JPS6066819A - Position aligning method - Google Patents

Position aligning method

Info

Publication number
JPS6066819A
JPS6066819A JP58175354A JP17535483A JPS6066819A JP S6066819 A JPS6066819 A JP S6066819A JP 58175354 A JP58175354 A JP 58175354A JP 17535483 A JP17535483 A JP 17535483A JP S6066819 A JPS6066819 A JP S6066819A
Authority
JP
Japan
Prior art keywords
light
grating
wafer
substrate
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58175354A
Other languages
Japanese (ja)
Other versions
JPH0441485B2 (en
Inventor
Noboru Nomura
登 野村
Koichi Kugimiya
公一 釘宮
Ryukichi Matsumura
松村 隆吉
Taketoshi Yonezawa
米澤 武敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58175354A priority Critical patent/JPS6066819A/en
Priority to US06/599,734 priority patent/US4636077A/en
Publication of JPS6066819A publication Critical patent/JPS6066819A/en
Priority to US07/296,721 priority patent/USRE33669E/en
Publication of JPH0441485B2 publication Critical patent/JPH0441485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark

Abstract

PURPOSE:To accurately align the position of grating on a wafer and generated interference fringe by reflecting or transmitting the light flux having passed two diffraction gratings on a reticle with the diffraction grating on the wafer. CONSTITUTION:The light fluxes 12, 13 in the same phase are vertically directed to the gratings 14, 15 on a reticle, an interference fringe F is formed by crossing the diffracted lights 16, 17 on a wafer W at a crossing angle 2theta and it is aligned to the grating G provided on the wafer. Rotations PHI, PSI of grating G and fringe F in the afer surface and incident surface are adjusted by reducing a wafer surface and incident surface are adjusted by reducing a number of moire-image interference fringes through fine adjustment of wafer. The diffracted lights 16, 17 sent from the grating G having almost the same pitch as the pitch A of interference fringe determined by the wavelength of light and incident angle theta are collected and interfered again. Light intensity to be observed depends on the angle of detector D and has a peak value. Therefore, a detector is fixed at the peak intensity position and relative position (x) of fringe F and grating G is changed. Since light intensity periodically changes for each pitch of grating G, relative position can be obtained from measurement of light intensity and highly accurate position aligning can be realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、41]′度の高い位置合わせ装置、特に高・
、贋度な半導体装置(以下LSIとよぶ)の位置合わせ
装置VC4用できる位置合わせ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a 41]' high degree alignment device, especially a high degree
, relates to a positioning method that can be used in a positioning apparatus VC4 for a defective semiconductor device (hereinafter referred to as LSI).

従来例の111成とその問題点 第1図(rよ、従来からの位置合わせ方法の説明図であ
る。/:FS1図(a)には、フォトマスク士の位置合
わせ用パターンの一例を示しまた0この1夕1」てし」
放”14状の、親巾一定のパターンを用いて、ウェハl
x: j(:吊−置合わせ用パターンの転写パターン1
を形成する4、第1図Φ)は、ウェハJ: (/C形成
された位1”乙゛合わせパターン1の上に再度同一パタ
ーンを用いでIff imi″台わせするときの図であ
る。ウェハ」二にはバター71が形成されており、)A
上マスク上に形成さIした位置合わせマークの陰影2と
ウェハ上のパターン1との相対的な位置合わせを行なう
。このときの位置合わせ精度は±0.3μm程度であり
、ゲート長か1ミクロン以下のLSIの位置合わ仕方〃
、としては不十分である。0.6ミクロンルーシイ4゛
度のLSIにおいては、合わせ精度は。、 06 l1
m 4’i″度でなければならず、従来の方法でd、1
寺j6゛合イ)仕ノ゛ることかできない。
Conventional 111 configuration and its problems Figure 1 (r) is an explanatory diagram of the conventional alignment method./:FS1 Figure (a) shows an example of the pattern for alignment by a photomask technician. 0 again this 1st night 1''
Using a pattern with a constant width and a radius of 14, the wafer l
x: j (: Transfer pattern 1 of hanging-layout pattern
4, FIG. 1 Φ) is a diagram when the same pattern is used again on the wafer J: (/C) formed on the alignment pattern 1. Butter 71 is formed on the wafer 2)A
Relative alignment is performed between the shadow 2 of the alignment mark formed on the upper mask and the pattern 1 on the wafer. The alignment accuracy at this time is about ±0.3 μm, which is the best way to align an LSI with a gate length of 1 micron or less.
, is insufficient. In a 0.6 micron Lucy 4 degree LSI, the alignment accuracy is. , 06 l1
m must be 4′i″ degrees, and in the conventional way d, 1
All I can do is work at the temple.

