JPS6067651A - Metal material having graphite fluoride penetrated layer and preparation thereof - Google Patents

Metal material having graphite fluoride penetrated layer and preparation thereof

Info

Publication number
JPS6067651A
JPS6067651A JP17471883A JP17471883A JPS6067651A JP S6067651 A JPS6067651 A JP S6067651A JP 17471883 A JP17471883 A JP 17471883A JP 17471883 A JP17471883 A JP 17471883A JP S6067651 A JPS6067651 A JP S6067651A
Authority
JP
Japan
Prior art keywords
metal material
layer
graphite fluoride
graphite
penetrated layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17471883A
Other languages
Japanese (ja)
Inventor
Michio Uemura
道夫 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIJIYUU RES CENTER KK
Original Assignee
NICHIJIYUU RES CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIJIYUU RES CENTER KK filed Critical NICHIJIYUU RES CENTER KK
Priority to JP17471883A priority Critical patent/JPS6067651A/en
Publication of JPS6067651A publication Critical patent/JPS6067651A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To suppress corrosion and scale adhesion, by forming a graphite fluoride penetrated layer with a predetermined thickness to the surface of a metal material. CONSTITUTION:For example, a metal material is embedded in a mixture of hard charcoal particles and a solid carburizing agent and heated for a prescribed time to form a carbide penetrated layer to the surface of the metal material. This carburized metal material is heated at 370-570 deg.C in a fluorine gas stream. By this method, the corrosion of the metal material is prevented and scale adhesion to the metal material is suppressed.

Description

【発明の詳細な説明】 本発明は、フッ化黒鉛の浸透層を形成した金属材料及び
その製造方法に関し、その目的とする処は、金属材料の
腐食を防止すること並びに金属材料にスケールが付着す
ることを抑制することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal material on which a permeated layer of graphite fluoride is formed and a method for manufacturing the same. It consists in restraining what one does.

従来、圧延鋼材、銅帯、丸棒鋼、鋼管、鉄板等の金属材
料は、使用される環境によって次第に腐食を受けて崩壊
に至ることがあり、また、溶液中に浸漬して使用される
金属材料は前記以外の現象として、溶液中の溶質が析出
して材料表面を覆う様になる。
Conventionally, metal materials such as rolled steel, copper strips, round bars, steel pipes, and iron plates have been subject to gradual corrosion and collapse depending on the environment in which they are used. As a phenomenon other than the above, the solute in the solution precipitates and comes to cover the material surface.

例えば、ボイラーや熱交換器の伝熱面を構成する金属材
料の表面は、時間の経過につれて用水中から炭酸カルシ
ウムやシリカその他の無機成分が重合析出し、堆積して
伝熱効率を低下させる。
For example, over time, calcium carbonate, silica, and other inorganic components polymerize and precipitate from service water on the surface of the metal material that constitutes the heat transfer surface of a boiler or heat exchanger, resulting in a decrease in heat transfer efficiency.

これを防止する手段としてスケール防止剤が開発されて
いるが、シリカ系のスケールの生成付着については、現
在のところこれを防止する決定的な薬剤は見出されてい
ない。
Although scale inhibitors have been developed as a means to prevent this, no definitive agent has been found to date to prevent the formation and adhesion of silica scale.

また、さらに金属材料の材質についても多くの研究がさ
れているが、結局材料の選択のみでは完全な対策とはな
り得ないとされている。また、金属材料表面にテトラフ
ルオルエチレン等のフッ素樹脂をコーティングしたもの
も知られているがこれらのフッ素樹脂をコーティングし
たものはスケ−ル防止、腐食を防止する手段として著効
を示すが、前記金属材料表面から剥離し、剥離した部分
より浸食されるという欠点を有するものであった。
Furthermore, although much research has been conducted on the quality of metal materials, it has been concluded that material selection alone cannot provide a complete countermeasure. In addition, metal materials whose surfaces are coated with fluororesins such as tetrafluoroethylene are known, and although these fluororesin coatings are highly effective as a means of preventing scaling and corrosion, It has the disadvantage that it peels off from the surface of the metal material and is eroded from the peeled part.

本発明は、特許請求の範囲に記載の構成とすることによ
って、耐食性並びにスケールの付着の抑制を防止するこ
とのできる金属材料及びその製造方法を提供するもので
ある。
The present invention provides a metal material that has corrosion resistance and can prevent scale adhesion by having the structure described in the claims, and a method for manufacturing the same.

