JPS6067798A - Flow pattern controller in water tank - Google Patents

Flow pattern controller in water tank

Info

Publication number
JPS6067798A
JPS6067798A JP58174265A JP17426583A JPS6067798A JP S6067798 A JPS6067798 A JP S6067798A JP 58174265 A JP58174265 A JP 58174265A JP 17426583 A JP17426583 A JP 17426583A JP S6067798 A JPS6067798 A JP S6067798A
Authority
JP
Japan
Prior art keywords
vortex
flow
suction
water tank
suction port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58174265A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamamoto
和義 山本
Masa Tagome
雅 田篭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP58174265A priority Critical patent/JPS6067798A/en
Publication of JPS6067798A publication Critical patent/JPS6067798A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent occurrence of vortex without sacrifice of pump performance while to control the pump performance in accordance to load variation, by providing means for producing spiral flow on the wall face of water tank. CONSTITUTION:A recess 9 is formed at the lower portion of both side walls 1b located near to the suction port 2a of suction tube 2 where rotary member 6 is contained in each recess 9 while a motor 7 for driving a rotary member 6 is provided. Said rotary member 6 will rotate in the direction reverse from the rotary direction of vortex T1 to be produced through suction of suction pipe 2 to weaken the strength of vortex T1 thus to control the flow and to prevent vortex and air suction vortex. When locating the rotary member 6 immediately below the suction pipe 2a to regulate the strength of pre-spiral flow of suction port 2a, the pump performance can be controlled.

Description

【発明の詳細な説明】 本発明はポンプ吸込水槽内に発生づ“る渦流の防止や吸
込口の流れの予旋回の強さをコントロールするlCめの
フローパターン制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow pattern control device for preventing vortices generated in a pump suction tank and for controlling the strength of pre-swirling of the flow at the suction port.

周知の如く、ポンプ吸込管を設置したポンプ吸込水槽に
おいては各種の渦が発生し、ポンプの運転に不都合を生
ずる。
As is well known, various vortices are generated in a pump suction water tank in which a pump suction pipe is installed, causing problems in pump operation.

これらの渦を形態としては第1図(イ)、(ロ)に示す
ように、吸込管2の吸込口2aと水41ケ1の底面すな
わち底壁1aを結ぶ水中渦「0、吸込口2aと水槽1の
側壁1b、1bを結ぶ水中渦「盲、吸込口2aと自由表
面1dを結ぶ空気吸込tfMl r 2の3つが存在す
る。空気吸造渦「2の発生は可視化ににつで水槽内の流
れを観察したM IA、通常は吸込管によって作り出さ
れる自由表面近くの後流渦に水中渦「曹によって誘起さ
れる強い下向きの流れが加わることににって、後流渦が
くぼみ渦から空気吸込み渦[2へと成長づることか明ら
かになった。また空気吸造渦[2はポンプ運転上層も悪
影響を与えるものとなる。なJ3.1Cは水槽1の後壁
、1dは水の自由表面である。
The form of these vortices is as shown in FIGS. 1(A) and 1(B). There are three submerged vortices that connect the side walls 1b and 1b of the aquarium 1, an air suction tfMl r 2 that connects the suction port 2a and the free surface 1d. MIA observed the flow inside the submerged vortex.The strong downward flow induced by the underwater vortex is added to the wake vortex near the free surface, usually created by the suction pipe, and the wake vortex becomes a depression vortex. It is clear that the air suction vortex [2] grows from the air suction vortex [2].The air suction vortex [2] also has an adverse effect on the upper layer of pump operation.J3.1C is the rear wall of water tank 1, 1d is the water is the free surface of

かかる各種の渦の発生を防止づるために従来秤々の渦発
生防止装置が知られている。例えば第2図は吸込み管2
の上流側に板体3を垂直に設(プ、その板体3を自由表
面1dの下方につつこ/νでいる。第3図に示すものは
吸込管2の下流側の水平下に水平板4を設置している。
In order to prevent the generation of these various types of vortices, conventional vortex generation prevention devices have been known. For example, Figure 2 shows the suction pipe 2.
The plate 3 is installed vertically on the upstream side of the suction pipe 2 (the plate 3 is placed vertically below the free surface 1d). Board 4 is installed.

