JPS6067668A - Sputtering apparatus - Google Patents
Sputtering apparatusInfo
- Publication number
- JPS6067668A JPS6067668A JP17547983A JP17547983A JPS6067668A JP S6067668 A JPS6067668 A JP S6067668A JP 17547983 A JP17547983 A JP 17547983A JP 17547983 A JP17547983 A JP 17547983A JP S6067668 A JPS6067668 A JP S6067668A
- Authority
- JP
- Japan
- Prior art keywords
- target
- sputtering
- magnets
- substrate
- back surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
- H01J37/3408—Planar magnetron sputtering
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(al 発明の技術分野
本発明は改善された被着基板の表面に薄膜を形成するス
パッタリング装置に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an improved sputtering apparatus for forming a thin film on the surface of a substrate.
(bl 従来技術と問題点
一般に、スパックリング装置は陰極り一ゲソト(以下、
ターゲットと呼ぶ)にガスイオンを衝突させることによ
り、ターゲット材料を原子状にして陽極の被着基板面に
付着堆積させ、面上に薄膜を化成させるようにした装置
である。(bl) Prior art and problems In general, spackling equipment is used only for cathodes (hereinafter referred to as
This device collides gas ions with a target (called a target) to make the target material into atoms and deposit it on the surface of the substrate to which the anode is attached, forming a thin film on the surface.
このようなスパッタリング装置は、例えば半導体装置を
製造する際に用いられており、アルミニウム電極膜や絶
縁膜の形成に必須の装置となっている。そのわけは、ス
パック法で被着した膜が他の方法の被着膜に比べて、均
一な結晶粒の膜が得られ、また合金膜の被着が容易であ
るなどのメリットがあるためで、特にアルミニウム電極
膜の被着には多用されている。且つインライン化(自動
化)の容易なことも、量産上から大きな利点となってい
る。Such sputtering equipment is used, for example, when manufacturing semiconductor devices, and is an essential equipment for forming aluminum electrode films and insulating films. The reason for this is that films deposited by the sppack method have advantages over films deposited by other methods, such as a film with uniform crystal grains and ease of depositing alloy films. In particular, it is widely used for depositing aluminum electrode films. In addition, the ease of in-line (automation) is a major advantage in terms of mass production.
ところで、スパッタリング装置にも色々の型式のものが
あるが、半導体基板(半導体ウェハー)に被膜を形成す
る場合は、プレーす型スパックリング装置が用いられる
。Incidentally, there are various types of sputtering apparatuses, but when forming a film on a semiconductor substrate (semiconductor wafer), a spray type sputtering apparatus is used.
一方、半導体装置の進歩に伴って半導体基板が益々大口
径化されてくると、このようなスバノタリング装置によ
る被着膜の膜厚もバラツキが増加する。On the other hand, as semiconductor substrates become increasingly larger in diameter with the advancement of semiconductor devices, variations in the thickness of films deposited using such a subanotaring device also increase.
ところで、装置全体が大型化するのを避けるためにウェ
ハー1枚毎の処理を行なう傾向にあるが、通常の円板状
ターゲラj・を用いる場合、被着基板が大きくなれば、
陰陽両電極間の間隔を拡げることによって、被着膜厚の
均一化を計る必要が生じるが、これはスパッタリング装
置を大型にする欠点があり、またターゲットの使用効率
も低下する。By the way, there is a tendency to process each wafer in order to avoid increasing the size of the entire device, but when using a normal disk-shaped targeter, if the substrate to be adhered to becomes large,
It is necessary to make the thickness of the deposited film uniform by widening the distance between the negative and positive electrodes, but this has the disadvantage of increasing the size of the sputtering apparatus and also reduces the efficiency of use of the target.
tel 発明の目的
本発明はこのような欠点を解消させて、コンパクトな形
式の装置を構成し、且つ大きな被着基板にも均一な膜厚
の薄膜を形成することのできるスパックリング装置を提
案するものである。tel OBJECT OF THE INVENTION The present invention solves these drawbacks and proposes a spackling device that is compact and capable of forming a thin film of uniform thickness even on a large substrate. It is something.
