JPS6067920A - Beam diameter controller for laser beam printer - Google Patents

Beam diameter controller for laser beam printer

Info

Publication number
JPS6067920A
JPS6067920A JP58175691A JP17569183A JPS6067920A JP S6067920 A JPS6067920 A JP S6067920A JP 58175691 A JP58175691 A JP 58175691A JP 17569183 A JP17569183 A JP 17569183A JP S6067920 A JPS6067920 A JP S6067920A
Authority
JP
Japan
Prior art keywords
beam diameter
laser beam
lens
signal
collimator lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58175691A
Other languages
Japanese (ja)
Inventor
Akio Okamura
岡村 昭夫
Koichi Takiguchi
滝口 孝一
Hiroshi Ishikawa
宏 石川
Hiroshi Osawa
大沢 浩
Yuuki Terada
寺田 勇紀
Masuhisa Ogiwara
荻原 益寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP58175691A priority Critical patent/JPS6067920A/en
Publication of JPS6067920A publication Critical patent/JPS6067920A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors

Abstract

PURPOSE:To stabilize picture quality without any increase in cost by moving a plastic lens in a predtermined direction by a specific value, and calculating the proper amount of displacement of the plastic lens from the variation in beam diameter about the movement point. CONSTITUTION:A laser beam 3 before being modulated with a video signal X is incident to a CCD9 near a no-image area on a photosensitive body 8 and the CCD9 outputs a beam diameter signal D1 corresponding to the beam diameter of the laser beam 3 perpendicular to a deflection direction. Then, a collimator lens 5 is moved along an optical axis toward a rotary polygon mirror 6 by the specificl value, and when the CCD9 is irradiated with the next laser beam 3, a beam diameter signal D2 corresponding to the beam diameter is detected and a control part 11 performs arithmetic D1-D2. The control part 11 compares the arithmetic result with a beam diameter signal DC corresponding to a specific beam diameter and a moving device 10 moves the collimator lens 5 to correct the laser beam diameter to the specific beam diameter.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は構成が簡単でコストア、グにつながらずに画像
品質の安定化を図ったレーザビームプリンタのビーム径
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a beam diameter control device for a laser beam printer, which has a simple configuration and stabilizes image quality without leading to cost storage and maintenance.

〔従来技術〕[Prior art]

プラスチ、クレンメはガラスレンズと比較し、非球面の
製作の容易さ、低コスト等の長所があるが、反面、環境
変化(温度、湿度の変化)があると形状変化を生じ屈折
率が変化するという特性を有していることから、プラス
チ、クレンメをレーザビームプリンタに使用した場合、
レーザビーム径が環境変化によって変化し、その結果、
画像品質が劣化するという欠点がある。
Compared to glass lenses, plastic and cremmet lenses have advantages such as ease of manufacturing aspherical surfaces and low cost, but on the other hand, when environmental changes (changes in temperature and humidity) occur, the shape changes and the refractive index changes. Because of these characteristics, when Plasti and Kurenme are used in laser beam printers,
The laser beam diameter changes due to environmental changes, and as a result,
The disadvantage is that the image quality deteriorates.

そのため、プラスチ、クレンメをレーザビームプリンタ
に適用する場合にはビーム径を検出してその結果に応じ
てレンズを光軸に沿って移動させる手段を設けることが
考えられるが、ビーム径を検出するだけではし/ズを移
動させる方向は判別できない。そこで、ビーム径の検出
とレンズの移動方向の判別のため、従来は第1図(イ)
(ロ)に示すように、シリンダレンズlと四分割された
光量検出素子2a〜2dを有する受光検出部2とを組合
せたものを用い、シリンダレンズ1を介してレーザビー
ム3が光量検出部2に入射する際、夫々の光量検出素子
26〜2dからの出力を検出し、その検出値から焦点位
置のずれを演算によってめ、その結果に応じてレンズを
移動させるようにしたものがある。この装置においては
、前記演算によってレンズの移動量に加えて移動の方向
も判別することが可能となっている。
Therefore, when applying plasti and cremme to a laser beam printer, it is possible to provide a means to detect the beam diameter and move the lens along the optical axis according to the result, but it is possible to simply detect the beam diameter. It is not possible to determine the direction in which the knife/zu should be moved. Therefore, in order to detect the beam diameter and determine the direction of movement of the lens, conventional methods were as shown in Figure 1 (A).
As shown in (b), a combination of a cylinder lens l and a light reception detection section 2 having four divided light amount detection elements 2a to 2d is used, and a laser beam 3 is transmitted to the light amount detection section 2 through the cylinder lens 1. There is a device that detects the output from each of the light amount detection elements 26 to 2d when the light is incident on the light, calculates the shift in the focal position from the detected value, and moves the lens according to the result. In this device, it is possible to determine not only the amount of movement of the lens but also the direction of movement by the above calculation.

