JPS606694B2 - Antifouling method for seawater equipment - Google Patents

Antifouling method for seawater equipment

Info

Publication number
JPS606694B2
JPS606694B2 JP676275A JP676275A JPS606694B2 JP S606694 B2 JPS606694 B2 JP S606694B2 JP 676275 A JP676275 A JP 676275A JP 676275 A JP676275 A JP 676275A JP S606694 B2 JPS606694 B2 JP S606694B2
Authority
JP
Japan
Prior art keywords
seawater
equipment
ultrasonic
vibrator
antifouling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP676275A
Other languages
Japanese (ja)
Other versions
JPS5185977A (en
Inventor
良夫 原田
彰夫 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP676275A priority Critical patent/JPS606694B2/en
Publication of JPS5185977A publication Critical patent/JPS5185977A/en
Publication of JPS606694B2 publication Critical patent/JPS606694B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Catching Or Destruction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は海水使用機器が海水中の動植物によって汚れる
のを防止した海水機器の防汚方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an antifouling method for seawater equipment that prevents equipment using seawater from being soiled by animals and plants in the seawater.

海水導入管や海水を冷却水とする機器及びプラント類で
は、海水の通路に海水生物が付着したり、これが成長し
たりなどの現象があらわれ、通路抵抗や伝熱抵抗を増大
させ、甚だしい場合には通路そのものを閉塞させるよう
なことがある。このため従来から海水通路に当る構造物
に対し、水銀、砧ヒ素、銅などの化合物を含んだ防汚塗
料を塗布したり、塩素、次亜塩素酸ナトリウムなどの毒
劇物を海水中に注入したり、また海水そのものを電解質
として電気分解させ、陰極で発生する塩素や塩素酸イオ
ンの毒性を利用する方法などによって、海水微生物を死
滅させる方法が行なわれてきた。これらの方法は、毒劇
物によって海水中に生息する動植物性の微生物を死滅さ
せるものであるため、使用後の排水中にも残留し、排水
口付近の海域全体が毒劇物によって汚染される危険性が
あり、環境上好ましいものではない。またこれらの蓑劇
物を取扱う作業上の安全衛生上の面でも問題が多い。こ
のような事情から、超音波エネルギーを用いて防汚(海
水中の動植物性微生物の付着と増殖、成長に伴なう海水
通路の汚れを防ぐこと・・・・・・以下単に防汚という
)する方法が考えられている。
In seawater introduction pipes and equipment and plants that use seawater as cooling water, phenomena such as seawater organisms adhering to or growing in the seawater passageways increase passageway resistance and heat transfer resistance, and in severe cases. may block the passage itself. For this reason, structures that serve as seawater passages have traditionally been coated with antifouling paints containing compounds such as mercury, arsenic, and copper, and toxic substances such as chlorine and sodium hypochlorite have been injected into the seawater. Other methods have been used to kill seawater microorganisms, such as electrolyzing seawater itself as an electrolyte and utilizing the toxicity of chlorine and chlorate ions generated at the cathode. Since these methods use poisonous substances to kill animal and plant microorganisms living in seawater, they remain in the wastewater after use, and the entire sea area near the drainage outlet is contaminated by the poisonous substances. It is dangerous and not environmentally friendly. In addition, there are many problems in terms of safety and health when handling these harmful substances. Due to these circumstances, antifouling (preventing the fouling of seawater channels due to the adhesion, proliferation, and growth of animal and plant microorganisms in seawater...hereinafter simply referred to as antifouling) is being developed using ultrasonic energy. A method is being considered.