fd+ 発明の構成
その目的は、スパッタリングターゲット表面に同心円の
複数リング状に食刻領域が生じるように該クーゲラ1〜
裏面に複数の磁石が配設されているスパッタリング装置
、例えば具体的にはターゲット裏面に複数個のリング状
磁石がターゲット中点より同心円状に配設されたスパッ
タリング装置、または複数個の棒状磁石がターゲット中
点より同心円状に且つ放射状に配設されたスパックリン
グ装置によって達成することができる。fd+ Structure of the Invention The object of the invention is to form the Kugela 1 to
A sputtering device in which a plurality of magnets are disposed on the back surface of the target, for example, a sputtering device in which a plurality of ring-shaped magnets are disposed concentrically from the center point of the target on the back surface of the target, or a sputtering device in which a plurality of bar-shaped magnets are disposed on the back surface of the target. This can be achieved by a spackling device arranged concentrically and radially from the target midpoint.
(el 発明の実施例 以下1図面を参照して実施例によって詳細に説明する。(el Embodiments of the invention An embodiment will be described in detail below with reference to one drawing.
第1図は従来のスパッタ装置の一例の概要断面図を図示
して〜おり、反応室1内において陽極2側に被着基板3
を保持し、これに平行に対向して陰極4にターゲット5
を配置し、排気口6より真空に排気して、ガス流入ロア
よりアルゴン(Ar)ガスを流入する。その減圧度を1
0−2〜10−3Torrとし、周波数13.’56
MIIZの高周波電力8を陰極4に印加し、被着基板3
上にターゲット材料を被着する。その場合、ターゲット
裏面に1個の磁石9を配設しており、そうすれば磁石の
磁力線によって電極空間内の電子密度が高められ、そし
てAr+イオン密度が高まるので、スパッタ効率が数倍
に上がる。磁石9は例えば、第2図に示すようなリング
状の永久磁石が使用される。このように、磁石9は生産
性が向上して、スパックリング装置を極めて効率化する
効果がある。FIG. 1 shows a schematic cross-sectional view of an example of a conventional sputtering apparatus.
is held, and a target 5 is connected to the cathode 4 in parallel to it.
is disposed, evacuated to a vacuum through the exhaust port 6, and argon (Ar) gas is introduced through the gas inflow lower part. The degree of pressure reduction is 1
0-2 to 10-3 Torr, frequency 13. '56
High frequency power 8 of MIIZ is applied to the cathode 4, and the adherend substrate 3 is
A target material is deposited on top. In that case, one magnet 9 is placed on the back surface of the target, and the electron density in the electrode space is increased by the magnetic lines of force of the magnet, and the Ar+ ion density is increased, so the sputtering efficiency is increased several times. . As the magnet 9, for example, a ring-shaped permanent magnet as shown in FIG. 2 is used. In this way, the magnet 9 has the effect of improving productivity and making the spackling device extremely efficient.
しかしながら、磁石9の存在は被着基板、ターゲットが
大きくなると被着膜の膜厚を不均一にし易く、その状態
を第3図で説明する。第3図は被着基板3として4イン
チ径の半導体基板、ターゲット5として8インチ径のア
ルミニウム(八I)板を用いて半導体基板上にアルミニ
ウム膜を被着させた例のデータで、横軸(X)は被着基
板の中心点からの距離、紺軸は膜厚を示し、同図tal
は被着基板とターゲットとの距離が4Qw+、同図(b
lは60龍、同図(C1は80龍の場合である。これよ
り、被着基板とターゲットとの距離は60nが最も適当
であることが判る。しかし、この装置では6インチのウ
ェハーを均一に成長させることはできない。距離が最も
適切な同図(blにおいても外周は被着膜厚が薄くなる
。従って、更にターゲットを大きくし、被着基板とター
ゲットとの間隙(距III)を更に大きくしなければな
らないが、それはスパッタリング装置全体が大型化する
ことになり、極めて非効率的な装置になる。且つ、第4
図に示すようにターゲット5は裏面に磁石9を近接した
表面部分の食刻される部分の占める割合が小さくなって
、ターゲットの使用効率が悪くなり高価になる。However, the presence of the magnet 9 tends to make the thickness of the deposited film non-uniform when the substrate to be deposited or the target becomes large, and this situation will be explained with reference to FIG. Figure 3 shows data for an example in which an aluminum film was deposited on a semiconductor substrate using a 4-inch diameter semiconductor substrate as the deposition substrate 3 and an 8-inch diameter aluminum (8I) plate as the target 5; (X) indicates the distance from the center point of the adherend substrate, and the dark blue axis indicates the film thickness.