しかし、従来のビーム径制御装置によれば、光量検出部
の前にシリンダレンズを設ける必要があるため装置の構
成が複雑になってコストアップにつながり、又、基準レ
ーザビーム径に対応して第1図(ロ)に示すようにレー
ザビームの長径びと短径U′のビーム径信号値を予め設
定する必要があるため初期設定が難しい欠点がある。
However, with conventional beam diameter control devices, it is necessary to provide a cylinder lens in front of the light amount detection section, which complicates the device configuration and increases costs. As shown in FIG. 1 (b), it is necessary to set the beam diameter signal values of the major axis and minor axis U' of the laser beam in advance, which has the disadvantage that initial setting is difficult.

〔発明の目的と構成〕 本発明は上記に鑑みてなされたものであり、構成が簡単
でコストアップにつながらずに画像品質の安定化を図る
ため、プラスチ、クレンメを予め定めた方向に規定値移
動させ、移動前後のビーム径の変化に基いてプラスチ、
クレンメの適性変位量を演算するようにしたレーザビー
ムプリンタのビーム径制御装置を提供するものである。
[Objective and Structure of the Invention] The present invention has been made in view of the above, and in order to stabilize the image quality with a simple structure and without leading to an increase in cost, the present invention has been made in order to stabilize the image quality without increasing the cost. based on the change in beam diameter before and after the movement,
The present invention provides a beam diameter control device for a laser beam printer that calculates an appropriate amount of displacement of a sharpening.

〔実施例〕〔Example〕

以下、本発明によるレーザビームプリンタのビーム径制
御装置全詳細に説明する。
Hereinafter, a beam diameter control device for a laser beam printer according to the present invention will be explained in detail.

第2図は本発明の一実施例を示し、レーザビーム発生器
たる半導体レーザ4、半導体レーザ4から発生するレー
ザビーム3を平行ピ、−ムにするコリメータレンズ5、
平行ビームを偏向する時計方向に回転する回転多面鏡6
、偏向されたレーザビーム3の走査速度を補正するFθ
レンズ7、レーザビーム3に基いて静電潜像を形成する
感光体8、感光体8近傍の非画像部に配置されfcCO
D9、及びコリメータレンズの位置を光軸に沿って移動
させる移動装置10から構成されておシ、また、移動装
置10の移動は駆動回路12f、介して制御部(例;え
は、マイコン)11によって制御される。尚、前述した
コリメータレンズ3およびFθレンズ7はプラスチック
によって形成されている。
FIG. 2 shows an embodiment of the present invention, which includes a semiconductor laser 4 as a laser beam generator, a collimator lens 5 that makes the laser beam 3 generated from the semiconductor laser 4 into a parallel beam,
Rotating polygon mirror 6 rotating clockwise to deflect a parallel beam
, Fθ that corrects the scanning speed of the deflected laser beam 3
A lens 7, a photoconductor 8 that forms an electrostatic latent image based on the laser beam 3, and an fcCO disposed in a non-image area near the photoconductor 8.
D9, and a moving device 10 that moves the position of the collimator lens along the optical axis, and the movement of the moving device 10 is controlled by a control unit (e.g., microcomputer) 11 via a drive circuit 12f. controlled by Note that the collimator lens 3 and Fθ lens 7 described above are made of plastic.

以上の構成において、第3図のフローチャートによって
その操作を説明すると次の通ルである。
In the above configuration, the operation will be explained as follows using the flowchart shown in FIG.

