JPS6067932A - Exposing device - Google Patents

Exposing device

Info

Publication number
JPS6067932A
JPS6067932A JP58175355A JP17535583A JPS6067932A JP S6067932 A JPS6067932 A JP S6067932A JP 58175355 A JP58175355 A JP 58175355A JP 17535583 A JP17535583 A JP 17535583A JP S6067932 A JPS6067932 A JP S6067932A
Authority
JP
Japan
Prior art keywords
light
optical system
diffraction grating
interference fringes
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58175355A
Other languages
Japanese (ja)
Other versions
JPH0426205B2 (en
Inventor
Ryukichi Matsumura
松村 隆吉
Taketoshi Yonezawa
米澤 武敏
Noboru Nomura
登 野村
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58175355A priority Critical patent/JPS6067932A/en
Priority to US06/599,734 priority patent/US4636077A/en
Publication of JPS6067932A publication Critical patent/JPS6067932A/en
Priority to US07/296,721 priority patent/USRE33669E/en
Publication of JPH0426205B2 publication Critical patent/JPH0426205B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To perform high-precision positioning in atmosphere by arranging a diffraction grating on a sample nearly in parallel to interference fringes obtained by the interference between two pieces of luminous flux, and photodetecting plural diffracted light beams as return light by a photodetecting element. CONSTITUTION:Coherent light R from a laser generator 10 is guided to a pinhole 14 arranged near the focus position of a diffusion optical system 13, and the light passed through the pinhole 14 is passed through the hole (e) of the photodetecting element 18 and then split by amplitude through a two-luminous-flux splitting optical system 17 into reflected light beams R1 and R2, which are allowed to interfere with each other on the sample W such as a semiconductor wafer through reflecting mirrors M1 and M2, forming interference fringes. The diffraction grating G is arranged on the surface of the sample W nearly in parallel to the interference fringes, and plural diffracted light beams from the diffraction grating G are returned through said optical system and detected as return light by a photodetection part provided at the circumference of the hole (e) of the photodetection element 18 to generate an electric signal, thereby making an adjustment so that the pitch of the diffraction grating G on the sample W is nearly equal to the pitch of the interference fringes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特に高密度な半導体装置(以下LSIという)
等の微細パターンを形成するだめの露光装置に関するも
のである。
[Detailed Description of the Invention] Industrial Application Field The present invention is particularly applicable to high-density semiconductor devices (hereinafter referred to as LSI).
The present invention relates to an exposure apparatus for forming fine patterns such as the above.

従来例の構成とその問題点 LSIは最近ますます高密度化され、各々の素子の微細
パターンの寸法は1ミクロン以下に及んでいる。従来か
らの露光装置の原理図を第1図に示す。フォトマスク1
と Stウエノ・2との位置合わせを行ない、光を光源
3よシ照射し露光する。
Conventional Structures and Problems LSIs have recently become more and more densely packed, and the dimensions of the fine patterns of each element have reached 1 micron or less. FIG. 1 shows a diagram of the principle of a conventional exposure apparatus. Photomask 1
and St Ueno-2 are aligned, and light is irradiated from the light source 3 for exposure.

・この時の位置合わせは、Siウエノ翫2上に設けた位
置合わせマークを用いて、 Stウエノ・2を装着した
ステージ4を回転(のと2軸(−、’ y )平行移動
させ、フォトマスク1上のマークと Siウニノー2上
のマークを重ね合わせることによって行なっていたが、
その位置合わせ精度は±0.3ミクロン程度であシ、サ
ブミクロンの素子を形成する場合には、合わせ精度が悪
く実用にならない。
・To align the position at this time, use the alignment mark provided on the Si Ueno rod 2, rotate the stage 4 on which the St Ueno 2 is attached, and move it parallel to the 2 axes (-, 'y). This was done by overlapping the mark on Mask 1 and the mark on Si Unino 2, but
The alignment accuracy is about ±0.3 microns, and when forming submicron elements, the alignment accuracy is poor and it is not practical.

又、最近の露光装置の主流である投影露光装置の原理図
を第2図に示す。縮小レンズ6を介してマスク6上のパ
ターンの縮小像をSiウェハ7上に結像することによ如
露光する。このとき、無収差の光学系でSiウェハ7上
に完全に焦点が結ばれているときの解像力δと焦点深度
Δは回折によって決まシ、次式により与えられる。
Further, FIG. 2 shows a principle diagram of a projection exposure apparatus, which is the mainstream of recent exposure apparatuses. A reduced image of the pattern on the mask 6 is formed on the Si wafer 7 through the reduction lens 6 to perform exposure. At this time, the resolving power δ and the depth of focus Δ when the aberration-free optical system is completely focused on the Si wafer 7 are determined by diffraction and are given by the following equation.