すなわち、本願用1の発明は表面に10〜300μmの
フッ化黒鉛の浸透層が形成されていることを特徴とする
フッ化黒鉛の浸透層を有する金属材料であり、本願用2
の発明は、金属材料を常法によって予め浸炭処理を施し
て表面に炭化物の浸透層を形成させた後、前記金属材料
をフッ素ガス気流中で370〜570℃の温度で加熱処
理を施すことを特徴とする表面にフッ化黒鉛の浸透層を
有に用いられる金属材料は、圧延鋼拐、銅帯、丸棒鋼、
鋼管、鉄板等の鋼、銑鉄、鋳鉄、鉄板等であって、これ
ら金属材料にまず始めに、浸炭処理を施す。
That is, the invention of Application No. 1 is a metal material having a permeation layer of graphite fluoride, characterized in that a permeation layer of graphite fluoride with a thickness of 10 to 300 μm is formed on the surface;
The invention involves carburizing a metal material in advance by a conventional method to form a carbide permeation layer on the surface, and then heat-treating the metal material at a temperature of 370 to 570°C in a fluorine gas stream. Metal materials that have a permeated layer of graphite fluoride on their surfaces include rolled steel strips, copper strips, round steel bars,
These metal materials, such as steel pipes and iron plates, pig iron, cast iron, and iron plates, are first subjected to carburizing treatment.

この浸・灰処理を施す方法としては、従来性なわれてい
る浸炭処理方法−によって行なえばよい。すなわち、樫
炭、菊炭、松炭等の硬質木炭粒にNa2 Cog 、 
Ba2 COs等の固体浸炭剤を10−3’0%配合し
、鉄製の浸炭箱に上記浸炭剤を入れ、この中に前記金属
材料を埋め込み、気密にして加熱炉で所定時間加熱して
浸炭する固体浸炭法又は、天然ガス、メタン、エタン、
プロパン等のガスを浸炭炉中に通し、前記気流中で金属
材料を加熱し、浸炭させるガス浸炭法によって金属材料
表面に炭化物層を形成させる。ついで、前記操作によっ
て得られた表面に炭化物層を有する金属材料に、加熱炉
中で370〜620℃の温度において、フッ素ガス又は
加圧フッ素ガスを通し、所定時間加熱することによって
炭化物層をフッ化黒鉛(そCF→−n)の層とすること
ができ、金属利料の表面にフッ化黒鉛が10〜300μ
rn浸透拡散したものが得られる。
This soaking and ashing treatment may be carried out by a conventional carburizing method. That is, hard charcoal particles such as oak charcoal, chrysanthemum charcoal, and pine charcoal contain Na2 Cog,
Mix 10-3'0% of a solid carburizing agent such as Ba2COs, put the carburizing agent in an iron carburizing box, embed the metal material in it, make it airtight, and heat it in a heating furnace for a predetermined period of time to carburize it. Solid carburizing method or natural gas, methane, ethane,
A carbide layer is formed on the surface of the metal material by a gas carburizing method in which a gas such as propane is passed through a carburizing furnace and the metal material is heated and carburized in the air flow. Next, fluorine gas or pressurized fluorine gas is passed through the metal material having the carbide layer on the surface obtained by the above operation at a temperature of 370 to 620°C in a heating furnace, and the carbide layer is fluorinated by heating for a predetermined period of time. It can be made into a layer of fluorinated graphite (CF→-n), with 10 to 300 μm of fluorinated graphite on the surface of the metal material.
rn osmotic diffusion is obtained.

この様にして金属材料の表面て形成されたフッ化黒鉛の
層は、浸炭層が徐々に7ツ索化されてフッ化黒鉛の層を
形成し、浸炭層の一部又は大部分がそのまま欠陥の少な
いフッ化黒鉛の層となることが特徴であシ、一種の拡散
浸透層を形成しているので、別途コーティング処理をす
る場合の様に密着性を問題とすることがない。
In the layer of fluorinated graphite formed on the surface of the metal material in this way, the carburized layer is gradually transformed into a fluorinated graphite layer to form a layer of fluorinated graphite, and some or most of the carburized layer remains intact with defects. It is characterized by being a layer of fluorinated graphite with a small amount of carbon dioxide, and forms a kind of diffusion permeation layer, so there is no problem with adhesion, unlike when a separate coating is applied.