また第4図に示づものは吸込管2の真下の中心線上にス
プリッタ5を設、置しである。またその他の種々の形態
は例えば本出願人に係る特公昭57−50941号公報
に記載されている。
Furthermore, in the one shown in FIG. 4, a splitter 5 is installed on the center line directly below the suction pipe 2. Further, various other forms are described, for example, in Japanese Patent Publication No. 57-50941 filed by the present applicant.

しかしながら、これらの公知の技術はいずれも渦の発生
防止には効果的なものであるけれども、板体、棒体、ス
プリッタ等の渦防止装置が吸込管2の吸込口2aに近接
して設けられているために、吸込口2aに向う流れが不
均一となり、その結果ポンプ性能が低下するという欠点
があった。
However, although all of these known techniques are effective in preventing the generation of vortices, they do not require a vortex prevention device such as a plate, a rod, or a splitter to be provided close to the suction port 2a of the suction pipe 2. As a result, the flow toward the suction port 2a becomes non-uniform, resulting in a reduction in pump performance.

したがって本発明の目的は、ポンプ性能を低下させる板
体等の渦防止装置を設けることなく渦の発生を防止でき
、j、1こ負荷の変動に応じてポンプの揚程や1lII
ll動ツノを適止も′値に調節できるポンプ吸込水槽の
71」−パターン制御装置を提供するにある。
Therefore, an object of the present invention is to prevent the generation of vortices without installing a vortex prevention device such as a plate that degrades pump performance, and to adjust the head of the pump and 1lII according to fluctuations in the load.
The object of the present invention is to provide a 71''-pattern control device for a pump suction water tank that can adjust the moving horn to an appropriate value.

本発明によれば、ポンプ吸込口の近傍の水槽の壁面に旋
回流を発生する旋回流発生手段を設けである。
According to the present invention, swirling flow generating means for generating swirling flow is provided on the wall surface of the water tank near the pump suction port.

したがって、渦防止に対しては渦が発生しようとしても
回転流発生手段により逆向きの流れが発生するので、渦
の発生が阻止される。しかも回転流発生手段は水槽の壁
内に設けることができ、また若干水路内に位置して−い
ても実質的に水檜内の流れを阻止しないので、ポンプ性
能を低下させることがない。
Therefore, in terms of vortex prevention, even if a vortex is to be generated, a flow in the opposite direction is generated by the rotating flow generating means, so that the generation of a vortex is prevented. Furthermore, the rotating flow generating means can be provided within the wall of the water tank, and even if it is located slightly within the water channel, it does not substantially block the flow within the water tank, so that the pump performance will not be degraded.

また、吸込口に向う流れに予旋回を与え、も−)で負荷
の変動に応じてポンプの揚程や軸りJ力を適正な値に調
節することができる。
In addition, by giving a pre-swirl to the flow toward the suction port, it is possible to adjust the pump head and shaft J force to appropriate values in accordance with load fluctuations.

本発明の実施に際して、旋回流発生手段(、)、回転体
とその回転体を駆動づる駆動手段とを用いることができ
る。ポンプ吸込ロヘ向う予旋回の強ざを制御する場合に
は、回転体を吸込口の真下の水槽の底壁に設置するのが
好ましい。
In carrying out the present invention, a swirling flow generating means (,), a rotating body, and a driving means for driving the rotating body can be used. When controlling the strength of the pre-swivel toward the pump suction port, it is preferable to install the rotating body on the bottom wall of the water tank directly below the suction port.

また本発明の実施に際して回転体を底壁又は側壁の底壁
近くの側壁に設置し、底壁近くの流れを攪拌させるのが
好ましい。このJ:うにづ−ることによって底壁に砂や
固形物が沈積するのを防ぐことができる。
Further, when carrying out the present invention, it is preferable to install a rotating body on the bottom wall or on the side wall near the bottom wall to stir the flow near the bottom wall. By applying this J: sea urchin, it is possible to prevent sand and solid matter from accumulating on the bottom wall.