例えば構造物そのものに超音波振動を付与させて微生物
の付着を防止したり、熱交換器の水室の海水に直援超音
波を照射させて防汚する方法などである。しかし現在の
技術では、前者の方法は効果的範囲が超音波振動子を敬
付けた周辺近傍に限定され、大きな面積を防汚するには
多数の振動子と電力が必要であるなどの欠点があり、ま
た後者の方法では、大きな水室中に超音波を照射させる
だけでは超音波のもつ指向性(超音波の水中における伝
播は恰も光の如く直進する性質をもっていることをいう
)のため、水室全体及び全伝熱管にその防汚に必要なエ
ネルギーを伝えることは困難である。これを補なうため
に多数の振動子を取付けることは、上誌の場合と同様に
経済的でないなどの欠点がある。本発明は上記実情に鑑
みてなされたもので、海水使用機器に導入する海水に高
密度の超音波ェネルギ−照射を行ない、海水が導入され
た前記機器そのものにも海水と接触する部分に超音波振
動を付与することにより、防汚効果を著しく向上し得る
海水機器の防汚方法を提供しようとするものである。
For example, methods include applying ultrasonic vibrations to the structure itself to prevent the adhesion of microorganisms, or directly irradiating seawater in the water chamber of a heat exchanger with antifouling methods. However, with current technology, the former method has drawbacks such as the effective range is limited to the vicinity of the ultrasonic transducer, and a large number of transducers and power are required to decontaminate a large area. However, in the latter method, simply irradiating ultrasonic waves into a large water chamber will not work because of the directivity of ultrasonic waves (the propagation of ultrasonic waves in water has the property of traveling in a straight line, just like light). It is difficult to transmit the energy necessary for antifouling to the entire water chamber and all heat exchanger tubes. Installing a large number of vibrators to compensate for this has disadvantages, such as being uneconomical, as in the above case. The present invention has been made in view of the above circumstances, and involves irradiating seawater introduced into seawater-using equipment with high-density ultrasonic energy, and applying ultrasonic waves to the parts of the equipment itself into which seawater is introduced that come in contact with seawater. The present invention aims to provide a method of antifouling seawater equipment that can significantly improve the antifouling effect by applying vibration.

本発明者は、海水導入管、海水冷却配管「海水を冷却水
とする熱交換器、プラント装置類等の海水使用機器に導
入する海水に比較的周波数の高い超音波をエネルギー密
度の高い状態で照射すると、海水微生物特にその幼生(
これが成長、増殖して障害を譲発する)が死滅したり成
長力を失なうから、この海水を導入するだけでかなりの
防汚効果を有するが、更に機器そのものにも超音波振動
を付与すると、生存している幼生が壁面に付着すること
ができず、また海水中に含まれている微生物以外の異物
の付着、堆積が防止されるため、防汚効果は格段に向上
することを見出した。
The present inventor has developed a method for applying ultrasonic waves of relatively high frequency to seawater that is introduced into seawater introduction pipes, seawater cooling piping, heat exchangers that use seawater as cooling water, and equipment that uses seawater such as plant equipment in a state with high energy density. When irradiated, seawater microorganisms, especially their larvae (
The seawater (which grows, multiplies and causes problems) dies or loses its growth potential, so just introducing this seawater has a considerable antifouling effect, but if the equipment itself is also subjected to ultrasonic vibrations, It has been found that the antifouling effect is significantly improved because the surviving larvae are unable to attach to the wall surface and the adhesion and accumulation of foreign substances other than microorganisms contained in seawater are prevented.

超音波が海中微生物に及ぼす影響は超音波周波数によっ
て異なり、海中微生物(タテジマフジッボの幼生ノープ
リゥス)に各種周波数の超音波を照射した場合の死亡率
(2硯砂間照射)は次のようであった。周波数(KHZ
) 死亡率(%) 14 2 28 33 50 45 100 80 200 98 ここで、機器に超音波振動を付与して海中微生物の付着
を防止する場合にはト上記と異なり、低い周波数すなわ
ち振動振中の大きい方が効果があるので、28〜50K
HZ程度がよい。
The effect of ultrasound on underwater microorganisms varies depending on the ultrasound frequency, and the mortality rate (irradiation between two inkstone sands) when underwater microorganisms (nauplii larvae of the vertical mackerel) were irradiated with ultrasound at various frequencies was as follows: . Frequency (KHz
) Mortality rate (%) 14 2 28 33 50 45 100 80 200 98 Here, when applying ultrasonic vibration to equipment to prevent the adhesion of marine microorganisms, unlike the above, low frequency The larger the size, the more effective it is, so 28-50K
HZ level is good.