しかし、上記フッ化黒鉛層が300μを越える様な厚さ
になるとフッ化黒鉛間の結合の弱い所から剥離現象が起
シ易くなるので300μ以上の厚みのフッ化黒鉛層を形
成させることは不利であシ、又、10μm以下の厚みで
は実用上欠陥のない完全なフッ化黒鉛の層を形成させる
ことは困難である。
However, if the thickness of the fluorinated graphite layer exceeds 300 μm, peeling phenomenon tends to occur from weak bonds between the fluorinated graphite layers, so it is disadvantageous to form a fluorinated graphite layer with a thickness of 300 μm or more. Furthermore, if the thickness is less than 10 μm, it is practically difficult to form a complete layer of fluorinated graphite without defects.

従って、第一段階として金属材料に浸炭処理を施し、浸
炭層を前記金属材料に形成せしめる条件は一般に800
〜950℃、1時間以上加熱処理を施すことによって1
0〜300μ程度に金属材料表面に浸透拡散して浸炭層
が形成されるので、次いで第二段階として、これを加熱
炉中でフッ素ガス気流中で370〜570℃の温度で加
熱することによって浸炭層が除々にフッ化黒鉛の層とな
る。
Therefore, as a first step, the conditions for carburizing a metal material and forming a carburized layer on the metal material are generally 800
1 by heat treatment at ~950℃ for 1 hour or more.
A carburized layer is formed by penetrating and diffusing into the surface of the metal material to a thickness of about 0 to 300 μm.Then, in the second step, this is heated in a heating furnace at a temperature of 370 to 570°C in a fluorine gas stream to carburize it. The layer gradually becomes a layer of fluorinated graphite.

浸炭層を7フ化黒鉛の層となすときの加熱する70 条件を370〜番$1℃としたのは、フッ化#A鉛には
下記式の2種類があるが、Cで示される炭素は例えは天
然黒鉛9人造黒鉛1石油コークス、活性炭、木炭、カー
ボンブラック等種類が多く夫々構造的に異っているため
最適な反応条件も異る。
The heating conditions for forming the carburized layer into a layer of graphite heptafluoride were set at 370~$1°C because there are two types of #A fluoride lead, and the carbon represented by C For example, there are many types such as natural graphite, 9 artificial graphites, 1 petroleum coke, activated carbon, charcoal, and carbon black, each of which has a different structure, so the optimal reaction conditions also differ.

nc + −Fz →(CF )n −−=・(1)2
nc + ’−Fx →(CxF)n −−−(2)式
(1)は400℃以上の温度で、式(2)はフッ素圧が
あまシ低くない条件で400℃以下で進行する。
nc + −Fz → (CF)n −−=・(1)2
nc + '-Fx → (CxF)n --- (2) Equation (1) proceeds at a temperature of 400° C. or higher, and Equation (2) proceeds at a temperature of 400° C. or lower under the condition that the fluorine pressure is not too low.

本発明の材料では(1) 、 (2)の何れの種類のフ
ッ化黒鉛であってもよいが工業的経済的にフッ化黒鉛を
生成させるためには370℃以上の温度に加熱すること
か必要であシ、又、(CF)nは630℃で(C2F 
)n t1600℃で分解が開始するので加熱p灸 温度の土葬を570℃とし。
The material of the present invention may be either type (1) or (2) of fluorinated graphite, but in order to produce fluorinated graphite industrially and economically, it must be heated to a temperature of 370°C or higher. (CF)n is necessary, and (CF)n is (C2F) at 630°C.
) Since decomposition starts at 1600°C, the burial temperature for heating and moxibustion is set at 570°C.

上記温度範囲内で約30分〜4時間反応炉中で加熱すれ
ば浸炭層が任意の厚みのフッ化黒鉛の層となった金趙月
料を得ることができる。
By heating in a reactor within the above temperature range for about 30 minutes to 4 hours, it is possible to obtain a gold-chocolate material in which the carburized layer is a layer of fluorinated graphite having an arbitrary thickness.

以上の様にして得られた金属材料は酸化性又は還元雰囲
気の倒れの雰囲気にも安定でしかも熱的。
The metal material obtained in the above manner is stable even in an oxidizing or reducing atmosphere, and is thermally stable.