・・・・・・・・・・・・・・・(1)ただし、NAは
開口数、αは対物レンズの焦点からレンズを見込む角の
半分、Nは対物レンズ系の倍率、Fはレンズの焦点距離
fと直径りによってF=f/Dで与えられる。
・・・・・・・・・・・・・・・(1) However, NA is the numerical aperture, α is half of the angle from the focal point of the objective lens to the lens, N is the magnification of the objective lens system, and F is the lens. The focal length f and the diameter are given by F=f/D.

(1)式より、投影露光では、NAを大きくすることに
よって、光源の波長近くの解像力を得ることができる。
From equation (1), in projection exposure, by increasing the NA, it is possible to obtain resolution close to the wavelength of the light source.

しかし、NAを大きくするとフィールド面積が小さくな
シ、かつ、1フィールド当りの画素数そのものも減る。
However, when the NA is increased, the field area becomes smaller and the number of pixels per field also decreases.

露光用のレンズではチップ寸法の要請から、10〜16
簡口のフィールドが必要で、このため解像力は1μm前
後が限界になる。従って、サブミクロンの以下の位置合
せを要する素子を形成するには実用上問題がある。
For exposure lenses, due to chip size requirements, 10 to 16
A simple field is required, which limits the resolution to around 1 μm. Therefore, there are practical problems in forming elements that require alignment of submicrons or less.

発明の目的 本発明はこのような従来からの問題に鑑み、大気中で、
かつ、簡単な構成で高精度な位置合わせを行なうことが
でき、微細パターンを形成するに好適な露光装置を提供
することを目的としている。
Purpose of the Invention In view of such conventional problems, the present invention has been developed to
Another object of the present invention is to provide an exposure apparatus that can perform highly accurate positioning with a simple configuration and is suitable for forming fine patterns.

、発゛明の構成 本発明は、コヒーレントな光束を拡散させるためのレン
ズ等の拡散光学系を通し、前記拡散光学系により前記光
束が絞られた位置近傍に、戻シ光の戻り位置を検出しか
つ前記光束を通過させるための微小穴を有した受光素子
を総置し、前記微小穴を通過した光束が平行光束となる
ように設けられたコリメータレンズ等の平行光学系を通
し、さらに前記平行光束を2光束に振幅分割す名だめの
ビームスプリ1.ター、放物面鏡等の2光束分割光学系
を通し、さらに振幅分割された2光束をたとえば2個の
反射鏡によシ重ね合わせて干渉させ、前記2ケの反射鏡
によシ干渉した2光束によって得られた干渉縞に対して
、略平行に配置された回折格子を有する試料を前記2光
束の光路中に配置することによシ、前記2光束は回折さ
れ回折し/こ複数の回折光が戻シ光となって前記2ケの
反射鏡、2光束分割光学系及び平行光学系を通って前記
受光素子に戻シ、前記受光素子より得られた位置情報を
もとに、前記2ケの反射鏡を回動させることにより、2
光束の回折格子に対する入射角を調整して、前記2光束
の干渉1°ツチと前記回折光子のピッチをほぼ等しくす
ることによシサプミクロンパターン形成用の位置合せを
可能としうる露光装置を実現するものである。
, Structure of the Invention The present invention detects the return position of the returned light through a diffusion optical system such as a lens for diffusing a coherent light beam, near the position where the light beam is focused by the diffusion optical system. In addition, a light-receiving element having a microhole for passing the light flux is installed, and the light flux passing through the microhole is passed through a parallel optical system such as a collimator lens provided so as to become a parallel light flux. A famous beam splitter that splits the amplitude of a parallel beam into two beams 1. The beam is passed through a two-beam splitting optical system such as a mirror or a parabolic mirror, and the two amplitude-split beams are overlapped and interfered with, for example, two reflecting mirrors. By placing a sample having a diffraction grating arranged substantially parallel to the interference fringes obtained by the two light beams in the optical path of the two light beams, the two light beams are diffracted. The diffracted light becomes return light and returns to the light receiving element through the two reflecting mirrors, the two-beam splitting optical system and the parallel optical system. Based on the position information obtained from the light receiving element, the By rotating two reflectors, two
By adjusting the angle of incidence of the light beam on the diffraction grating and making the 1° interference between the two light beams and the pitch of the diffracted photons approximately equal, an exposure apparatus is realized that can enable alignment for forming a sisap micron pattern. It is something to do.

実施例の説明 第3図に本発明の実施例における露光装置の位置合せ機
構部分の全体構成図を示す。
DESCRIPTION OF THE EMBODIMENTS FIG. 3 shows an overall configuration diagram of the positioning mechanism portion of an exposure apparatus in an embodiment of the present invention.