The distance between the adherend substrate and target is 4Qw+, and the same figure (b
l is 60mm, and in the same figure (C1 is 80mm). From this, it can be seen that the most appropriate distance between the substrate and the target is 60n. However, with this equipment, 6-inch wafers can be uniformly Even in the same figure (bl) where the distance is the most appropriate, the thickness of the deposited film is thinner at the outer periphery. Therefore, the target is made even larger and the gap between the deposited substrate and the target (distance III) is further increased. However, this would increase the size of the entire sputtering device, making it extremely inefficient.
As shown in the figure, the ratio of the etched surface portion of the target 5 with the magnet 9 close to its back surface becomes small, resulting in poor usage efficiency and increased cost.
本発明はこのような欠点を取り除いたスパッタリング装
置を提供するもので、第5図は本発明にかかる一実施例
として10インチのスパッタリング装置の概要断面図を
示している。第1図と同一部材には同一符号を付してい
るが、2111のリング状磁石11.12をターゲラ1
−5と同心円状に配置したものである。第6図は磁石1
1.12の斜視図を示している。このスパックリング装
置によって、第3図と同様の条件でアルミニウム膜を被
着した実施例のデータを第7図を示している。従来の装
置では、最も適切な被着基板とターゲットとの距離、即
ち最も均一な被着膜が形成される間隙は90〜150
amとなる筈であるが、内側のリング状磁石11を設け
たために、60〜90mm(D間隙とすることができる
。そのデータを第7図に示している。同図(alは被着
基板とターゲットとの距離が401.同図fb)は6O
N、同図(C1は80fi。The present invention provides a sputtering apparatus that eliminates such drawbacks, and FIG. 5 shows a schematic sectional view of a 10-inch sputtering apparatus as an embodiment of the present invention. The same members as in FIG. 1 are given the same reference numerals.
-5 and are arranged concentrically. Figure 6 shows magnet 1
1.12 is shown in a perspective view. FIG. 7 shows data of an example in which an aluminum film was deposited using this spackling apparatus under the same conditions as in FIG. 3. In conventional equipment, the most appropriate distance between the deposition substrate and the target, that is, the gap at which the most uniform deposition film is formed, is 90 to 150 mm.
am, but because the inner ring-shaped magnet 11 is provided, the gap can be set to 60 to 90 mm (D gap).The data is shown in Fig. 7. The distance between the target and the target is 401. fb) is 60
N, same figure (C1 is 80fi.
同図fdlはl00u+の場合であるが、距離60mの
場合が最も均一な膜厚がえられ、距離が遠くなるとかえ
って分布が悪くなっている。fdl in the figure shows the case of 100u+, and the most uniform film thickness is obtained when the distance is 60 m, and the distribution becomes worse as the distance increases.
このように、距離が近くて均一な膜厚がえられることが
、本発明の最大のメリットであり、またターゲットの使
用効率も向上する。上記したように、第1図に示すよう
な1個のリング状磁石を用いた従来装置では、両電極距
離を90〜150MMとした時に均一な膜厚がえられる
が、本発明にかかる第5図に示すような2個のリング状
磁石を用いた装置では、画電極間の距離を60〜90龍
とした時に均一な膜厚がえられることが第7図より示さ
れている。The greatest advantage of the present invention is that a uniform film thickness can be obtained due to the short distance, and the target usage efficiency is also improved. As described above, in the conventional device using one ring-shaped magnet as shown in FIG. 1, a uniform film thickness can be obtained when the distance between the two electrodes is 90 to 150 mm. FIG. 7 shows that in a device using two ring-shaped magnets as shown in the figure, a uniform film thickness can be obtained when the distance between the image electrodes is set to 60 to 90 mm.
且つ、ターゲットは第8図に示すような状態で複数の食
刻領域(エロージョンエリア)が形成されて、平均的に
摩耗するため、使用効率が向上する。In addition, the target has a plurality of etched areas (erosion areas) formed in the state shown in FIG. 8, and wears out evenly, so that usage efficiency is improved.
