JPS6067753A - Gas-turbine engine - Google Patents

Gas-turbine engine

Info

Publication number
JPS6067753A
JPS6067753A JP17664983A JP17664983A JPS6067753A JP S6067753 A JPS6067753 A JP S6067753A JP 17664983 A JP17664983 A JP 17664983A JP 17664983 A JP17664983 A JP 17664983A JP S6067753 A JPS6067753 A JP S6067753A
Authority
JP
Japan
Prior art keywords
turbine
oxygen
gas
afterburner
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17664983A
Other languages
Japanese (ja)
Inventor
Setsuo Yamamoto
山本 切夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17664983A priority Critical patent/JPS6067753A/en
Publication of JPS6067753A publication Critical patent/JPS6067753A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/08Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof
    • F02K3/10Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof by after-burners

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To perform the afterburning of an engine in a stable manner even when turbine inlet temperature is high and oxygen contained in a combustion gas is little, by installing a device which leads the oxygen for combustion of fuel in an afterburner of the gas-turbine engine. CONSTITUTION:A gas turbine engine 1 is provided with an air intake 2, a compressor 4 installed in front of a rotor 3, a combustor 5, a turbine 6 installed in the rear of the rotor 3, an afterburner 7 and a jet nozzle 8. In the case aforesaid, a flow passage 9 to lead pressure oxygen into the afterburner 7 is additionally installed therein and its one end 9b is set up in a combustion gas flow passage 13 of the afterburner 7. And, a tank 12 storing oxygen under specified pressure is installed in this flow passage 9 with the hlep of a pump 10, an on-off valve 11 and another end part 9a of the flow passage 9 interconnected through. With this constitution, in the case where turbine inlet temperature is high and a quantity of oxygen contained in a combustion gas is small, the oxygen is fed out of the flow passage 9 so that afterburning takes place in a stable manner.

Description

【発明の詳細な説明】 本発明はガスタービンエンジンに関する。[Detailed description of the invention] The present invention relates to gas turbine engines.

航空用カスタービンエンジンとしてターボジェットエン
ジン、ターボファンエンジンなどが実用されている。こ
の航空用カスタービンエンジンにおいては2機運による
ラム圧に圧縮された空気を圧縮機でさらに圧縮し、この
圧縮空気を燃焼器に導いて燃料を燃焼させて生じた高温
島圧の燃焼カスを圧縮機を駆動するタービンにて膨張さ
せたのち、ジェットノズルで大気圧まで膨張させて耳遠
の噴流を発生させて航空機の推進力を得る。
Turbojet engines, turbofan engines, etc. are in practical use as aerospace turbine engines. In this aviation Kasturbine engine, air compressed to ram pressure by two engines is further compressed by a compressor, and this compressed air is led to a combustor to burn fuel and compress the combustion scum of high temperature island pressure. After being expanded by the turbine that drives the aircraft, it is expanded to atmospheric pressure using a jet nozzle to generate a far-reaching jet to provide the aircraft's propulsion force.

この航空用ガスタービンを含むガスタービンエンジンに
おいて熱効率を高めるためには、→Jイクル最誦温反す
なわちタービン入口温度をI+、′1める必要かある。
In order to increase the thermal efficiency of a gas turbine engine including this aviation gas turbine, it is necessary to increase the temperature of the turbine inlet by I+,'1.

しかるに、タービン翼の耐熱性にJ″ってタービン入口
温度が制限され、タービン翼の耐熱温度が低い場合には
、燃焼器において燃焼カス中に希釈空気を混入すること
によってガス+1.1度を下げる。まtコ、タービン翼
の耐熱温度が篩い場合には、燃焼ガスの希釈を行なわず
、さらに、燃焼器における燃焼を理論涙合比近くで行な
って酌温の燃焼ガスをタービンに尋〈。
However, the turbine inlet temperature is limited by J'' due to the heat resistance of the turbine blades, and if the turbine blades have a low heat resistance temperature, it is possible to increase the gas +1.1 degrees by mixing dilution air into the combustion scum in the combustor. If the allowable temperature of the turbine blades is sieve, the combustion gas is not diluted, and the combustion in the combustor is performed near the stoichiometric ratio, so that the combustion gas at the smelt temperature is fed to the turbine. .