本発明の実施に際して回転体を駆動でる駆動手段は電動
機を用いることができる。しかしながら、ノズルからの
噴流によって流体的に回転させることができる。ノズル
からの噴流はポンプの吐出流を利用してもJ:り、また
他のポンプや水通水のような液体供給源を用いてもよい
In carrying out the present invention, an electric motor can be used as the driving means for driving the rotating body. However, it can be rotated fluidically by a jet from a nozzle. The jet flow from the nozzle may be generated by using the discharge flow of a pump, or by using another pump or a liquid supply source such as water passage.

また本発明の実施に際して旋回流発生手段はノズルを用
いることができる。ノズルから噴射された噴流と円形の
凹部又はボリュート形状の凹部に導くことにJ:つて6
2回流れが得られる。さらに接線方向に複数のノズルを
設()て旋回流を発生することもできる。
Further, in carrying out the present invention, a nozzle can be used as the swirling flow generating means. In guiding the jet stream injected from the nozzle to a circular recess or a volute-shaped recess J: 6
Two flows are obtained. Furthermore, a swirling flow can be generated by providing a plurality of nozzles in the tangential direction.

以下第5図(イ)、(ロ)ないし第12図を参照して本
発明の詳細な説明する。
The present invention will be described in detail below with reference to FIGS. 5(a) and 5(b) to FIG. 12.

第5図(イ)、(ロ)に示す実施例では吸込管2の吸込
口2aと近接している両側壁1bの下部に四部9を形成
し、ぞれらの四部9にそれぞれ回転体6を収容しており
、それらの回転体6を回転駆動する電動機7を尚えてい
る。
In the embodiment shown in FIGS. 5(a) and 5(b), four parts 9 are formed at the lower part of both side walls 1b adjacent to the suction port 2a of the suction pipe 2, and each of the four parts 9 is provided with a rotating body 6. It also houses an electric motor 7 that rotates these rotating bodies 6.

一般に第1図に示すにうに、望気吸込渦「2は、吸込管
2の吸込作用にJ、って作り出される水中渦「盲によっ
て誘起される強い下向きの流れが後流渦に加わって成長
するものである。
In general, as shown in Fig. 1, a desirable suction vortex "2" is an underwater vortex created by the suction action of the suction pipe 2. A strong downward flow induced by the blind joins the wake vortex and grows. It is something to do.

そこで回転体6を水中渦[+の回転方向と逆方向に回転
する回転体6を設けることにより、水中渦「1の強さを
適当に弱められることができ、もってその流れを制御で
きる。このようにして水中渦「1および「2の発生を防
止できる。
Therefore, by providing a rotating body 6 that rotates in the opposite direction to the rotation direction of the underwater vortex [+], the strength of the underwater vortex "1" can be appropriately weakened, thereby controlling its flow. In this way, the occurrence of underwater vortices "1" and "2" can be prevented.

図示の例では回転体6を両側壁1b、1bにそ4tぞれ
設けたが、場合によって一方のみでも充分に目的を達成
することができる。またこの回転体6は水中渦[1が側
壁11)に達する所に位置させるのが好ましい。この水
中渦「1が側q 11)に達する位置は水槽1の形状や
寸法ににって若干の差異はあるけれども、標準的な水槽
では a=0.2D、 +3=0.3D の付近である。ここでDは吸込[」の直径、ilは吸込
管中心から後壁よりの距離1、l+は吸込管下端から底
壁よりの距離である。
In the illustrated example, the rotating bodies 6 are provided on both side walls 1b and 4t, respectively, but depending on the situation, the purpose can be sufficiently achieved with only one rotating body. Further, it is preferable that this rotating body 6 is located at a place where the underwater vortex [1 reaches the side wall 11]. The position at which this underwater vortex reaches side q 11) varies slightly depending on the shape and dimensions of the tank 1, but in a standard tank it is around a = 0.2D and +3 = 0.3D. Here, D is the diameter of the suction pipe, il is the distance 1 from the center of the suction pipe to the rear wall, and l+ is the distance from the lower end of the suction pipe to the bottom wall.

また回転体6は必ずしも凹部9に収容する必要はなく、
壁面から突出して設(プても」:い。
Furthermore, the rotating body 6 does not necessarily need to be accommodated in the recess 9;
It should not be installed protruding from the wall.