発明の目的 本発明はこのようなr菫来の問題点に鑑み、レチクル等
のマスクパターンとウェハ舌の試t1との間の位置合わ
せを高精度に行なう方法を提供J゛ることを目的とする
OBJECTS OF THE INVENTION In view of the above-mentioned problems of curvature, it is an object of the present invention to provide a method for highly accurate alignment between a mask pattern such as a reticle and sample t1 of a wafer tongue. do.

発QF4の構成 本発明−1位置合わせすべき二枚の基板(すなわちたと
えばレチクルおよびウエノ・)のレチクル上にコヒーレ
ントな第1の光束を入射し、第1の光束VC対してレチ
クル上に回折格子が設けられて、1′−=す、このレチ
クルの回折格子によって回折した第2の光束をさらにウ
ェハ上に入射し、また、同時に第2の光束と可干渉な第
3の光束をウエノ・上に入射し、ウェハ上に設けた回折
格子によって反射又は透過した光の強度を測定するとい
う構成にJ:す、ウェハ上に入射した三光束の干渉縞と
ウニ・・上に形成した格子との相対位置を高精度に合わ
ぜることを実現する。
Construction of QF4 Present Invention-1 A coherent first beam is incident on the reticle of two substrates to be aligned (i.e., a reticle and a wafer), and a diffraction grating is placed on the reticle for the first beam VC. is provided, and the second beam diffracted by the diffraction grating of this reticle is further incident on the wafer, and at the same time, a third beam coherent with the second beam is directed onto the wafer. In this configuration, the intensity of the light incident on the wafer and reflected or transmitted by a diffraction grating provided on the wafer is measured. Achieves high precision matching of relative positions.

′8k、本発明は、位置合わせすべき二枚の基板のム′
51の基板十てコヒーレントな第1の光束を入4!ナシ
、前記第1の光束が入射する前記M1の基板面1−に第
1の回折格子が設けられており、前記第1の1四所格子
によ・〕で回υテした第2の光束を第2の基板面上に入
射させ、前記回折した第2の光束と用干渉の参照用筆3
の光束を同時に第2の基板面上に入射させ、前記第2の
基板面上に設けらJ’した第2の回折格子によって前記
第2.第3の光束の反射又は透過した第4の光束を光検
知手段に”!Iびき、この手段によって光強度を測定す
ること(、・こより、前記第2の基板面上に入射した前
記第21・・よび第3の光束の干渉縞と前記第2の基板
面上の第2の回折格子との相対位置を5険知し、前記第
1の基板と第2の基板との相対位置を合わせを行うもの
である。
'8k, the present invention provides a method for aligning two substrates.
A coherent first beam is input to the 51 substrates 4! No, a first diffraction grating is provided on the substrate surface 1- of the M1 on which the first light beam is incident, and the second light beam is rotated by the first four-point grating. is incident on the second substrate surface, and the reference brush 3 for interference with the diffracted second light beam
simultaneously incident on the second substrate surface, and the second. A fourth light flux that has been reflected or transmitted by the third light flux is directed to a light detection means, and the light intensity is measured by this means. . . . and detecting the relative position between the interference fringes of the third light beam and the second diffraction grating on the second substrate surface, and adjusting the relative positions of the first substrate and the second substrate. This is what we do.

実施例の説明 第2図に本発明の一実施例による位置合わぜ方法を実施
する縮小投影露光装置の原理おまひ本発明によるレチク
ルとウエノ・間の位16合わけ−の構成図を示した。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows the principle of a reduction projection exposure apparatus that implements a positioning method according to an embodiment of the present invention. .

まず通常の縮小投影露光の場合の配置6に9いて説明す
る。光源、レチクルR,レンズ糸り、甲導体ウェハWと
いう順に並んでおり、光州から出た平行光11はレチク
ルR上のノククーンで光を〃ユられ、この濃淡パターン
を持つ光束がレンズ系りによって集光されてウエノ・」
二に1/チク/l/の投影[象it−’を形成する。
First, arrangement 6 and 9 in the case of normal reduction projection exposure will be explained. The light source, reticle R, lens thread, and conductor wafer W are arranged in this order.Parallel light 11 emitted from Gwangju is deflected by a nokukuon on the reticle R, and the light flux with this shading pattern is transmitted by the lens system. The light is focused.''
Two projections of 1/chiku/l/ [form an image it-'.