これは「余り低周波であるとキャビテーションェロージ
ョンを発3生すると共に、構成金属材料の疲労及びボル
ト、ナットなどのゆるみを誘発するからである。以下本
発明の実施列につき図面を参照して説明する。第1実施
例 3第1図におい
て“ま貯水タンクで、このタンクーの海水導入管2に比
較的周波数の高い超音波振動子3を設け、タンク1の壁
部にも比較的周波数の低い超音波振動子4を設け、導入
管2の入口側から海水5を導入する。
This is because "if the frequency is too low, it will cause cavitation erosion, as well as fatigue of the constituent metal materials and loosening of bolts, nuts, etc.". First Embodiment 3 In FIG. A low ultrasonic vibrator 4 is provided, and seawater 5 is introduced from the inlet side of the introduction pipe 2.

すると振動子3の取付部4では海水の通路が狭いため、
この部分を通過する海水は非常にエネルギー密度の高い
超音波照射を受けることになる。その後海水5はバルブ
6を介して貯水タンクーに導入されるが、ここではタン
ク1そのものが比較的周波数の低い振動子4によって超
音波振動を付与されるから、貯水タンク1中の海水5は
その影響を間接的に受けることになる。そしてタンク中
の海水は排水管7からバルフ8を介して外部へ排出され
るものである。第2図は導入管に取付けた振動子の詳細
を示したもので、ここでは振動子3が直接海水と接触し
、密度の高い超音波エネルギーを海水に付与することが
できるものである。しかして上記万法の一例として、内
径5仇肋の海水導入管にチタン酸バリウム製の200K
Hzの振動子を2個取付け「容積2肘の貯水タン外こフ
ェラィト製の2雛HZの振動子を側壁中央に4個取付け
、海水導入管の位置で0.5机′Sとなるように海水を
流し「下記の試験条件でそれぞれ2週間宛連続して実験
し、タンクの側壁に付着する海水生物の量によって防汚
効果を調べた。
Then, since the seawater passage is narrow in the mounting part 4 of the vibrator 3,
Seawater passing through this area will be exposed to ultrasonic waves with extremely high energy density. Thereafter, the seawater 5 is introduced into the water storage tank through the valve 6, but since the tank 1 itself is given ultrasonic vibration by the vibrator 4 with a relatively low frequency, the seawater 5 in the water storage tank 1 is introduced into the water storage tank. will be affected indirectly. The seawater in the tank is discharged from the drain pipe 7 to the outside via the valve 8. FIG. 2 shows details of the vibrator attached to the introduction tube, in which the vibrator 3 is in direct contact with seawater and can impart high-density ultrasonic energy to the seawater. However, as an example of the above method, a seawater inlet pipe with an inner diameter of 5 ribs was made of 200K barium titanate.
Attach two Hz oscillators to the outside of the water storage tank with a capacity of 2. Attach four 2-Hz Hz oscillators made of ferrite to the center of the side wall so that it is 0.5 Hz at the position of the seawater inlet pipe. Experiments were conducted continuously for two weeks under the following test conditions by pouring seawater into the tank, and the antifouling effect was examined by the amount of seawater organisms that adhered to the side walls of the tank.

試験条件 風 導入管の振動子のみを駆動させる。Test condition Wind Drives only the oscillator in the inlet pipe.

曲 貯水タンクの振動子のみを駆動させる。Song Drives only the vibrator of the water storage tank.

{C} 両方の振動子を駆動させる。皿 全振動子を停
止させる。
{C} Drive both vibrators. Plate Stop all vibrators.