レーザー発生装置10よりコヒーレン!・な光Rを発生
させ、この光Rを反射鏡11.12により光Rを拡散さ
せるための拡散光学系13に導き、さらに拡散光学系1
3の焦点位置近傍に配置されたピンホール14に導き、
さらにピンホール14を通過した光Rが平行光速になる
ようにコリメ−タレンズ等の平行光学系15によシ平行
光線に直し、さらに、反射鏡16を介してビームスプリ
ッタ等の2光束分割光学系17に入射させ、はぼ同一強
度の反射光R1と透過光R2とに振幅分割する。振幅分
割された反射光R1と透過光R2は各々反射鏡M1と反
射鏡M2に入射し、半導体ウニ′ハ酵の試料Wの表面に
対してほぼ等しい角度φ1゜φ2で入射するように、2
光束分割光学系17、反射鏡M1.M2、試料Wを配置
する。
Coheren from laser generator 10!・The light R is generated, and this light R is guided to the diffusion optical system 13 for diffusing the light R by the reflecting mirror 11.12, and then the diffusion optical system 1
3 into a pinhole 14 placed near the focal point of
Furthermore, the light R that has passed through the pinhole 14 is converted into parallel light beams by a parallel optical system 15 such as a collimator lens so that the light R has a parallel light velocity, and is then passed through a reflecting mirror 16 to a two-beam splitting optical system such as a beam splitter. 17, and the amplitude is divided into reflected light R1 and transmitted light R2 having approximately the same intensity. The amplitude-divided reflected light R1 and transmitted light R2 enter the reflecting mirror M1 and the reflecting mirror M2, respectively, and are arranged so that they are incident on the surface of the semiconductor sea urchin fermentation sample W at approximately equal angles φ1° and φ2.
Light beam splitting optical system 17, reflecting mirror M1. M2, place the sample W.

試料W上の表面には第4図のごとく、ピッチPCIIえ
ば1μm)なる回折格子Gが剪記2光束R1及びR2が
干渉してできる干渉縞と略平行になるように非パターン
形成部(スクライプライン等)形成されている。回折格
子Gによって回折した回折光R3,R4を光検出器D1
.D2に入射する。
As shown in Fig. 4, on the surface of the sample W, a diffraction grating G with a pitch PCII of 1 μm is placed in a non-pattern forming area (scratch) so that the diffraction grating G is approximately parallel to the interference fringes formed by the interference of the two beams R1 and R2. line, etc.) are formed. The diffracted lights R3 and R4 diffracted by the diffraction grating G are detected by the photodetector D1.
.. It enters D2.

さらに反射光R1の光は試料Wの回折格子Gによシ回折
され、複数の回折光が生じる。今、回折光の進向方向に
対して反時計回シをプラス方向と考えれば複数の回折光
のうち、第6図のごとく、0次回新党R1oと一1次回
折光R11は各々反射鏡M2及びMlを通シ、2光束分
割光学系17、反射鏡16、平行光学系15を通シレー
ザー発生源方向に帰還する。同様に、透過光R2の光も
試料Wの回折格子Gにより回折され、複数の回折光が綱
生じる。複数の回折光のうち、第6図のごとく、0次回
折光R20と+1次回折光R21は各々反射鏡M1及び
M2を通り2光束分割光学系17、反射鏡16、平行光
学系16を通りレーザー発生源方向に帰還する。
Further, the reflected light R1 is diffracted by the diffraction grating G of the sample W, and a plurality of diffracted lights are generated. Now, if we consider that counterclockwise rotation is a positive direction with respect to the traveling direction of the diffracted light, among the plurality of diffracted lights, as shown in Fig. 6, the 0th order new light R1o and the 11st order diffracted light R11 are reflected by the reflecting mirror M2 and The light beam passes through Ml, passes through the two-beam splitting optical system 17, the reflecting mirror 16, and the parallel optical system 15, and returns toward the laser source. Similarly, the transmitted light R2 is also diffracted by the diffraction grating G of the sample W, producing a plurality of diffracted lights. Among the plurality of diffracted lights, as shown in Fig. 6, the 0th-order diffracted light R20 and the +1st-order diffracted light R21 pass through the reflecting mirrors M1 and M2, respectively, the two-beam splitting optical system 17, the reflecting mirror 16, and the parallel optical system 16 to generate a laser. Return to the source direction.

18は各回折光R10,R11、R20゜R21の各帰
還する光の位置を検出するための受光素子で、ピンホー
ル14の近傍に設置され、第7図のごとく、受光素子1
8はたとえばa部、b部、0部、d部と受光部が4分割
されてお9、受光した光を電気信号として各リード線a
’、 b部。
18 is a light receiving element for detecting the position of each returning diffracted light R10, R11, R20°R21, and is installed near the pinhole 14, as shown in FIG.
For example, the light receiving part 8 is divided into four parts, a part, b part, 0 part, and d part.The received light is used as an electric signal to connect each lead wire a.
', part b.

c′、d′より取出すことができる。又、受光素子18
の中央部には、ピンホール14を通過した光Rが通過す
る穴eが設けられている。穴eは光軸上にある。
It can be extracted from c' and d'. In addition, the light receiving element 18
A hole e is provided in the center of the hole e through which the light R that has passed through the pinhole 14 passes. Hole e is on the optical axis.