一方、ガスタービンエンジンを備えた航空機において、
離陸時あるいは音速突破の加速時などに一時的に推力を
増大させる必要かJ)す、このために77タバーニング
が行なわれる。このアフタバーニングは、タービンでの
膨張により温度が低下した燃焼ガス中に燃料を噴射し、
燃焼カス中に含まれる未燃焼酸素によりこの燃料を燃焼
させて燃焼ガスの温度を高め、得られた託温の燃焼ガス
をジェットノズルで膨張させて強力な推進力を発生させ
る。
On the other hand, in aircraft equipped with gas turbine engines,
When it is necessary to temporarily increase thrust during takeoff or when accelerating beyond the speed of sound, 77 taberning is performed for this purpose. This afterburning injects fuel into the combustion gas whose temperature has decreased due to expansion in the turbine.
This fuel is combusted using unburned oxygen contained in the combustion residue to raise the temperature of the combustion gas, and the resulting heated combustion gas is expanded through a jet nozzle to generate strong propulsive force.

しかるに、上述のように、カスタービンの熱効率を硯め
るために→ノイクル最に温度ずなわちタービン入口温度
を蒔くするにともなって、燃焼器における燃焼か理諭混
ば比に近くなるので、燃焼ガス中に含まれる未燃焼酸素
の組か少なくなる。燃焼カス中の酸素の含有量か少ない
場合には、アフタバーニングのための燃料の燃焼が不安
定となり、さらには燃焼が不ijJ能になる。
However, as mentioned above, in order to improve the thermal efficiency of the gas turbine, the combustion ratio in the combustor approaches the theoretical mixture ratio by increasing the temperature at the lowest temperature, that is, the temperature at the turbine inlet. The amount of unburned oxygen contained in the combustion gas decreases. If the content of oxygen in the combustion residue is low, combustion of the fuel for afterburning becomes unstable, and furthermore, combustion becomes impossible.

本発明は上記小情に鑑みてなされたものであり、その目
的は、タービ/入「J温度が高く燃焼カスに含まれる酸
素のQfが少ない場合においてアフタバーニングを安定
して行なうことかできるようにしたカスタービンエンジ
ンを提供することである。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to stably perform afterburning when the turbine/injection temperature is high and the Qf of oxygen contained in the combustion residue is low. The purpose of the present invention is to provide a caster turbine engine that has been improved.

以下9本発明の一実施例を図出目こもとづいて説明する
Hereinafter, nine embodiments of the present invention will be explained based on the figures.

ガスターヒソエンジ/1は、空気取入口2.ロータ3の
前方に設けら第1た圧縮機4.燃焼器5ツロータ3の後
方に設けられたタービン6、アフタバーナ7、並びに、
ジェットノズル8を備える。
Gaster Hiso Engine/1 has air intake port 2. A first compressor 4 provided in front of the rotor 3. A turbine 6 provided behind the combustor 5 rotor 3, an afterburner 7, and
A jet nozzle 8 is provided.

空気取入口2から流入した空気は圧縮機4で圧縮されて
燃焼器5へ導かれ、燃焼器5にJ)いて供給される燃料
か燃焼し9発−生した篩部ihj、 I:Iの燃焼カス
がタービン6で膨張してタービン6を駆動する。
The air flowing in from the air intake port 2 is compressed by the compressor 4 and guided to the combustor 5, where the fuel supplied to the combustor 5 is combusted and the generated sieve part ihj, I:I. The combustion residue expands in the turbine 6 and drives the turbine 6.

タービン6によってロータ3を介してII穎’i h返
4か駆動される。タービン6を出た燃焼カスは、ジェッ
トノズル8て膨張して関連の噴筒となって1イL進力を
発生する。
The turbine 4 is driven by the turbine 6 via the rotor 3. The combustion scum leaving the turbine 6 expands in the jet nozzle 8 and becomes an associated injection tube to generate 1L propellant.