第3図の表は以上の試験結果を示したもので「振動子を
全部停止させた時の海水生物の付着量を100とすると
、風法及び‘B}法のようにどちらか一方の振動子を駆
動させたものでは、20%程度の効果があり、更にに}
法では50%以上の防汚効果があり、この方法によれば
極めて有用な防汚が行なえることが判明した。
The table in Figure 3 shows the above test results. The one that drives the child has an effect of about 20%, and even more.
This method has an antifouling effect of 50% or more, and it has been found that this method can provide extremely useful antifouling.

第2実施例 第4図は海水を冷却水とする熱交換器に本発明を適用し
たもので、図中11は水室、12は海水導入管、13は
この導入管12に取付けられた周波数100KH2の超
音波振動子、14は水室用超音波振動子(周波数50K
H2)、1 5は管板用超音波振動子(周波数2級HZ
)、16は伝熱管、17は溢水入口、18は温水出口で
ある。
Second Embodiment FIG. 4 shows the present invention applied to a heat exchanger that uses seawater as cooling water. In the figure, 11 is a water chamber, 12 is a seawater introduction pipe, and 13 is a frequency 100KH2 ultrasonic vibrator, 14 is an ultrasonic vibrator for water chamber (frequency 50K
H2), 1 5 is an ultrasonic vibrator for tube sheets (frequency 2 class HZ
), 16 is a heat transfer tube, 17 is an overflow inlet, and 18 is a hot water outlet.

導入管12の入口側から導入された海水89は導入管1
2を通り、振動子13で密度の高い超音波エネルギー照
射を受けた後、熱交換器の水室11に入る。熱交換器で
は水室及び管板に超音波振動子14,15の駆動によっ
て極めて微小な振動が付与されており、海水は伝熱管1
6を通り、水室1 1の出口20から排出されるもので
ある。上記方法の一例として、導入管にチタン酸バリウ
ム製振動子2個、水室にフェライト製振動子2個、管板
にニッケルホーンを取付けたフェライト製振動子2個を
それぞれ取付け、温度が2〆○の海水を通して前記第1
実施例と同じように一定期間熱交換器の運転を行ない、
伝熟管(銅合金)の伝熱抵抗の変化と水室に対する海水
生物の付着状況を調べた。
The seawater 89 introduced from the inlet side of the introduction pipe 12 is transferred to the introduction pipe 1.
2, and after being irradiated with high-density ultrasonic energy by the vibrator 13, it enters the water chamber 11 of the heat exchanger. In the heat exchanger, ultrasonic vibrators 14 and 15 drive the water chamber and the tube plate to apply extremely small vibrations, and the seawater flows through the heat exchanger tube 1.
6 and is discharged from the outlet 20 of the water chamber 11. As an example of the above method, two barium titanate vibrators are installed in the introduction tube, two ferrite vibrators are installed in the water chamber, and two ferrite vibrators with nickel horns attached to the tube plate are installed, and the temperature reaches 2. Said first through the seawater of ○
The heat exchanger was operated for a certain period of time in the same way as in the example,
We investigated changes in heat transfer resistance of the mating tube (copper alloy) and the adhesion of seawater organisms to the water chamber.

この時の試験条件は下記の6条件とし、それぞれ3週間
連続運転した。試験条件 凶 導入管の振動子のみを駆動させる。
The test conditions at this time were the following six conditions, and each was operated continuously for three weeks. Test conditions are poor. Only the vibrator in the introduction tube is driven.

(B} 水室の振動子のみを駆動させる。(B} Only the vibrator in the water chamber is driven.

に)管板の振動子のみを駆動させる。) Only the vibrator of the tube plate is driven.

(D} 水室と管板の振動子を駆動させる。(D} Drive the vibrator in the water chamber and tube plate.

tE) 全振動子を駆動させる。‘F} 全振動子を停
止させる。
tE) Drive all oscillators. 'F} Stop all oscillators.