更に、リング状磁石を2個だけでなく、個数を増加すれ
ば一層顕著な効果がある。また、リング状磁石の代わり
に第9図に示すようにターゲット中心点から二組の棒状
磁石を放射状に並べても、同様の効果がある。、
(fl 発明の効果
以上の説明から明らかなように、本発明によれば両電極
間の距離を近くして膜厚が均一・化されるために、スパ
ッタリング装置が小型になってスパッタ効率が上がり、
しかもクーゲラ1−の使用効率は良くなる。従って、本
発明にかかるスパッタリング装置ば半導体製造の自動化
工程に組み入れて、工程の高速処理に役立てることがで
きる。Furthermore, if the number of ring-shaped magnets is increased instead of just two, a more significant effect can be obtained. Moreover, the same effect can be obtained by arranging two sets of bar-shaped magnets radially from the center of the target as shown in FIG. 9 instead of using the ring-shaped magnets. , (fl Effects of the Invention As is clear from the above explanation, according to the present invention, the distance between both electrodes is shortened to make the film thickness uniform, so the sputtering device becomes smaller and the sputtering efficiency increases. Rise,
Moreover, the efficiency of using Kugera 1- is improved. Therefore, the sputtering apparatus according to the present invention can be incorporated into an automated process of semiconductor manufacturing to be useful for high-speed processing of the process.
尚、上記例は高周波電源を用いたR Fスパッタリング
法で説明しているが、直流電源を用いたスパッタリング
法も同様であることはいうまでもない。Note that although the above example is explained using the RF sputtering method using a high frequency power source, it goes without saying that the sputtering method using a DC power source is also similar.
第1図は従来のスパック装置の概要断面図、第2図はそ
の磁石の斜視図、第3図は第1図に示す装置によるデー
タ、第4図は従来のターゲットの使用後の断面図、第5
図は本発明にかかるスパッタ装置の概要断面図、第6図
はその磁石の斜視図、第7図は第5図に示す装置による
データ、第8図は本発明にかかるターゲットの使用後の
断面図、第9図は本発明にかかる他の磁石配列状態の斜
視図である。
図中、1は反応室、2は陽極、3は被着基板。
4は陰極、5はクーゲット、6は排気口、7はガス流入
口、8は高周波電力、9,11.12はターゲットを示
している。
第1筒
中1■ →X(距鶴戸LJLI”””
第4図
s5図
第 6図
第8閃Fig. 1 is a schematic sectional view of a conventional spuck device, Fig. 2 is a perspective view of its magnet, Fig. 3 is data obtained from the device shown in Fig. 1, Fig. 4 is a sectional view of a conventional target after use, Fifth
Figure 6 is a schematic cross-sectional view of the sputtering apparatus according to the present invention, Figure 6 is a perspective view of its magnet, Figure 7 is data obtained from the apparatus shown in Figure 5, and Figure 8 is a cross-section of the target according to the present invention after use. 9 are perspective views of other magnet arrangement states according to the present invention. In the figure, 1 is a reaction chamber, 2 is an anode, and 3 is a substrate. 4 is a cathode, 5 is a cooget, 6 is an exhaust port, 7 is a gas inlet, 8 is a high frequency power, and 9, 11, and 12 are targets. 1st tube middle 1■ →
Claims (2)
リング状に食刻領域が生じるように該ターゲット裏面に
複数の磁石が配設されてなることを特徴とするスパッタ
リング装置。(1) A sputtering apparatus characterized in that a plurality of magnets are disposed on the back surface of the sputtering target so that etched regions are formed in the shape of a plurality of concentric rings on the surface of the sputtering target.