9は所定圧に加圧された酸素をカスタービンエンジン1
のアフタバーナ7へ尋くための流路である。10は酸素
を加圧してアフタバーブ7へ供給するためのポンプであ
り、このポンプ1oはSIに動機(不図示)により駆動
される。11は開閉弁で、この開閉弁11とポンプ10
を介して流路9の一万の端部9aか酸素を所定圧で貯蔵
するタンク12と連通している。流路9の他方の端部9
bは、アフタバーナ7の燃焼カス流路13に酸素を吐出
するように配置されるか、あるいは、酸素とアフタバー
ニングのために供給される燃料とが予じめ混合するよう
に配置される。
9 supplies oxygen pressurized to a predetermined pressure to the gas turbine engine 1.
This is a flow path for accessing the afterburner 7. 10 is a pump for pressurizing oxygen and supplying it to the afterbarb 7, and this pump 1o is driven by a motor (not shown) in the SI. 11 is an on-off valve, and this on-off valve 11 and the pump 10
The end 9a of the flow path 9 is in communication with a tank 12 that stores oxygen at a predetermined pressure. The other end 9 of the flow path 9
b is arranged so as to discharge oxygen into the combustion residue flow path 13 of the afterburner 7, or arranged so that oxygen and fuel supplied for afterburning are mixed in advance.

航望機の離陸時あるいは音速英破の加速時などにはアフ
タバーニングを行なうのであるが、上述のように、ター
ビン60入ロカス温度が筒い場合には、燃焼器5におけ
る燃焼か理論混合比近くで一行なわれるので、タービン
6を出る燃焼ガスに含まれる未燃焼酸素の量か少ない、
このため、アフタバーニングを行なうときには、開閉弁
11を即けるとともに、ポンプ10を駆動して。タンク
12から所疋肚の酸素を流路9を経てアフタバーナ7へ
導く、アフタバーナ7では、この酸素によっテ燃料か燃
焼し、この燃焼によってタービン6を出り燃焼カスのi
S1反か11・11められる。このアフタバーニングに
よって温度が高められた燃焼ガスが。
Afterburning is performed when an aircraft takes off or when accelerating a sonic blast, but as mentioned above, when the locus temperature entering the turbine 60 is high, the combustion in the combustor 5 or the stoichiometric mixture ratio Since the combustion is carried out nearby, the amount of unburned oxygen contained in the combustion gas exiting the turbine 6 is small.
Therefore, when performing afterburning, the on-off valve 11 is turned on and the pump 10 is driven. Oxygen from the tank 12 is guided through the flow path 9 to the afterburner 7. In the afterburner 7, this oxygen burns the fuel, and this combustion leaves the turbine 6 and burns the combustion residue.
S1 was defeated on 11/11. This afterburning increases the temperature of the combustion gas.

ノエツトノズル8で膨張して高速の噴流となって強力な
推進力を発η−させる。航空機か巡航速度で飛行すると
きには、アフタバーニングの必要がないので、ポンプ1
0を停止するとともに、開閉弁11を閉じて、酸素の供
給を停止する。
It expands in the Noet nozzle 8, becomes a high-speed jet, and generates a strong propulsive force. When flying an aircraft at cruising speed, there is no need for afterburning, so pump 1
At the same time, the on-off valve 11 is closed to stop the supply of oxygen.

なお1本実施例では2本発明をターボジェットエンジン
に連相した場合であるが1本発明はターボファンエンレ
ンその他のガスタービンエンノンにも〕開用できること
は百うまでもない。
In this embodiment, the present invention is connected to a turbojet engine, but it goes without saying that the present invention can also be applied to a turbo fan engine or other gas turbine engine.