第5図の表は以上の試験結果を示したもので、第1実施
例の場合と同様に‘E}法によるものが伝熱管に対する
異物の付着が少なくて伝熱抵抗の低下率が非常に少ない
し、また水室に対する海水生物の付着も少なく、優れた
防汚効果が認められる。
The table in Figure 5 shows the above test results, and as in the case of the first embodiment, the test using the 'E} method had less foreign matter adhering to the heat transfer tubes and the rate of decrease in heat transfer resistance was extremely high. There is also less seawater organisms attached to the water chamber, and an excellent antifouling effect is recognized.

これに対し{別,‘C},皿の方法では(F}の方法に
比べて効果は認められるものの、{Eーの方法ははるか
に及ばず、導入する海水に高密度の超音波エネルギーを
照射することが、防汚効果を上げるために極めて重要で
あることが分る。なお、以上の一連の実験から、導入す
る海水に照射する超音波エネルギー密度は300ミリバ
ール以上あれば効果的であり、また導入管の振動子は連
続的に駆動する必要はあるが、水室や管板の振動子はパ
ルス的則ち数分程度の間隔であれば、断続的に駆動させ
ても充分効果は認められた。
On the other hand, {another, 'C} and Dish's method are more effective than (F}'s method, but {E-'s method is far less effective and requires high-density ultrasonic energy to be introduced into the seawater. It can be seen that irradiation is extremely important to increase the antifouling effect.The above series of experiments shows that it is effective if the ultrasonic energy density irradiated to the introduced seawater is 300 mbar or more. Also, although it is necessary to drive the inlet tube's vibrator continuously, the vibrator in the water chamber and tube plate can be driven intermittently in pulses, that is, at intervals of several minutes, but it is not sufficiently effective. Admitted.

本発明は以上説明したように、海水使用機器に導入する
海水に高密度の超音波エネルギー照射を行ない、海水が
導入された前記機器そのものにも海水と接触する部分に
超音波振動を付与することを要旨とする。従って本発明
によれば、充分な海水機器の防汚効果が期待できるし、
また超音波振動子を機器外部に取付けて行なえばよいか
ら、既設の機器に適用する場合においても、機器の運転
を停止したり、構造を変えたりしなくても容易に実施で
きるし「更にまた超音波振動子の故障に対しても機器の
運転を樟止すをことなく保守が行なえる等顕著な効果を
奏するものである。
As explained above, the present invention irradiates high-density ultrasonic energy to seawater introduced into seawater-using equipment, and applies ultrasonic vibrations to the parts of the equipment itself into which seawater is introduced that come into contact with seawater. The gist is: Therefore, according to the present invention, a sufficient antifouling effect on seawater equipment can be expected,
In addition, since the ultrasonic transducer can be attached to the outside of the equipment, even when applying it to existing equipment, it can be easily implemented without stopping the operation of the equipment or changing the structure. Even in the event of a failure of the ultrasonic transducer, it is possible to carry out maintenance without interrupting the operation of the device, and other remarkable effects can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を説明するための貯水タン
クの構成図、第2図は同タンクの導入管の要部の断面図
、第3図は同タンクによる試験結果を示す表、第4図は
本発明の第2実施例を説明するための熱交換器の構成図
、第5図は同熱交換器による試験結果を示す表である。 1・・・…貯水タンク、2・・・・・・海水導入管、3
,4・・・…超音波振動子、11・・・・・・水室、1
2・・…・海水導入管、13,14,15…・・・超音
波振動子、16・・・・・・伝熱管。第1図 第2図 第3図 第4図 第5図
Fig. 1 is a configuration diagram of a water storage tank for explaining the first embodiment of the present invention, Fig. 2 is a sectional view of the main part of the introduction pipe of the tank, and Fig. 3 is a table showing test results using the tank. , FIG. 4 is a block diagram of a heat exchanger for explaining a second embodiment of the present invention, and FIG. 5 is a table showing test results using the same heat exchanger. 1...Water storage tank, 2...Seawater introduction pipe, 3
, 4... Ultrasonic vibrator, 11... Water chamber, 1
2... Seawater introduction pipe, 13, 14, 15... Ultrasonic vibrator, 16... Heat exchanger tube. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 海水機器に導入する海水にあらかじめ100KHz
程度以上の高い周波数で高密度の超音波エネルギー照射
を行なうとともに、海水が導入された前記機器そのもの
にも海水と接触する部分に50KHz程度以下の低い周
波数の超音波振動を付与することを特徴とする海水機器
の防汚方法。
1 Set the seawater to be introduced into the seawater equipment at 100KHz in advance.
In addition to irradiating high-density ultrasonic energy at a high frequency of about 50 kHz or higher, ultrasonic vibrations of a low frequency of about 50 KHz or less are applied to the parts of the equipment itself into which seawater is introduced that come into contact with the seawater. Antifouling method for seawater equipment.
JP676275A 1975-01-14 1975-01-14 Antifouling method for seawater equipment Expired JPS606694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP676275A JPS606694B2 (en) 1975-01-14 1975-01-14 Antifouling method for seawater equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP676275A JPS606694B2 (en) 1975-01-14 1975-01-14 Antifouling method for seawater equipment