化学的にも安定で、前記金属材料との密着性も良好で耐
食性材料として有用なものであυ、殊に、前記金属材料
を伝熱面に使用した熱交換器は、地熱々水の様な塩濃度
が高く、カルシウム系やシリカ系のスケール付着による
流通抵抗の増大や、7アウリングが長期間に亘って発生
せず、メンテナンスが不用で、l、また、フラッシャ−
送湯管。
It is chemically stable and has good adhesion with the metal material, making it useful as a corrosion-resistant material.In particular, heat exchangers using the metal material on the heat transfer surface are suitable for heat exchangers such as geothermal hot water. It has a high salt concentration, does not increase flow resistance due to calcium-based or silica-based scale adhesion, and does not require maintenance for a long period of time.
Hot water pipe.

バルブ類にも熱水の温度低下に伴って7リカ系の発生が
ある場合、これらについてもスケールの付着を防止でき
る。
If 7-liquor is generated on valves as the temperature of hot water decreases, scale adhesion can also be prevented on these valves.

さらに井戸の深部で発生するカルシウム系スケールの付
着をも抑制できる。
Furthermore, it is possible to suppress the adhesion of calcium-based scale that occurs deep in the well.

また、本発明の付加効果としては、コンプレッサー、シ
リンダー、ピストン、シャフト、軸受等の摺動部Iに本
発明金属材料を用いれに、潤滑剤が不要であるばかシで
なく、油、水、鵬埃等の付着がなく、滑動面が常に清潔
に保たれ保守上極め利 て有チ準となる利点を有する。
In addition, as an additional effect of the present invention, since the metal material of the present invention is used for the sliding parts I of compressors, cylinders, pistons, shafts, bearings, etc., it does not require lubricant, but is free from oil, water, and water. It has the advantage that there is no adhesion of dust, etc., and the sliding surface is always kept clean, making it extremely useful for maintenance.

又、タンクのシュート部分に用いることは粉体の静止角
が零となり、粉体の取出しが円滑に行なわれる。
Furthermore, when used in the chute portion of the tank, the angle of rest of the powder becomes zero, and the powder can be taken out smoothly.

以下、本発明を実施例により説明する。The present invention will be explained below with reference to Examples.

実施例 5Cr22の丸棒(,19y3X 100 )f:コー
クス70%+ B acos 20%、 NagCO3
10%からなる浸炭材に埋設して浸炭箱に入れ密封し、
電気抵抗炉内で850℃、3時間加熱した。
Example 5 Cr22 round bar (,19y3X 100) f: 70% coke + 20% Bacos, NagCO3
Embedded in carburized material consisting of 10% and sealed in a carburized box.
It was heated at 850° C. for 3 hours in an electric resistance furnace.

過共析組織(過共析浸炭層)は約300 timの深さ
であった。
The hypereutectoid structure (hypereutectoid carburized layer) was approximately 300 tim deep.

次いで、この丸棒をニッケル製の横型円筒回転式のフッ
素化容器に入れ、550〜600℃、フッ素圧760m
mHgで2時間加熱した所、前記浸炭層の黒鉛及び炭化
物の層の表面から約10μmまでがフッ化黒鉛の層とな
った丸棒鋼を得た。
Next, this round bar was placed in a horizontal cylindrical rotating fluorination container made of nickel, and heated at 550 to 600°C and under a fluorine pressure of 760 m
When heated at mHg for 2 hours, a round steel bar was obtained in which a layer of fluorinated graphite was formed up to about 10 μm from the surface of the graphite and carbide layer of the carburized layer.

この丸棒鋼を117℃の地熱々水パイプライン中に3ケ
月浸漬し取出した所、フッ化黒鉛の層の剥離もなくスケ
ールの付着は殆んどなかりた。一方間時に浸漬したTi
板テストピース(30×50X0.5’)には183 
mgのスケールが付着していた。
When this round steel bar was immersed in a geothermal hot water pipeline at 117°C for three months and taken out, there was no peeling of the fluorinated graphite layer and almost no scale adhesion. Meanwhile, Ti immersed for a while
183 for plate test piece (30 x 50 x 0.5')
mg scale was attached.