反射鏡M1及びM2には角度φ1及びφ2が可変できる
ように、各々第8図、第9図に示すごとく、光軸方向を
2軸とするとき、X軸回シの回転をα回転、y軸回シの
回転をβとすればα、β方向に回動する手段を有する。
The reflecting mirrors M1 and M2 have variable angles φ1 and φ2, as shown in FIGS. 8 and 9, respectively. When the optical axis direction is two axes, the X-axis rotation is α rotation, the y-axis rotation is If the rotation of the shaft is β, it has means for rotating in the α and β directions.

19は反射鏡を固定するための可動枠、20は突起20
−aを有する支持板、21.22はマイクロメータヘッ
ドで可動枠19に固定されておシ、マイクロメータヘッ
ド21,2部作することによシマイクロメータヘッドの
先端21−a、22−aが支持板2oを押すことになり
、引張バネ23.24の引張力に抗して、支持板20の
突起20−aを回動中心として、α、β方向に回動する
19 is a movable frame for fixing the reflecting mirror, 20 is a protrusion 20
The support plate 21 and 22 having a micrometer head 21 and 22 are fixed to the movable frame 19, and the tips 21 and 22 of the micrometer head 21 and 22 are fixed to the movable frame 19 by forming two parts. pushes the support plate 2o, and rotates in the α and β directions about the protrusion 20-a of the support plate 20 as a rotation center against the tensile force of the tension springs 23 and 24.

レーザーの波長をλ、ウェハW上の回折格子Gのピッチ
をPとすると、反射光R1の光が回折格子Gによって、
回折するときの回折角φd1はプラ、ング回折条件より P(sinφd、−5Inφ1)=mλ ・・・・・・
・・・・・・・・・(4)で表わされる。(ただし、m
=o、1,2.3・・・・・・正整数) m := O
lつまシ、0次回折光R10の回折角φd1゜は P(sinφd10−sinφ1 )=o −=二・・
・・・・・・・・(6)となり、φd1o=φ1となり
、0次回折光R10は反射光R1の入射角φ1と等しく
、反射鏡M2゜2光束分割光学系17、反射鏡フロ、平
行光学系16を通り、レーザ発生源方向に帰還する。m
=1、つまり、1次回折光R11の回折角φd11はP
(sinφd、1Sillφ1)=λ ・・・・・・・
・・・・・・・・(6)となる。今φ1;−φd11の
とき となる。
When the wavelength of the laser is λ and the pitch of the diffraction grating G on the wafer W is P, the reflected light R1 is reflected by the diffraction grating G,
The diffraction angle φd1 at the time of diffraction is P(sinφd, -5Inφ1)=mλ ・・・・・・
......It is expressed as (4). (However, m
=o, 1, 2.3...Positive integer) m:= O
The diffraction angle φd1° of the 0th-order diffracted light R10 is P(sinφd10−sinφ1)=o −=2.
......(6), φd1o=φ1, 0th order diffracted light R10 is equal to the incident angle φ1 of reflected light R1, reflecting mirror M2゜2 beam splitting optical system 17, reflecting mirror flow, parallel optics It passes through the system 16 and returns toward the laser source. m
= 1, that is, the diffraction angle φd11 of the first-order diffracted light R11 is P
(sinφd, 1Sillφ1)=λ ・・・・・・・・・
......(6). It is now φ1;-φd11.

又、透過光R2の光が回折光子Gによって、回折すると
きの回折角φd2は同じくブラッグ回折条件より P(sinφd2 510φ2)=mλ ・・・・・・
・・・・・・・・個で表わされる。(ただし、 m=o
 、 1 、2・・・・・・正整数) m−0、つまり
、0次回折光R20の回折角φd20は P(sinφd2o31+1φ2)二〇 ・・・・・・
・・・・・・・・胸となり、φd20”φ1 となり、
0次回新党R2゜は透過光R2の入射角φ2と等しく、
かつ、方向が反対の光となり、反射鏡M1.2光束分割
光学系17、反射鏡16、平行光学系16を通シ、レー
ザー発生源方向に帰還する。
Also, when the transmitted light R2 is diffracted by the diffracted photon G, the diffraction angle φd2 is P(sinφd2 510φ2)=mλ based on the same Bragg diffraction condition.
......It is expressed in pieces. (However, m=o
, 1, 2...positive integer) m-0, that is, the diffraction angle φd20 of the 0th order diffracted light R20 is P(sinφd2o31+1φ2)20...
・・・・・・・・・It becomes the chest and becomes φd20”φ1,
The 0th new party R2° is equal to the incident angle φ2 of the transmitted light R2,
At the same time, the light becomes light in the opposite direction, passes through the reflecting mirror M1.2, the beam splitting optical system 17, the reflecting mirror 16, and the parallel optical system 16, and returns to the direction of the laser source.