第6図は後壁1Cの下部に回転体6を設け、電動機7で
駆動した例で、水中渦[0の渦防止とポンプ性能の制御
に有効である。この実施例では吸込口2aと後壁1Cと
を結ぶ水中渦1−tBの発生を防止することができる。
FIG. 6 shows an example in which a rotating body 6 is provided at the lower part of the rear wall 1C and driven by an electric motor 7, which is effective in preventing underwater vortices and controlling pump performance. In this embodiment, generation of an underwater vortex 1-tB connecting the suction port 2a and the rear wall 1C can be prevented.

第7図は吸込口12aの真下の水槽の底壁1aに回転体
6を設りた例である。この実施例では吸込口2aと底壁
1aとを結ぶ水中渦「0の発生を防止できる。渦防止に
は、回転体6は電1FIJ機7によって水中渦「0と反
対方向に回転されることは勿論である。
FIG. 7 shows an example in which the rotating body 6 is provided on the bottom wall 1a of the water tank directly below the suction port 12a. In this embodiment, it is possible to prevent the generation of an underwater vortex "0" connecting the suction port 2a and the bottom wall 1a.To prevent the vortex, the rotating body 6 is rotated in the opposite direction to the underwater vortex "0" by the electric 1FIJ machine 7. Of course.

また、回転体Gを吸込口2aU)真下に位置させて、吸
込口の流れの予旋回の強さを調節することによってポン
プ性能をIIIJ lll−!J−ることができる。
In addition, by positioning the rotating body G directly below the suction port 2aU) and adjusting the strength of the pre-swirling of the flow at the suction port, the pump performance can be improved. J- can do it.

第8図は吸込流の予旋回の方向とポンプ性能との関係の
一例を示したものである。吸込流にポンプの回転方向と
逆方向の回転をJjえると、曲線aに示すJ:うに揚程
Ll、軸動力しは増大し、ポンプと同方向の回転を与え
ると、曲線Cに示ずように揚Pi!t−1と軸動力りは
低下Jる。曲線すは予旋回が無い場合の性能を示してい
る。この予旋回の方向とポンプ性能の関係を利用し、需
要に応じて、回転体6の回転数を制御して、適切な予旋
回をl〕え、もってポンプの動力を節約づることができ
る、。
FIG. 8 shows an example of the relationship between the pre-swirling direction of the suction flow and pump performance. When the suction flow is rotated in the opposite direction to the pump's rotational direction, Jj is shown in curve a. Niage Pi! At t-1, the shaft power decreases. The curved line shows the performance without pre-turn. Utilizing this relationship between the direction of pre-swivel and pump performance, it is possible to control the rotational speed of the rotating body 6 according to demand to achieve an appropriate pre-swivel, thereby saving pump power. .

第9図(イ)、(ロ)は回転体6の駆動手段どして噴流
を用いた例である。図示の例にJjいて、回転体6を収
容する凹部9は吸込口2aの真下の底壁1aに設けられ
、ノズル8がその噴流3を回転体6の内周方向に当てて
回転体6を回転させるJ:うになっている。このノス′
ル8には給水管11が接続され、この給水管11はポン
プ吐出1]2の取出し口12に接続されている。
9(a) and 9(b) are examples in which a jet stream is used as the driving means for the rotating body 6. FIG. In the illustrated example, a recess 9 for accommodating the rotating body 6 is provided in the bottom wall 1a directly below the suction port 2a, and the nozzle 8 applies the jet stream 3 toward the inner circumferential direction of the rotating body 6 to move the rotating body 6. Rotate J: It turns into a sea urchin. This nose'
A water supply pipe 11 is connected to the pipe 8, and this water supply pipe 11 is connected to an outlet 12 of the pump discharge 1]2.