ビデオ信号Xによってオン、オフされたレーザビーム3
は半導体レーザ4かう発生され、コリメータレンズ5に
よシ平行にされた後、回転多面鏡6によって反射され、
Fθレンズ7f:介して感光体8上に結像される。一方
、レーザビーム3はビデオ信号Xによる変調に先立ち、
感光体8の非画像領域の近傍に置かれ九〇OD 9に入
射し、0OD9はレーザビーム3の偏向方向と垂直な方
向のビーム径に応じたビーム径信号(DI)を出力する
Laser beam 3 turned on and off by video signal X
is generated by the semiconductor laser 4, made parallel to the collimator lens 5, and then reflected by the rotating polygon mirror 6.
An image is formed on the photoreceptor 8 via the Fθ lens 7f. On the other hand, before the laser beam 3 is modulated by the video signal
It is placed near the non-image area of the photoreceptor 8 and enters the 90OD 9, which outputs a beam diameter signal (DI) corresponding to the beam diameter in the direction perpendicular to the deflection direction of the laser beam 3.

次いで、コリメークレンズ5を光軸にi’++って回転
多面鏡6方向に規定値移動させ、次のレーザビーム3が
OOD 9″Ir、照射した時に再びビーム径に応じた
ビーム径信号(Ds )を検出して制御部11によシバ
−D!を演算する。制御部11においてはDI−DJの
結果に応じて規定のビーム径に対応したビーム径信号(
Do)と比較し、ハ=1)cとなるように駆動回路12
を介し、移動装置10によシコリメータレンズ5ft光
軸に沿ってg mlさせ、レーザビーム径を規定のビー
ム径に補正するO 以下、第3図の70−チャートによシ更に詳細に説明す
る。
Next, the collimating lens 5 is moved i'++ along the optical axis in the direction of the rotating polygon mirror 6 by a specified value, and when the next laser beam 3 is irradiated with OOD 9''Ir, a beam diameter signal ( Ds ) is detected and the control unit 11 calculates Shiver-D!.The control unit 11 generates a beam diameter signal (
Do), the drive circuit 12 is set so that C=1)c.
The laser beam diameter is corrected to the specified beam diameter by using the moving device 10 to move the 5ft collimator lens along the optical axis to correct the laser beam diameter to the specified beam diameter. .

レーザビームプリンタのスタートボタンをオンとしてプ
リント操作f、開始しくブロック13人し−°ザビーム
径に応じたビーム径信号(Dt )’を検出する(プロ
、り14)。次いでコリメータレンズ5を光軸に沿って
@板条面鏡6の方向に規定値移動させ(ブロック15)
、その時のビーム径に応じたビーム径信号(Di )m
()’ y116 )、DI−D2を演算する(ブロッ
ク17)。演算結果が零より大きい場合、更にDlll
:規定ビーム径信号DCと比較しくブロック18)、そ
の値が肯定であればDI=D、となる様にコリメータレ
ンズ5を回転多面鏡6の方向に移動しくブロック19人
その値が否定であればDI=DCとなる様コリメータレ
ンズ5を半導体レーザ4の方向に移動する(ブロック2
0)。又%DI−Dlの演算結果が零以下の場合、同様
にD2 を規定ビーム径信号DCと比較しくブロック2
1)、その値が肯定でちればDI =Dcとなる様にコ
リメータレンズ5を半導体レーザ4の方向に移動しくプ
ロ、り22)、その値が否定であればDI=DCとなる
様にコリメータレンズ5t−回転多面鏡6の方向に移動
する(プロ、り23)。烏が規定ビーム径信号DCと同
一の場合は、勿論、コリメータレンズを移動させない。
The start button of the laser beam printer is turned on, and the print operation f is started. Block 13 then detects the beam diameter signal (Dt)' corresponding to the beam diameter (Pro 14). Next, the collimator lens 5 is moved along the optical axis by a specified value in the direction of the plate mirror 6 (block 15).
, beam diameter signal (Di)m corresponding to the beam diameter at that time
( )' y116 ), DI-D2 is calculated (block 17). If the operation result is greater than zero, then Dllll
: Compare with the specified beam diameter signal DC (block 18), and if the value is positive, move the collimator lens 5 in the direction of the rotating polygon mirror 6 so that DI=D. For example, the collimator lens 5 is moved in the direction of the semiconductor laser 4 so that DI=DC (block 2
0). Also, if the calculation result of %DI-Dl is less than zero, D2 is similarly compared with the specified beam diameter signal DC and block 2
1) If the value is positive, move the collimator lens 5 in the direction of the semiconductor laser 4 so that DI = Dc. 22) If the value is negative, move the collimator lens 5 so that DI = DC. The collimator lens 5t moves in the direction of the rotating polygon mirror 6 (Pro 23). Of course, if the diameter is the same as the specified beam diameter signal DC, the collimator lens is not moved.