m−1、つまり、1次回折光R21の回折角φd21は P(sinφd21−51nφ2)=λ ・・・・・・
・・・・・・・・・9Qとなる。今 φd21=−φ2
のとき となる。
m-1, that is, the diffraction angle φd21 of the first-order diffracted light R21 is P(sinφd21-51nφ2)=λ...
・・・・・・・・・It will be 9Q. Now φd21=-φ2
It will be when.

ここで第10図のごとく、φ1N(−φ2)、φ1キ(
−φd1)、φ2キ(−φd21)のとき、各回折光R
10,R11、R20,R21は平行光学系16を通過
後、受光素子18の穴eを通過せず、第10図の点線の
ごとく受光素子18の受光部、a。
Here, as shown in Figure 10, φ1N (-φ2), φ1ki (
-φd1), φ2ki (-φd21), each diffracted light R
10, R11, R20, and R21 pass through the parallel optical system 16, but do not pass through the hole e of the light-receiving element 18, and the light-receiving portion of the light-receiving element 18, a, as shown by the dotted line in FIG.

b、c、dのいずれかの位置に帰還する。各受光面で受
光した先金強度を電気信号に変換し、位置情報として取
シ出し、反射鏡M1及びM2の各回動機構を操作し、各
受光部a、b、c、dに回折光が入射しないときつまシ
受光素子17の穴e(光軸上)を、各回折光が通過する
ことにより、φ1磐(−φ2)≠(−φd1)牛(十φ
d21)・・・・・・θオとすることができる。
Return to position b, c, or d. The tip metal intensity received at each light receiving surface is converted into an electrical signal, which is extracted as position information, and the rotating mechanisms of reflectors M1 and M2 are operated to transmit diffracted light to each light receiving section a, b, c, and d. When not incident, each diffracted light passes through the hole e (on the optical axis) of the pick light receiving element 17, so that φ1 (-φ2) ≠ (-φd1) (10φ
d21)...It can be set to θo.

さらに、反射光R1と透過光R2が干渉して作る干渉縞
のピッチを4とすると で表わされる。このとき(6)式より03式はとなる、
さらに、ω式よ904式は 71 =−−二一−= p ・・・・・・・・・・・・
・・爛2 Slnφd11 となり、反射光R1と透過光R2の2光束が干渉して作
る干渉縞のピッチAと試料W上の回折格子GのピッチP
とほぼ等しくすることができる。
Further, if the pitch of interference fringes formed by interference between reflected light R1 and transmitted light R2 is 4, it is expressed as follows. At this time, from equation (6), equation 03 becomes,
Furthermore, the ω formula, 904 formula is 71 =−−21−= p ・・・・・・・・・・・・
...Ran2 Slnφd11 , and the pitch A of the interference fringes created by the interference of the two beams of reflected light R1 and transmitted light R2 and the pitch P of the diffraction grating G on the sample W.
can be made approximately equal to

このよりにして、試料W上の回折格子GのピッチPに対
して、2光束の干渉縞のビッチベをほぼ等しくすること
により、回折格子Gからは、2光束R1とR2の干渉し
た光を波面分割する回折格子Gによって回折された光R
s 、R4が得られ、光検出器D1とD2により、2光
束の干渉縞と格子Gとの間に非常に分解能のよい位置関
係を示す光強度が得られる。この位置関係を示す光強度
を利用して、2光束の干渉縞と試料Wの位置関係を検出
し、試料Wの位置く干渉縞と直角方向および光軸回りの
回転)を補正して、2光束R1,R2の干渉縞と試料W
の位置合わせを行なう。すなわち、レーザー光として、
波長4416人のHe−Cdレーザーを用いることによ
シ、干渉縞として1μmピッチのものを形成でき、11
置m ピッチの回折格子Gとによpまたとえば、半導体
ウェハ等の試料Wを干渉縞に対して数100Å以下の高
精度の位置合わせを行なうことができる。
In this way, by making the pitch P of the interference fringes of the two light beams approximately equal to the pitch P of the diffraction grating G on the sample W, the interference fringes of the two light beams R1 and R2 can be output from the diffraction grating G on the wavefront. Light R diffracted by the dividing diffraction grating G
s and R4 are obtained, and the photodetectors D1 and D2 obtain a light intensity indicating a positional relationship with very good resolution between the interference fringes of the two beams and the grating G. Using the light intensity indicating this positional relationship, the positional relationship between the interference fringes of the two light beams and the sample W is detected, and the position of the sample W (direction perpendicular to the interference fringe and rotation around the optical axis) is corrected. Interference fringes of light beams R1 and R2 and sample W
Perform alignment. In other words, as a laser beam,
By using a He-Cd laser with a wavelength of 4416 people, it is possible to form interference fringes with a pitch of 1 μm.
For example, a sample W such as a semiconductor wafer can be aligned with high accuracy of several hundred angstroms or less with respect to the interference fringes by using the diffraction grating G with a pitch of m.