ターゲット中点より同心円状に配設され、または複数個
の棒状磁石がターゲット中点より同心円状に且つ放射状
に配設されてなることを特徴とする特許請求の範囲第1
項記載のスパッタリング装置。(2) On the back surface of the target, a plurality of ring-shaped magnets are arranged concentrically from the center point of the target, or a plurality of bar-shaped magnets are arranged concentrically and radially from the center point of the target. Characteristic claim 1
The sputtering apparatus described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17547983A JPS6067668A (en) | 1983-09-21 | 1983-09-21 | Sputtering apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17547983A JPS6067668A (en) | 1983-09-21 | 1983-09-21 | Sputtering apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6067668A true JPS6067668A (en) | 1985-04-18 |
JPH0360916B2 JPH0360916B2 (en) | 1991-09-18 |
Family
ID=15996760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17547983A Granted JPS6067668A (en) | 1983-09-21 | 1983-09-21 | Sputtering apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6067668A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60116774A (en) * | 1983-11-30 | 1985-06-24 | Nippon Texas Instr Kk | Sputtering device |
JPS61204371A (en) * | 1985-03-06 | 1986-09-10 | Ulvac Corp | Magnetic circuit device for cathode sputtering |
JPS6413123U (en) * | 1987-07-13 | 1989-01-24 | ||
JPH0280565A (en) * | 1988-09-16 | 1990-03-20 | Tanaka Kikinzoku Kogyo Kk | Magnet for magnetron sputtering |
JPH02225666A (en) * | 1989-02-27 | 1990-09-07 | Tokuda Seisakusho Ltd | Sputtering device |
WO1999060617A1 (en) * | 1998-05-20 | 1999-11-25 | Applied Materials Inc. | Sputtering apparatus and magnetron unit |
CN103168338A (en) * | 2010-10-22 | 2013-06-19 | 于利奇研究中心有限公司 | Sputtering sources for high-pressure sputtering with large targets and sputtering method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5474743U (en) * | 1977-11-05 | 1979-05-28 | ||
JPS5887270A (en) * | 1981-11-18 | 1983-05-25 | Hitachi Ltd | Structural body of sputtering target of planar magnetron type |
-
1983
- 1983-09-21 JP JP17547983A patent/JPS6067668A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5474743U (en) * | 1977-11-05 | 1979-05-28 | ||
JPS5887270A (en) * | 1981-11-18 | 1983-05-25 | Hitachi Ltd | Structural body of sputtering target of planar magnetron type |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60116774A (en) * | 1983-11-30 | 1985-06-24 | Nippon Texas Instr Kk | Sputtering device |
JPS61204371A (en) * | 1985-03-06 | 1986-09-10 | Ulvac Corp | Magnetic circuit device for cathode sputtering |
JPS6413123U (en) * | 1987-07-13 | 1989-01-24 | ||
JPH0280565A (en) * | 1988-09-16 | 1990-03-20 | Tanaka Kikinzoku Kogyo Kk | Magnet for magnetron sputtering |
JPH02225666A (en) * | 1989-02-27 | 1990-09-07 | Tokuda Seisakusho Ltd | Sputtering device |
WO1999060617A1 (en) * | 1998-05-20 | 1999-11-25 | Applied Materials Inc. | Sputtering apparatus and magnetron unit |
CN103168338A (en) * | 2010-10-22 | 2013-06-19 | 于利奇研究中心有限公司 | Sputtering sources for high-pressure sputtering with large targets and sputtering method |
CN103168338B (en) * | 2010-10-22 | 2015-11-25 | 于利奇研究中心有限公司 | There is the sputtering source for high pressure spray and the sputtering method of large target |
Also Published As
Publication number | Publication date |
---|---|
JPH0360916B2 (en) | 1991-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4606802A (en) | Planar magnetron sputtering with modified field configuration | |
TWI695078B (en) | Wafer processing deposition shielding components | |
EP0884761A1 (en) | Sputtering apparatus with a rotating magnet array | |
JP5249328B2 (en) | Thin film deposition method | |
SG176182A1 (en) | Film-forming method and film-forming apparatus | |
JPS6067668A (en) | Sputtering apparatus | |
JPS63282263A (en) | Magnetron sputtering device | |
JPH0618182B2 (en) | Dry etching equipment | |
TWI770421B (en) | Sputtering apparatus and sputtering method | |
JP4274452B2 (en) | Sputtering source and film forming apparatus | |
JPS59229480A (en) | Sputtering device | |
JPS62167877A (en) | Plasma transfer type magnetron sputtering apparatus | |
JP2002294441A (en) | Bias sputtering apparatus | |
US20180073150A1 (en) | Single oxide metal deposition chamber | |
JPS6277477A (en) | Thin film forming device | |
JPH09241840A (en) | Magnetron sputtering device | |
JP2001207258A (en) | Rotating magnet, and inline type sputtering system | |
JPS63153266A (en) | Sputtering device | |
JPH05311431A (en) | Sputtering device | |
JPS60131967A (en) | Sputtering method | |
JP4918742B2 (en) | Multi-division sputtering target and thin film manufacturing method | |
JPH06120140A (en) | Semiconductor manufacturing method and equipment | |
JPS6197838A (en) | Formation of thin film | |
JPH01309964A (en) | Functional deposit film-forming device by sputtering method | |
JPS62174376A (en) | Sputtering device |