尚、第3図の70−チャートでは八−込の演算を先に行
ったが、烏とDCの比較をDI +D2の演算の前に行
っても良く、−又、D2とDCの比較に代シ、ハとDC
を比較しても良い。
In addition, in the 70-chart in Figure 3, the 8-include calculation is performed first, but the comparison between Crow and DC may be performed before the calculation of DI + D2, and the comparison between D2 and DC may be performed instead. Shi, Ha and DC
You can also compare.

又、コリメータレンズ5の移動は非画像領域で行うため
、画像品質に悪影響は与えない。
Furthermore, since the movement of the collimator lens 5 is performed in a non-image area, it does not adversely affect the image quality.

上記実施例ではコリメータレンズ5の移動によりレーザ
ビーム径の制御が行われたが、コリメータレンズ50代
りにあるいはコリメータレンズとともにFθレンズ7を
移動させることによって同一の効果を得ることができる
In the above embodiment, the laser beam diameter was controlled by moving the collimator lens 5, but the same effect can be obtained by moving the Fθ lens 7 instead of the collimator lens 50 or together with the collimator lens.

〔発明の効果〕〔Effect of the invention〕

以上説明した通シ、本発明によるレーザビームプリンタ
のビーム径制御装置によれば、プラスチックレンズを予
め定めた方向に規定値移動させ、移動前後のビーム径の
変化に基いてプラスチックレンズの適性変位量を演算す
るようにしたため、構成が簡単でコストアップにつなが
らずに画像品質の安定化を図ることができる。
As described above, according to the beam diameter control device for a laser beam printer according to the present invention, the plastic lens is moved by a specified amount in a predetermined direction, and the appropriate displacement amount of the plastic lens is determined based on the change in the beam diameter before and after the movement. is calculated, the configuration is simple and image quality can be stabilized without increasing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザビームプリンタにおける従来のビーム径
検出装置全示し、(イ)はその概略説明図、←)は光量
検出素子の正面図。第2図は本発明の一実施例を示すレ
ーザビームプリンタのビーム径制御装置の概略構成図と
その制御系ブロック図。第3図は本発明のレーザビーム
プリンタのビーム径制御装置の処理動作を示すフローチ
ャート。 符号の説明 1・・・シリンダレンズ、2・・・光量検出素子、3・
・・レーザビーム、4・・・半導体レーザ、5・・・コ
リメータレンズ、6・・・回転多面鏡、7・・・Fθレ
ンズ、8・・・感光体、9・・・00D110・・・移
動装置、11・・・制御部、 12・・・駆動回路、 
X・・・ビデオ信号。 第1図 (イ) (ロノ
FIG. 1 shows the entire conventional beam diameter detection device in a laser beam printer, (A) is a schematic explanatory diagram thereof, and (←) is a front view of a light amount detection element. FIG. 2 is a schematic configuration diagram of a beam diameter control device for a laser beam printer showing an embodiment of the present invention, and a block diagram of its control system. FIG. 3 is a flowchart showing the processing operation of the beam diameter control device for the laser beam printer of the present invention. Explanation of symbols 1... Cylinder lens, 2... Light amount detection element, 3...
...Laser beam, 4...Semiconductor laser, 5...Collimator lens, 6...Rotating polygon mirror, 7...Fθ lens, 8...Photoconductor, 9...00D110...Movement Device, 11...control unit, 12...drive circuit,
X...Video signal. Figure 1 (A) (Rono

Claims (1)