しかるのち、試料Wすなわち半導体ウェハのパターン形
成部(半導体素子形成部)を露出させることにより露光
を行なえばよい。なお、このパターン露光は以上述べた
位置合わせ機構とともに、レーザーの2光束干渉を用い
た本出願人の提案にかかる方法を実現できる露光機能を
有する露光装置を用い、正確なパターン露光を行なうこ
とかできる。又、以上述べた本発明による61置合わせ
方法を行なったのち、投影露光装置等の露光装置を用い
て微細パターン露光を行なうことも可能である。
Thereafter, exposure may be performed by exposing the pattern forming part (semiconductor element forming part) of the sample W, that is, the semiconductor wafer. It should be noted that this pattern exposure can be carried out using an exposure device that has an exposure function capable of realizing the method proposed by the applicant using two-beam interference of a laser, as well as the positioning mechanism described above, to perform accurate pattern exposure. can. Further, after performing the above-described 61 alignment method according to the present invention, it is also possible to perform fine pattern exposure using an exposure apparatus such as a projection exposure apparatus.

第2の実施例として、第1の実施例で4」、受光部が4
分割された受光素子18を使用したが、中央部に光を通
過させるだめの穴を有する加工し易い基板上に4コの受
光素子を固定した受光素子ユニットを用いても同様の効
果が得られる。
As a second embodiment, the light receiving section is 4" in the first embodiment, and 4" in the first embodiment.
Although a divided light receiving element 18 was used, a similar effect can be obtained by using a light receiving element unit in which four light receiving elements are fixed on an easy-to-process substrate that has a hole in the center for allowing light to pass through. .

また、第3の実施例として、各回折光R10゜R11,
R20、R21の戻シ光を受光する受光面をマトリック
ス状に有し、中央部に、光を通過させる微小穴を設けた
受光素子を、ピンホール14の近傍に配置することによ
シ、各回折光の戻り位置を2次元の位置情報として得ら
れるため、干渉縞のピッチを回折格子GのピッチPによ
シ合わせ易くなる。
In addition, as a third embodiment, each diffracted light R10°R11,
By arranging a light-receiving element in the vicinity of the pinhole 14, which has a matrix of light-receiving surfaces that receive the returned light from R20 and R21 and has a microhole in the center that allows the light to pass through, each Since the return position of the diffracted light can be obtained as two-dimensional position information, it becomes easier to match the pitch of the interference fringes to the pitch P of the diffraction grating G.

又拡散光学系13の焦点位置近傍に、受光素子18を配
置することにより、つまシ、各回折光R10,R11、
R20,R21のビーム径が最も絞られた状態で、受光
素子18の受光面上に戻シ光として戻るため、干渉縞の
ピッチを回折格子GのピッチPにより正確に合わすこと
ができる。
In addition, by arranging the light receiving element 18 near the focal point of the diffusing optical system 13, each diffracted light R10, R11,
Since the beams of R20 and R21 are returned to the light-receiving surface of the light-receiving surface of the light-receiving element 18 as reflected light when the beam diameters of R20 and R21 are narrowed down to the maximum, the pitch of the interference fringes can be more accurately matched to the pitch P of the diffraction grating G.

拡散光学系13の焦点位置近傍に、ピンホール14、受
光素子18を配置することにより、毒分な回折光y、(
mlfrL、かつ、干渉縞のピッチを回折格子Gのピッ
チPによシ正確に合わすことができる。
By arranging the pinhole 14 and the light receiving element 18 near the focal point of the diffusing optical system 13, the harmful diffracted light y, (
mlfrL and the pitch of the interference fringes can be precisely matched to the pitch P of the diffraction grating G.