第10図は旋回流発生手段とじてノズルとボリコー1−
形状の凹部10とを組合せた例である。ノズル8からの
噴流Jは凹み10によつでn:’j−回流Wを生ずるの
である。この例は例えば前記第9図の回転体9を収容し
た凹み9に代えてポリ」−1へ秋の凹み10を設けたも
のである。
Figure 10 shows a nozzle and a Voriko 1- as a swirling flow generating means.
This is an example in which the shape of the recess 10 is combined. The jet flow J from the nozzle 8 is caused by the recess 10 to generate an n:'j-circulation flow W. In this example, a recess 10 is provided in the polygon 1 in place of the recess 9 that accommodates the rotating body 9 shown in FIG. 9.

また第11図は第10図と同様な凹み10を第5図(ロ
)に示す位置に設けた例である。
Further, FIG. 11 shows an example in which a recess 10 similar to that in FIG. 10 is provided at the position shown in FIG. 5 (b).

第12図は円環状の給水管13に接線方向を向いたノズ
ル8を設【ノ、ムつて旋回流を発生させる例である。
FIG. 12 shows an example in which a nozzle 8 facing tangentially is installed in an annular water supply pipe 13 to generate a swirling flow.

以上の如く本発明によれば水槽の壁面に旋回流を発生さ
せる旋回流発生手段を設けて、水槽内のフローパターン
を制御したのでポンプ性能を低下することなく、渦の発
生を防止したり、負荷の変動に応じてポンプ性能をコン
1〜ロールすることができる。また捕砂の防止という効
果を9−3ることができる。
As described above, according to the present invention, the swirling flow generating means for generating swirling flow is provided on the wall surface of the water tank to control the flow pattern in the water tank, so that generation of vortices can be prevented without deteriorating pump performance. Pump performance can be controlled from 1 to 1 in accordance with load fluctuations. Further, the effect of preventing sand trapping can be reduced by 9-3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポンプ礫込水槽内に発生J−る各種渦の形態を
示し、(イ)はその正面図、(ロ)はその側面図、第2
図、第3図おにび第4図はそれぞれ従来一般に使用され
ている渦防止装置を示す側面図、第5図は本発明の一実
施例を示し、(イ)はその正面図、(ロ)はその側面図
、第6図は本発明の別の実施例を示づ一側面図、第7図
はさらに別の実施例を示す側面図、第8図はポンプ吸込
口の予旋回の方向とポンプ性能の関係を示す図、第9図
はさらに別の実施例を示す図で、(イ)はその側面図、
(ロ)は(イ)のA−A線に見た平面図、第10図は回
転体ではなく噴流を利用した本発明の一実施例を示す平
面図、第11図は第10図の旋回流発生手段を第5図(
ロ)の位置に8月ノだ所を示す側面図、第12図は旋回
流発生手段の他の例を示す平面図である。 1・・・ポンプ吸込水槽 1a・・・氷山底壁 1b・
・・水槽側壁 1C・・・水槽後壁 1d・・・自由表
面 2・・・+f、込管2a・・・吸込口 6・・・回
転体 7・・・電動機 8・・・ノズル J・・・噴流
9・・・円形状のくぼみ W・・・旋回流10・・・ボ
リュー1〜形状のくばみ 13・・・円環状の給水管 第1図 1CL 第4図 一第5図 第6図 第7図 第10図 第11図 第12図
Figure 1 shows the forms of various vortices generated in the pump gravel tank, (a) is a front view, (b) is a side view, and (b) is a side view.
Figures 3 and 4 are side views showing a conventionally commonly used vortex prevention device, respectively, and Figure 5 shows an embodiment of the present invention. ) is a side view thereof, FIG. 6 is a side view showing another embodiment of the present invention, FIG. 7 is a side view showing still another embodiment, and FIG. 8 is a direction of pre-swivel of the pump suction port. FIG. 9 is a diagram showing still another embodiment, and (a) is a side view thereof;
(B) is a plan view taken along line A-A in (A), FIG. 10 is a plan view showing an embodiment of the present invention that uses a jet stream instead of a rotating body, and FIG. The flow generation means is shown in Figure 5 (
FIG. 12 is a plan view showing another example of the swirling flow generating means. 1...Pump suction water tank 1a...Iceberg bottom wall 1b.
...Aquarium side wall 1C...Aquarium rear wall 1d...Free surface 2...+f, Inlet pipe 2a...Suction port 6...Rotating body 7...Electric motor 8...Nozzle J...・Jet flow 9...Circular depression W...Swirling flow 10...Volume 1~Shape depression 13...Annular water supply pipe Fig. 1 1CL Fig. 4 - Fig. 5 Fig. 6 Figure 7 Figure 10 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】[Claims] ポンプ吸込水槽のポンプ吸込口の付近の流れを制御する
ためのフローパターン制御装置において、ポンプ吸込口
の近傍の水槽の壁面に、流れに旋回を与える旋回流発生
手段を少なくとも1つ設け、その旋回流によって水槽内
の流れを制御し、渦流を防止したり、吸込[1にJ5I
)る予旋回の強さをコン1へロールすることを1J[徴
とづるフローパターン制御装置。
In a flow pattern control device for controlling the flow near the pump suction port of a pump suction water tank, at least one swirl flow generation means for giving a swirl to the flow is provided on the wall surface of the water tank near the pump suction port, The flow in the aquarium can be controlled by the flow, preventing vortices, and
) is a flow pattern control device that rolls the strength of the pre-turn to control 1.
JP58174265A 1983-09-22 1983-09-22 Flow pattern controller in water tank Pending JPS6067798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58174265A JPS6067798A (en) 1983-09-22 1983-09-22 Flow pattern controller in water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58174265A JPS6067798A (en) 1983-09-22 1983-09-22 Flow pattern controller in water tank