位置合わせに用いる構成はレーザ等のコヒーレントな光
をビームスプリッタ等に入射させ、はぼ同一強度の三光
束12.’13に振幅分割する。三光束12.13を各
々レチクルR上に設けた回折格子14.15Pご入射さ
せ、レチクルHの置かれている配置を入射光と回折光の
位相や角度ψ1゜ψ2によって表わす。レチクルRから
出た回折光16.1γ−レンズ系りをJ7f1過し、ウ
ェハw土で三光束16.17が干渉するようにFl、L
、Wを配置する。ウェハW上の一部には第3図に示すご
とく回折格子Gが形成さ汎ており、この格子G上(1(
二二光束16.17の干渉縞Fが形成される。そして、
格子Gによって回折し/こ反射光18が光検知zH,>
 Dに47ひがれる。ウェハ上の格子Gは第4図(/ζ
−例を示すようVζ、ウェハの所定領域に規則的1/(
二形成し/こくり返しパターンを用いるとよい。
The configuration used for alignment is to input coherent light such as a laser into a beam splitter, etc., and generate three beams of light with approximately the same intensity 12. '13 amplitude division. The three beams 12, 13 are respectively incident on the diffraction gratings 14, 15P provided on the reticle R, and the arrangement where the reticle H is placed is expressed by the phase and angle ψ1° ψ2 of the incident light and the diffracted light. The diffracted light 16.1 γ from the reticle R passes through the lens system J7f1, and the three light beams 16.17 interfere with each other at the wafer W.
, W are placed. A diffraction grating G is formed on a part of the wafer W as shown in FIG.
Interference fringes F of 22 beams of light 16.17 are formed. and,
The reflected light 18 diffracted by the grating G is detected by the light zH, >
D gets 47. The grating G on the wafer is shown in Figure 4 (/ζ
- As an example, Vζ is regularly 1/(
A two-form/repeat pattern may be used.

レーザの波長をλ、レチクルの格子14.15がろの回
折)’に 16 、17が干渉して作る干渉縞F・・)
ピッチを、1とすると、 Δ=λ/2sin O と表わせる。
The wavelength of the laser is λ, and the interference fringes F...
If the pitch is 1, it can be expressed as Δ=λ/2sin O.

第3図に示したように、三光束干渉によ一部で生じた干
渉縞Fは、上式に示されるように等間1i’*の入射角
θに応じたピッチΔで得らt′1.る。
As shown in FIG. 3, the interference fringes F partially generated by the three-beam interference are obtained at a pitch Δ corresponding to the incident angle θ of the equidistant 1i'* as shown in the above equation. 1. Ru.

この干渉縞のピッチΔとほぼ等しいピッチ、L、 J、
1つ格子Gから一22光束16.17の干渉し/こ1.
!!1.1/丁光が得られ、2光束の干渉縞Fと格子G
との間の相対位置関係を示す光強度情報がmら扛る。光
検知器り上で観測される光強度I (rJ、米 木 ■−U2+U2→U −’U +U −’U ・・(1
)A B A BAB ただし、UA 、 UBは各々光束16.17の振りξ
′1゛1づi+H度、U、、*、UB*は共役複素振幅
である。1/こ、5in(lハ/2”81nOfi/ま たftfl(、、八、Bは定数、N:格子の数、6Al
δBは關7接した2格子によって回折した光の間の光路
差、Xは光束16と17による干渉縞と格子との間の相
対位置、θへ、OBは光束16.17とウェハの垂iI
ガ(の4:ず角である。
The pitch, L, J, is approximately equal to the pitch Δ of this interference fringe.
1.22 beams of light 16.17 interfere from one grating G.
! ! 1.1/d light is obtained, and interference fringes F and grating G of two light beams are obtained.
Light intensity information indicating the relative positional relationship between the two is displayed. Light intensity I observed on the photodetector (rJ, Yonegi - U2 + U2 → U -'U +U -'U... (1
)A B A BAB However, UA and UB are the swings of luminous flux 16.17 ξ
'1゛1d i+H degrees, U, , *, UB* are conjugate complex amplitudes. 1/ko, 5in(lha/2"81nOfi/also ftfl(,, 8, B is a constant, N: number of lattices, 6Al
δB is the optical path difference between the light diffracted by two adjacent gratings, X is the relative position between the interference fringes due to beams 16 and 17 and the grating, θ is
ga(no4: zu angle)