発明の効果 以上のように本発明によれば、2元束の干渉縞によって
得られる干渉縞に対して、試料上の回折格子を略平行に
配置し、回折格子によって回折した複数の回折光を戻り
光として受光素子で受光し位置情報として取り出し、た
とえば2ケの反射鏡を回動させることに」:す、2光束
の回折格子に対する入射角を調整し、前記2光束の干渉
縞のピッチと前記回折格子のピッチとをほぼ等しぐする
ことにより、2光束の干渉縞と試料との相対位置関係を
数100八以下の高精度で検出することが可能と々9、
簡単な構成で、スループノI・も大きく、かつ、サブミ
クロンパターンを形成しうる露光装置を実現することか
できる。
Effects of the Invention As described above, according to the present invention, the diffraction grating on the sample is arranged approximately parallel to the interference fringes obtained by the interference fringes of the binary bundle, and the plurality of diffracted lights diffracted by the diffraction grating are The returned light is received by a light receiving element, extracted as position information, and then, for example, two reflecting mirrors are rotated.The incident angle of the two light beams to the diffraction grating is adjusted, and the pitch of the interference fringes of the two light beams and the pitch of the interference fringe of the two light beams are adjusted. By making the pitch of the diffraction grating substantially equal, it is possible to detect the relative positional relationship between the interference fringes of the two light beams and the sample with a high accuracy of several hundred eights or less9.
With a simple configuration, it is possible to realize an exposure apparatus that has a large throughput I and is capable of forming submicron patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における露光装置の原理図、第2図は従来
の同投影露光装置の原理図、第3図は本発明の一実施例
における露光装置の全体構成図、第4図は同装置に用い
る回折格子Gを有する試料Wの平面図、第5図は同装置
の反射光R1が回折格子Gによって回折したときの光の
光路を示す図、第6図は同装置の透過光R2か回折格子
G(でよって回折したときの光の光路を示す図、第7図
は同装置に用いる受光素子18の平面図、第8図は同装
置に用いる反射鏡M1.M2の正面図、第9図は同装置
に用いる反射鏡M1.M2の側面図、第10図は同装置
の各回折光R10,R11、R20゜R21がφ1+(
−φ2)、ψ1’=(−ψd1)、φ2N(−ψd21
)のときの光路を示す図である。 1o・・・・・・レーザー発生装置、14・・・・ピン
ホール、15・・・・・・平行光学系、17・・・・・
2光束分割光学系、18・・・・・・受光素子、Ml、
N2・・・・・・反射鏡、R1・・・・・・反射光、R
2・・・・・・透過光、W・・・・・試料、G・・・・
回折格子、R10・・・・・・0次回折光、R11・・
・・4次回折光、R2Q・・・・・・0次回折光、R2
1・・・・・・+1次回折光。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名N1
図 第2図 第4図 p 第5図 2 第8図 2を 第10図
FIG. 1 is a principle diagram of a conventional exposure apparatus, FIG. 2 is a principle diagram of a conventional projection exposure apparatus, FIG. 3 is an overall configuration diagram of an exposure apparatus according to an embodiment of the present invention, and FIG. 4 is a diagram of the same apparatus. FIG. 5 is a plan view of a sample W having a diffraction grating G used for this purpose. FIG. A diagram showing the optical path of light when diffracted by the diffraction grating G (FIG. 7 is a plan view of the light receiving element 18 used in the device, FIG. 8 is a front view of the reflecting mirrors M1 and M2 used in the device, Fig. 9 is a side view of reflecting mirrors M1 and M2 used in the same device, and Fig. 10 shows that each diffracted light R10, R11, R20°R21 of the same device is φ1+(
-φ2), ψ1'=(-ψd1), φ2N(-ψd21
) is a diagram showing the optical path when 1o... Laser generator, 14... Pinhole, 15... Parallel optical system, 17...
2-beam splitting optical system, 18... Light receiving element, Ml,
N2...Reflector, R1...Reflected light, R
2...Transmitted light, W...sample, G...
Diffraction grating, R10...0th order diffracted light, R11...
...4th order diffraction light, R2Q...0th order diffraction light, R2
1...+1st order diffracted light. Name of agent: Patent attorney Toshio Nakao and 1 other person N1
Figure 2 Figure 4 p Figure 5 2 Figure 8 2 to Figure 10

Claims (4)