Publications (2)

Publication Number Publication Date
JPS5185977A JPS5185977A (en) 1976-07-28
JPS606694B2 true JPS606694B2 (en) 1985-02-20

Family

ID=11647176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP676275A Expired JPS606694B2 (en) 1975-01-14 1975-01-14 Antifouling method for seawater equipment

Country Status (1)

Country Link
JP (1) JPS606694B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223437A (en) * 2012-04-20 2013-10-31 Bio Map Co Creature extinction system

Also Published As

Publication number Publication date
JPS5185977A (en) 1976-07-28

Similar Documents

Publication Publication Date Title
US6770248B2 (en) Flowthrough device for the ultrasonic destruction of microorganisms in fluids
US3672823A (en) Method of sterilizing liquids
US5504335A (en) Fluid treatment device and method
US4320528A (en) Ultrasonic cleaner
Mott et al. The removal of bacterial biofilm from water‐filled tubes using axially propagated ultrasound
CN101503221B (en) Apparatus with sea marine organism pollution preventing function
EP1200789B1 (en) An ultrasonic cleaning method
MXPA97002774A (en) Module of radiation, its application and method paraautolimpi
CN104030501A (en) Circulating water full-automatic scale removal/sterilization/algae removal/filtration integrated device
CN203763883U (en) Ultrasonic-wave scale-prevention and scale-removing plate tower
JPS6115722B2 (en)
CN102435098B (en) On-line ultrasound rotational flow descaling device for condenser
JPS606694B2 (en) Antifouling method for seawater equipment
CN104645916B (en) A kind of near sound field ultrasound reactor
CN212127603U (en) System for driving underwater creatures away by using high-low frequency acoustic wave transducer
JPH0719791A (en) Cleaning method of heat exchanger by ultrasonic wave
CN103239877B (en) High-efficiency hot air source evaporator
JP2018003036A (en) Ultrasonic wave anticorrosion system
CN203342396U (en) Efficient hot-air-source evaporator
KR102219080B1 (en) Hybrid water purification device for prevention of green tide
JP4059457B2 (en) Antifouling and anticorrosion equipment for heat exchangers and seawater conduits
KR20240033695A (en) How to keep surfaces sensitive to inorganic or organic deposits clean
CN210367296U (en) Ultraviolet-chlorination-ultrasonic wave reinforced sterilization pretreatment device
KR200254531Y1 (en) A water-pipe cleaning and sterilizing unit
KR101231252B1 (en) Ultra Sonic Vessel Used in Sludge Treatment Equipment