Publications (1)

Publication Number Publication Date
JPS6067798A true JPS6067798A (en) 1985-04-18

Family

ID=15975616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58174265A Pending JPS6067798A (en) 1983-09-22 1983-09-22 Flow pattern controller in water tank

Country Status (1)

Country Link
JP (1) JPS6067798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019094691A1 (en) * 2017-11-09 2019-05-16 Florida State University Research Foundation, Inc. Systems and methods for actively controlling a vortex in a fluid
US11268550B2 (en) 2014-03-03 2022-03-08 The Florida State University Research Foundation, Inc. Swirling jet actuator for control of separated and mixing flows

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11268550B2 (en) 2014-03-03 2022-03-08 The Florida State University Research Foundation, Inc. Swirling jet actuator for control of separated and mixing flows
WO2019094691A1 (en) * 2017-11-09 2019-05-16 Florida State University Research Foundation, Inc. Systems and methods for actively controlling a vortex in a fluid
US10718362B2 (en) 2017-11-09 2020-07-21 The Florida State University Research Foundation, Inc. Systems and methods for actively controlling a vortex in a fluid
JP2021502520A (en) * 2017-11-09 2021-01-28 フロリダ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド Systems and methods for active control of vortices in fluids

Similar Documents

Publication Publication Date Title
US7125224B2 (en) Rotary kinetic tangential pump
US3148464A (en) Dredging apparatus
EP0340236B1 (en) Improved pump construction
WO2010041565A1 (en) Microbubble generating pump, microbubble generating pump rotor blade and microbubble generating pump stator blade
JP2652725B2 (en) Self-sucking centrifugal pump
CA1312236C (en) Fluid pump apparatus
JPS6067798A (en) Flow pattern controller in water tank
JP3277214B2 (en) Rapid expansion type submerged jet injection nozzle
JPWO2006123796A1 (en) Moored floating hydroelectric generator
KR100889975B1 (en) Waterjet driving method and propulsion
JP3043315B2 (en) Bubble generator
JPS5896198A (en) Pump of volute suction type
JP2012106542A (en) Friction-reduced ship and microbubble generating pump
SE506435C2 (en) Apparatus for mixing a first fluid into a second fluid
JP2002317795A (en) Flow separation control structure for blade of pump impeller
KR910000476B1 (en) Propeller used for preventing cavitation
JP4562088B2 (en) Self-priming pump
KR102069169B1 (en) Thrust apparatus for slowly turning of ship
JP2956901B2 (en) Once-through water wheel
JP2595478Y2 (en) Side fence device for water jet propulsion
JPS61193990A (en) Marine screw propeller
JPS5937274A (en) One-through water wheel
JPH05302587A (en) Impeller pump
JPH0868397A (en) Suction pipe for pump
JPH05306696A (en) Aeration structure of pump