【特許請求の範囲】[Claims] (1) コヒーレントな光束近傍に受光素子を配置し、
空間に形成し、前記干渉縞に対して略平行に配置された
回折格子を前記2光束の光路中に配置し、前記回折格子
で回折した光をさらに前記光学系を一通して戻し、前記
受光素子において戻り光の強度を測定することによシ、
前記干渉縞のピッチを前記回折格子のピッチとほぼ等し
くなるように調整することを特徴とする露光装置。
(1) Place the light receiving element near the coherent light beam,
A diffraction grating formed in space and arranged substantially parallel to the interference fringes is disposed in the optical path of the two beams, and the light diffracted by the diffraction grating is further returned through the optical system to receive the light. By measuring the intensity of the returned light at the element,
An exposure apparatus characterized in that the pitch of the interference fringes is adjusted to be approximately equal to the pitch of the diffraction grating.
(2) コヒーレントな光速を拡散させるための拡散光
学系を通し、前記拡散光学系により前記光束が絞られた
位置近傍に受光素子を配置したことを特徴とする特許請
求の範囲第1項記載の露光装置。
(2) A light-receiving element is disposed in the vicinity of a position where the light flux is narrowed down by the diffusion optical system through a diffusion optical system for diffusing coherent light speed. Exposure equipment.
(3) コヒーレントな光束を拡散させるための拡散光
学系に通し、前記拡散光学系によシ前記光束が絞られた
位置近傍にピンホールを配置し、前記ピンホールを通過
した光束近傍に受光素子を配置し、さらに、前記光束を
振幅分割し重ね合わせて干渉させる光学系を持ち、振幅
分割した2光束を干渉させて干渉縞を空間に形成し、前
記干渉縞に対して略平行に配置された回折格子を前記2
光束の光路中に配置し、前記回折格子で回折した光を前
記光学系を通して戻し、前記受光素子において戻り光の
強度を測定することにより、前記干渉縞のピッチを前記
回折格子のピッチとほぼ等しくなるように調整すること
を特徴とする露光装置。
(3) A coherent light beam is passed through a diffusing optical system to diffuse it, a pinhole is arranged near the position where the light beam is focused by the diffusing optical system, and a light receiving element is placed near the light beam that has passed through the pinhole. and further includes an optical system that divides the amplitude of the light beam and overlaps it to cause interference, and forms interference fringes in space by interfering with the two amplitude-divided light beams, and is arranged substantially parallel to the interference fringes. The above-mentioned 2 diffraction gratings
The pitch of the interference fringes is made approximately equal to the pitch of the diffraction grating by placing the light in the optical path of the light beam, returning the light diffracted by the diffraction grating through the optical system, and measuring the intensity of the returned light at the light receiving element. An exposure device characterized by adjusting the exposure device so that
(4)受光素子として受光部が4分割され、かつ光束を
通過させるための微小穴を有する受光素子よシ成ること
を特徴とする特許請求の範囲第3項記載の露光装置。
(4) The exposure apparatus according to claim 3, wherein the light receiving element is a light receiving element whose light receiving portion is divided into four parts and has a microhole for passing a light beam.
JP58175355A 1983-04-15 1983-09-22 Exposing device Granted JPS6067932A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58175355A JPS6067932A (en) 1983-09-22 1983-09-22 Exposing device
US06/599,734 US4636077A (en) 1983-04-15 1984-04-12 Aligning exposure method
US07/296,721 USRE33669E (en) 1983-04-15 1989-01-12 Aligning exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175355A JPS6067932A (en) 1983-09-22 1983-09-22 Exposing device

Publications (2)

Publication Number Publication Date
JPS6067932A true JPS6067932A (en) 1985-04-18
JPH0426205B2 JPH0426205B2 (en) 1992-05-06

Family

ID=15994620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175355A Granted JPS6067932A (en) 1983-04-15 1983-09-22 Exposing device

Country Status (1)

Country Link
JP (1) JPS6067932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078527A1 (en) * 2004-02-13 2005-08-25 Micronic Laser Systems Ab Image enhancement for multiple exposure beams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078527A1 (en) * 2004-02-13 2005-08-25 Micronic Laser Systems Ab Image enhancement for multiple exposure beams
US7709165B2 (en) 2004-02-13 2010-05-04 Micronic Laser Systems Ab Image enhancement for multiple exposure beams

Also Published As

Publication number Publication date
JPH0426205B2 (en) 1992-05-06

Similar Documents

Publication Publication Date Title
US4311389A (en) Method for the optical alignment of designs in two near planes and alignment apparatus for performing this method
US20010006413A1 (en) Interferometric alignment system for use in vacuum-based lithographic apparatus
JPS62261004A (en) Method of aligning object
JP2779102B2 (en) Multi-wavelength interferometer
JPH1054914A (en) Method for forming grating at optical waveguide
JPH0422442B2 (en)
JP3564210B2 (en) Confocal optics
US4720158A (en) Method of and apparatus for making a hologram
EP0785411A1 (en) Confocus optical apparatus
JPS6067932A (en) Exposing device
JPS62177421A (en) Oblique incidence interferometer device
JP2578742B2 (en) Positioning method
JP2000056135A (en) Total internal reflection(tir) holography device, its method and used optical assembly
JPH0269604A (en) Aligning method
JPH0385578A (en) Hologram recorder
JP2546356B2 (en) Alignment device
JPH0441484B2 (en)
JPH0544817B2 (en)
JPS6378004A (en) Positioning method and exposing device
JPS61290306A (en) Position detection and exposure using the same
JPH0476489B2 (en)
JP3119476B2 (en) Hologram making device
JP3171013B2 (en) Method and apparatus for producing article comprising diffraction grating
JPS62255805A (en) Exposing device
JP2581227B2 (en) Position detection device