated Optical Phase Modulator and Method of Making Same
US6950579B2 (en) Polarization-independent optical polymeric intensity modulator
JPS6068320A (en) Waveguide type optical modulator
JPS60187078A (en) Semiconductor laser device
JPH0281005A (en) Waveguide type optical device
FR2780520A1 (en) OPTICAL INTENSITY MODULATOR AND ITS MANUFACTURING METHOD
CN111650742A (en) Micro-nano optical fiber light modulator
JP2635986B2 (en) Optical waveguide switch
JPH0588123A (en) Variable wavelength filter
EP0837356A1 (en) Tunable optical filter
JPH03263010A (en) Fiber type bragg reflector
JP2000137128A (en) Optical branch waveguide and optical modulator
KR20020057717A (en) In-line type variable fiber-optic attenuator
JP3665871B2 (en) Optical parts
JPH07306393A (en) Optical fiber type optical modulator
JPS6165218A (en) Optical modulator
JP2792306B2 (en) Polarization separation element
JPS60177318A (en) Modulated light source
JP2674284B2 (en) Waveguide type optical device
JPH02183218A (en) Fiber type polarization phase modulator and its manufacture
JPH0383024A (en) Light control device
JPS63116118A (en) Directional coupler
JPH02300716A (en) Optical waveguide type phase modulator