と示される。実際に観測した光強電工は第5図に7J<
ずような角度依存性を示し、4つのピークがあ1:)わ
れ、−611,elのピークには、入射光16゜17の
0次の回折光が重なる。−02,02のピークf(1入
射光16.17の1次回折光が含まれ、その各々の回折
光に光束16.17の作る干渉縞とつ」−・・土の格子
Gとの間の位置情報が含まれている。
is shown. The actually observed Kogyo Electric Works is shown in Figure 5 as 7J<
It exhibits a wide angular dependence, with four peaks (1:), and the peak at -611,el overlaps with the 0th-order diffracted light of the incident light 16°17. -02,02 peak f (includes 1st-order diffracted light of 1 incident light 16.17, and each diffracted light has interference fringes formed by light beam 16.17) - between earth lattice G Contains location information.

第6図に、光検出器の位置を第6図のピークを・」・−
4′泣置V(口1〕・1うjl L、光束16.17の
作る干渉縞FとウェハWにの格子Gとの間の相対位置X
を変fLさぜ/こときの光強電工の変化を示した。相対
位jl”j Xの変化は、格子のピッチを毎に光強度を
周期的1(二変fヒさぜ、光強度を観測することによっ
て干渉縞Fと格子Gとの間の相対位置を示すことがてき
る。たとえばレーザ光の波長を0.4/1m とし−干
渉縞Fとしてピッチ1μmのものを作成し、ウェハに形
成した格子Gのピッチを17ymとすると、位置合わせ
精度は100人の精度が達成できる1)次に、レチクル
LとウェハWの相同的な[>7 if+″介わぜの手順
について第7図を用いて説明する。
Figure 6 shows the position of the photodetector and the peak in Figure 6.
4' position V(mouth 1)・1 ujl L, relative position X between the interference fringe F created by the luminous flux 16.17 and the grating G on the wafer W
This shows the change in fL Saze/Kotoki's Hikari Electric Works. Changes in the relative position jl''j For example, if the wavelength of the laser beam is 0.4/1 m and the pitch of the interference fringes F is 1 μm, and the pitch of the grating G formed on the wafer is 17 ym, the alignment accuracy will be 100 people. 1) Next, the procedure for homologous [>7 if+'' interposition of the reticle L and wafer W will be explained using FIG. 7.

レチクルHに入射した三光束12.13をレチクルHに
垂直に入射するようにし、かつ、三光束12.13がレ
チクル上の格子14.16に入射するように配置する。
The three beams 12.13 incident on the reticle H are arranged so that they are perpendicular to the reticle H, and the three beams 12.13 are incident on the grating 14.16 on the reticle.

格子14 、11JJ二九束を透過し、回折光16.1
7を射出する。格子14゜16に入射する三光束12.
13の位相(l」四しくなるように光学系を配置してい
るので格子に2[・・て回折した光の波面も第7図に示
すように光束16と17で−、対称となる。この位相の
そろン/にニ、)11゜束16.17がウニ/%W面」
二で交叉角20て父わると濃淡の干渉縞(第3図F)が
生じ、干渉縞Fの位置は波面が交わった位置で定−チる
。この(i>、’ il・髪に対してウエノ・W上に形
成された回折格子(第3、/JG)を合わせる。
Transmits grating 14, 11JJ29 bundle, diffracted light 16.1
Shoot 7. Three beams of light 12 incident on the grating 14°16.
Since the optical system is arranged so that the phase (l) of 13 is four, the wavefront of the light diffracted by the grating becomes symmetrical with the light beams 16 and 17 as shown in FIG. The alignment of this phase is 11° bundle 16.17 is sea urchin/%W plane.
If the intersection angle 20 is exceeded, dark and light interference fringes (FIG. 3 F) are produced, and the position of the interference fringes F is fixed at the position where the wavefronts intersect. The diffraction grating (third, /JG) formed on Ueno-W is aligned with this (i>,'il-hair).