Claims (1)

【特許請求の範囲】 91、表面に10〜300μmのフッ化黒鉛の浸透層が
形成されていることを特徴とするフッ化黒鉛の浸透層を
有する金属材料。 2、金属材料を常法によって予じめ浸炭処理を施して、
表面に炭化物の浸透層を形成させた後、前記金属材料を
フッ素ガス気流中で370〜570℃の温度で加熱処理
を施すことを特徴とする表面にフッ化黒鉛の浸透層を有
する金属材料の製造方法。
[Claims] 91. A metal material having a permeated layer of graphite fluoride, characterized in that a permeated layer of graphite fluoride with a thickness of 10 to 300 μm is formed on the surface. 2. Carburize the metal material in advance by a conventional method,
After forming a carbide permeation layer on the surface, the metal material is subjected to heat treatment at a temperature of 370 to 570°C in a fluorine gas stream. Production method.
JP17471883A 1983-09-21 1983-09-21 Metal material having graphite fluoride penetrated layer and preparation thereof Pending JPS6067651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17471883A JPS6067651A (en) 1983-09-21 1983-09-21 Metal material having graphite fluoride penetrated layer and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17471883A JPS6067651A (en) 1983-09-21 1983-09-21 Metal material having graphite fluoride penetrated layer and preparation thereof

Publications (1)

Publication Number Publication Date
JPS6067651A true JPS6067651A (en) 1985-04-18

Family

ID=15983430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17471883A Pending JPS6067651A (en) 1983-09-21 1983-09-21 Metal material having graphite fluoride penetrated layer and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6067651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678589A1 (en) * 1994-04-18 1995-10-25 Daido Hoxan Inc. Method of carburizing austenitic metal and carburized austenitic metal products
US5556483A (en) * 1994-04-18 1996-09-17 Daido Hoxan, Inc. Method of carburizing austenitic metal
US5792282A (en) * 1995-04-17 1998-08-11 Daido Hoxan, Inc. Method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678589A1 (en) * 1994-04-18 1995-10-25 Daido Hoxan Inc. Method of carburizing austenitic metal and carburized austenitic metal products
US5556483A (en) * 1994-04-18 1996-09-17 Daido Hoxan, Inc. Method of carburizing austenitic metal
US5593510A (en) * 1994-04-18 1997-01-14 Daido Hoxan, Inc. Method of carburizing austenitic metal
US5792282A (en) * 1995-04-17 1998-08-11 Daido Hoxan, Inc. Method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens

Similar Documents

Publication Publication Date Title
EP0512782B1 (en) Stainless steel surface passivation treatment
US4141759A (en) Process for the formation of an anticorrosive, oxide layer on maraging steels
JPS6067651A (en) Metal material having graphite fluoride penetrated layer and preparation thereof
Sridharan et al. Corrosion in supercritical carbon dioxide: materials, environmental purity, surface treatments, and flow issues
EP0277143A4 (en) Shallow case hardening and corrosion inhibition process.
JPS6058161B2 (en) Flexible layered graphite material and its manufacturing method
CA2926597C (en) Method for the in situ passivation of the steel surfaces of a nuclear reactor
Maier et al. Metal dusting of 9–20% Cr steels in increased pressure environments at 560° C
KR20190055659A (en) Surface coating method of the metal seat ball valve using pack cementation and the metal seat ball valve having the coating layer using the same
US4486472A (en) Method of preventing a combustion furnace from corrosion
CA2932546C (en) Method for inner-contour passivation of steel surfaces of a nuclear reactor
Yépez et al. Development of novel phosphate based inhibitors effective for oxygen corrosion. Part I: rotating cage autoclave study
JP2009108411A (en) Method for hardening surface of work piece made of stainless steel, and molten salt bath for realizing the method
Tsipas et al. Thermochemical treatments for protection of steels in chemically aggressive atmospheres at high temperatures
Sarver et al. Steamside oxidation behaviour of candidate USC materials at temperatures between 650 and 800 C
EP0162491B1 (en) Process for inhibiting corrosion of a metallic mass in contact with an acidic bath containing ferric ions
AU739978B2 (en) Steel products having superior weathering, method of producing the steel products, and method of forming weathering protective rust on steel product surfaces
JP2918765B2 (en) Nickel alloy products whose surface is nitrided and hardened
JPH07180026A (en) Method for modifying surface of steel
JPH08246126A (en) Method for modifying surface of steel
Wei et al. Corrosion of carbon steel and Cr-containing alloy steels in CCS systems
Rickenbacher et al. The problem of stainless steel corrosion in sewage plants
JPH07180034A (en) Method for modifying surface of steel
JPH02250945A (en) Manufacture of corrosion-resistant cupro nickel tube for heat exchanger
JPS62196362A (en) Manufacture of pitting resisting cupro-nickel formed part