以上説明したように、本発明において14.カスタービ
ンエンジンの7フタバーナにおけるtN料の燃焼用とし
て酸素を導くための手段を備えて、この酸素を用いてア
フタバーニング・ど行なうようにしたから、ガスタービ
ンエンジンの熱効率を1j34ぬるためにタービン入口
温度を筒めた結呆、燃焼カス中の未燃焼酸素の含有量が
少ない場合において、アフタバーニングを安定して行な
うことかできる。
As explained above, in the present invention, 14. In order to increase the thermal efficiency of the gas turbine engine by 1j34, the turbine inlet was equipped with a means for introducing oxygen for the combustion of the tN charge in the gas turbine engine's 7-lid burner, and this oxygen was used for afterburning. Afterburning can be performed stably even when the temperature is high and the content of unburned oxygen in the combustion residue is low.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す断面図である。 1・・ガスタービンエンジン、4・・圧縮機、5・・燃
焼器、6・・タービン、7・・アフタバーナ、8・・ジ
ェットノズル、9・・流路、10・・ポンプ、11・・
■閉弁、12・・タンク。
The drawing is a sectional view showing an embodiment of the present invention. 1...Gas turbine engine, 4...Compressor, 5...Combustor, 6...Turbine, 7...Afterburner, 8...Jet nozzle, 9...Flow path, 10...Pump, 11...
■Valve closed, 12...tank.

Claims (1)

【特許請求の範囲】[Claims] (1) 圧縮機と、燃焼器と、タービンと、アフタバー
ナと、ジェットノズルとを備えたガスタービンエンジン
において、上記アフタバーナにおける燃料の燃焼用とし
て酸素を導く手段を備えたことを特徴とするガスタービ
ンエンジン。
(1) A gas turbine engine equipped with a compressor, a combustor, a turbine, an afterburner, and a jet nozzle, characterized in that it is equipped with means for introducing oxygen for combustion of fuel in the afterburner. engine.
JP17664983A 1983-09-25 1983-09-25 Gas-turbine engine Pending JPS6067753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17664983A JPS6067753A (en) 1983-09-25 1983-09-25 Gas-turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17664983A JPS6067753A (en) 1983-09-25 1983-09-25 Gas-turbine engine

Publications (1)

Publication Number Publication Date
JPS6067753A true JPS6067753A (en) 1985-04-18

Family

ID=16017268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17664983A Pending JPS6067753A (en) 1983-09-25 1983-09-25 Gas-turbine engine

Country Status (1)

Country Link
JP (1) JPS6067753A (en)

Similar Documents

Publication Publication Date Title
US6550235B2 (en) Combined cycle pulse detonation turbine engine operating method
US9291124B2 (en) Combined cycle integrated combustor and nozzle system
US5414992A (en) Aircraft cooling method
JP2019504237A (en) Micro turbine gas generator and propulsion system
US3496725A (en) Rocket action turbofan engine
CN106050472A (en) Turbo-rocket combined ramjet engine and operating method thereof
US8015795B2 (en) Aircraft combination engines plural airflow conveyances system
US5129227A (en) Low speed engine for supersonic and hypersonic vehicles
US20070151228A1 (en) Fixed nozzle thrust augmentation system
US20060230746A1 (en) Turbineless jet engine
GB1433696A (en) Jet propulsion engines
US2641902A (en) Combination ram jet and turbojet
JPH0367026A (en) Turborocket engine-ramjet engine combined afterburning propeller
US3690102A (en) Ejector ram jet engine
US5131223A (en) Integrated booster and sustainer engine for a missile
RU173530U1 (en) Powerplant hypersonic aircraft
JP4117931B2 (en) Turbocooler air-assisted fuel spraying in gas turbine engines
JPH0672575B2 (en) Gas injection system for turbo-ram rocket coupled propulsion engine
RU2613755C1 (en) Turboram air-jet engine
JPS6067753A (en) Gas-turbine engine
RU174498U1 (en) POWER INSTALLATION OF A HYPERSONIC AIRCRAFT
JP2756946B2 (en) Flying object
JP2601906B2 (en) Air liquefaction cycle engine
RU43039U1 (en) COMBINED AIR-ROCKET ENGINE
JPH0587646B2 (en)