ウニ・・W上の格子Gと三光束の干渉縞Fとのウェハ面
内ての回転(アジマス)ψはウェハ上の格子と干渉縞と
の間で生じるモアレ縞の回転によって検知でき、モアレ
縞の本数か少なくなるようにたとえばウェハを微少移動
して調整する〇寸/こ、ウェハ上の格子と三光束の干渉
縞の該光束の入射面内での回転(ティルト)ψは、干渉
縞のピッチがウェハ上の格子と比較すると相対的にJ〈
< ft−1/こj易合と同様r(な9、前述のアジマ
ス調゛1占と同じくモアレ状編の本数が少なくなるよう
にしてティルト調整ができる0丑た光路が対称であrL
l−(1’、ウェハ上の回折格子Gによって反射したO
次光が光蝕にもどるのて、ウェハの移動によるこの反射
光の位置の変化を恢知することによってもウニハシVの
ティルト調整もできる。
Sea urchin... The rotation (azimuth) ψ of the grating G on W and the interference fringes F of the three beams within the wafer plane can be detected by the rotation of the moire fringes that occur between the gratings on the wafer and the interference fringes, and the moire fringes The rotation (tilt) ψ of the interference fringes between the grating on the wafer and the three beams within the plane of incidence of the three beams is the Compared to the grid on the wafer, the pitch is relatively J〈
< ft-1/ This is the same as the easy case.
l-(1', O reflected by the diffraction grating G on the wafer
After the secondary light returns to the photoeclipse, the tilt of the sea urchin V can also be adjusted by learning the change in the position of this reflected light due to the movement of the wafer.

以上のようeζしてアジマスとティルト調整を行なっ/
C後l′C第1.2.3弐で示された原理にもとづきレ
チクルとウコーハ中のパターン位置合ゎせをrJ4うこ
とがてきる。
Adjust the azimuth and tilt using eζ as described above.
After C, it is possible to align the pattern position between the reticle and the mirror on the basis of the principle shown in Section 1.2.3.

第2の実施例として、第4図に示したよう(lこ、ウェ
ハWJ:に形成する格子Gのパターンを、スト2イグ状
の格子パターンと格子パターンの除去された部分からな
る従来からの位置合わせマークM(十字形)を組み合わ
せたものとするこLζこよ一ノてより短時間に位置合わ
せを行なうことができる。
As a second embodiment, as shown in FIG. By combining the positioning marks M (cross-shaped), positioning can be performed in a shorter time than with Lζ.

第8図(−)に示すように、第4図のウェハW十の格子
パターンからの回折光は四辺形の明パターンの中に十字
の暗パターンが組み合わさったものである。一方の入射
光12の回折光はパターンd1のshなり、他方の入射
光13の回折光はパターンd2のINK対応する。光検
知手段側から1′M祭した場合、位置合わせが不十分で
あると十字のl1g、パターンが二重に見える状態とな
る。この十字のパターンに合わせて光検知手段を設ける
と、十字のパターンが重なるようにウェハとレチクルの
1立置合せを行うと、従来と同様のパターン位置合わせ
を行なうことができる。すなわち、とのJ:9な方法に
よって従来の位置合わせ方法における0、3ミクロン程
度概略の位置合わせを行うことができる。
As shown in FIG. 8(-), the diffracted light from the grating pattern of the wafer W10 in FIG. 4 is a combination of a dark cross pattern in a bright quadrilateral pattern. The diffracted light of one incident light 12 corresponds to sh of pattern d1, and the diffracted light of the other incident light 13 corresponds to INK of pattern d2. If the alignment is insufficient when 1'M is viewed from the light detection means side, the cross pattern will appear double. If a light detection means is provided in accordance with this cross pattern, and the wafer and reticle are vertically aligned so that the cross patterns overlap, pattern alignment similar to the conventional pattern can be performed. In other words, rough alignment of about 0.3 microns compared to the conventional alignment method can be performed by the J:9 method.