【特許請求の範囲】 レーザビームに基きプラスチックレンズを有する光学系
を介して感光体上に静電潜像を形成し、その潜像を可視
化することによって画像を得るレーザビームプリンタの
ビーム径制御装置において、 前記感光体近傍の非画像部に配置され、前記プラスチッ
クレンズの形状変化に基〈前記レーザビームの径に応じ
たビーム径信号を出力する検出手段と、 前記プラスチックレンズのうち少くとも1枚のレンズを
予め定めた方向に規定値移動させ、該移動の前後におけ
るビーム径の変化に基いて前記プラスチックレンズの適
性変位量を演算する制御手段と、 前記プラスチックレンズの適性変位量に応じてプラスチ
ックレンズを移動させる移動手段を備えたことt−特徴
とするレーザビームプリンタのビーム径制御装置。
[Claims] A beam diameter control device for a laser beam printer that forms an electrostatic latent image on a photoreceptor through an optical system having a plastic lens based on a laser beam, and obtains an image by visualizing the latent image. , a detection means disposed in a non-image area near the photoconductor and outputting a beam diameter signal according to a diameter of the laser beam based on a change in shape of the plastic lens; and at least one of the plastic lenses. control means for moving the lens by a specified amount in a predetermined direction and calculating an appropriate displacement amount of the plastic lens based on a change in beam diameter before and after the movement; A beam diameter control device for a laser beam printer, characterized in that it includes a moving means for moving a lens.
JP58175691A 1983-09-22 1983-09-22 Beam diameter controller for laser beam printer Pending JPS6067920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58175691A JPS6067920A (en) 1983-09-22 1983-09-22 Beam diameter controller for laser beam printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175691A JPS6067920A (en) 1983-09-22 1983-09-22 Beam diameter controller for laser beam printer

Publications (1)

Publication Number Publication Date
JPS6067920A true JPS6067920A (en) 1985-04-18

Family

ID=16000551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175691A Pending JPS6067920A (en) 1983-09-22 1983-09-22 Beam diameter controller for laser beam printer

Country Status (1)

Country Link
JP (1) JPS6067920A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315247A (en) * 1987-06-18 1988-12-22 Brother Ind Ltd Laser recording device
JPH0263849A (en) * 1988-08-31 1990-03-05 Mita Ind Co Ltd Laser beam spot size detector
JPH0263848A (en) * 1988-08-31 1990-03-05 Mita Ind Co Ltd Laser beam scanner
JPH02188276A (en) * 1989-01-17 1990-07-24 Canon Inc Image forming device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488142A (en) * 1977-12-26 1979-07-13 Nippon Telegr & Teleph Corp <Ntt> Image reader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488142A (en) * 1977-12-26 1979-07-13 Nippon Telegr & Teleph Corp <Ntt> Image reader

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315247A (en) * 1987-06-18 1988-12-22 Brother Ind Ltd Laser recording device
JPH0263849A (en) * 1988-08-31 1990-03-05 Mita Ind Co Ltd Laser beam spot size detector
JPH0263848A (en) * 1988-08-31 1990-03-05 Mita Ind Co Ltd Laser beam scanner
JPH02188276A (en) * 1989-01-17 1990-07-24 Canon Inc Image forming device

Similar Documents

Publication Publication Date Title
JP3869475B2 (en) Polygon ROS imaging device
JPS63241519A (en) Light beam recorder
JPH0343707A (en) Scanning optical device
JPS6067920A (en) Beam diameter controller for laser beam printer
WO1983004303A1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
JPH09159951A (en) Optical scanner
JP2630771B2 (en) Focus detection optical system
JPS6067921A (en) Beam diameter controller for laser beam printer
JPS6153616A (en) Scanner
US3861806A (en) Sighting goniometer
JP3499984B2 (en) Image forming device
SE454027B (en) OPTICAL-MECHANICAL SMOKING DEVICE
JP2000238330A (en) Image-forming apparatus
JP2573535B2 (en) Projection lens
JPS6156655B2 (en)
JPS60100111A (en) Laser beam printer
JPH0754822Y2 (en) Optical sensor
JPH06235873A (en) Scanning optical device
JPS6327690B2 (en)
JP2757311B2 (en) Scanning optical device
KR930003372Y1 (en) Mirror controlling apparatus for duel camera
JP2973017B2 (en) Focus detection device
JPH04119313A (en) Optical scanner
JP3434499B2 (en) Optical scanning device
SU693110A1 (en) Method and apparatus for determining the errors of mirror-lens element dihedral angles at manufacturing