この位置合わせが終わると、第8図(b)に示したよう
に、四辺形の明パターンの中にモアレ状縞が観61すさ
れるようになり、この縞を用いて本発明の位置合わせ方
法を用いて短時間に高精度の位置合わせを行なうことが
できる。
When this alignment is completed, as shown in FIG. 8(b), moiré-like stripes will be visible in the quadrilateral bright pattern, and using these stripes, the alignment method of the present invention High-precision alignment can be performed in a short time using

第9図は本発明にj:る第3の実施例でめり、この実施
例と第2の実施例との差異は、レチクルR」二の格子パ
ターン19 、20中に格子の周期とは5゛4なるたと
えば線状図形を形成していることであり、この図形によ
りウェハW上の格子19 、20によって回折した光1
8は、位置合わせが十分に合っていないときには、g1
o図(a)のように回折した光18に位置ずれが生じ、
従来と同様の0.3μm Q、度の・販路の位置合わせ
が可能となる0この場合は第8図の場合と同様に位置合
わせできるが、レチクルH上の格子19 、20に図形
が形成され−Cいるため、ウェハWを固定した状態でレ
チクルRf:ウエハWに合わせる操作かり能となる。こ
のu;を略の位置合せを終了し/このち、第8図(b)
と同様に第10図(b)のととくモアレ状縞を用いて本
発明の微細な位置合せを行えばよい。
FIG. 9 shows a third embodiment according to the present invention, and the difference between this embodiment and the second embodiment is that the period of the gratings in the grating patterns 19 and 20 of the reticle R'2 is For example, a linear figure of 5゛4 is formed, and the light 1 diffracted by the gratings 19 and 20 on the wafer W is
8, when the alignment is not sufficient, g1
o As shown in Figure (a), a positional shift occurs in the diffracted light 18,
0.3 μm Q, degree and sales channels can be aligned in the same way as before. In this case, alignment can be done in the same way as in the case of FIG. -C, it is possible to align the reticle Rf with the wafer W while the wafer W is fixed. Complete the approximate alignment of this u; and then proceed as shown in Fig.
Similarly, the fine alignment of the present invention may be performed using the particular moiré-like stripes shown in FIG. 10(b).

捷た、第11図は本発明に上るさ]つにf1ハの実η也
例の位置合せ方法を示すものである。第2図174’;
7図に示した例との相異点は、第2図や第7図ではレチ
クル上に回折格子が二つ設けらノ1て、IL・す、この
谷々の回折格子にコヒーレントな光を入射させ、レチク
ルの位置情報を回折角度で表現していたが、本実施例で
はレチクルH上には回折格子21は一つだけ設けられて
おシ、コヒーレント光22を回折格子21に入射しレチ
クルの位fit^作τ回折角度で表現し、ウニ・・W」
二に回折光26を入射させる。捷た、ウニ/%1Mには
光束22とiiJ’十渉である参照光束23をミラー2
4で反射して、回]J1光26と干渉させ位置情報を三
光束の干渉縞しこりえてウェハWからの反射光26を光
恢知器に人別させている。よって、ウエノ・Wからの反
則光26を受ける光検知器りの位置で幻1、参照光23
のみを格子に入射してウエノs’/lを単独に粗< (
j、 Ii′を合わせすることができ、その後にレチク
ル上の回イJ1格子で回折した光26をウエノ・上に入
射することにより、第2図、第7図で示したと同様の高
精度の位置合わぜを実りLすることができる。
FIG. 11, which is a part of the present invention, shows an actual positioning method for f1. Fig. 2 174';
The difference from the example shown in Figure 7 is that in Figures 2 and 7, two diffraction gratings are provided on the reticle, and coherent light is directed to the diffraction gratings in the valleys of the IL. However, in this embodiment, only one diffraction grating 21 is provided on the reticle H, and coherent light 22 is incident on the diffraction grating 21 and the position information of the reticle is expressed by the diffraction angle. It is expressed by the angle of τ diffraction by fit^, and it is a sea urchin...W"
Second, the diffracted light 26 is made incident. The reference beam 23, which is 22 and 2
4 and interferes with the J1 light 26, the positional information is transmitted through interference fringes of the three beams, and the reflected light 26 from the wafer W is discriminated by a light detector. Therefore, at the position of the photodetector that receives the foul light 26 from Ueno W, the illusion 1 and the reference light 23 are detected.
is incident on the lattice and Ueno s'/l is coarsely
j, Ii' can be aligned, and then the light 26 diffracted by the J1 grating on the reticle is incident on the reticle, thereby achieving high precision similar to that shown in Figs. 2 and 7. It is possible to achieve good alignment.

第12図に本発明による他の実施例を示す。この実施例
と第3図のI場合との相異点は、ウニ/S上の格子のピ
ッチを干渉縞のピッチの整数倍としており、従来露光法
で得られた位置合わせマークによっても高AIIj度の
位置合わせができることである0レチクルR上には、例
えばスクライブライン上に形成さη、/こ回折格子3Q
と例えば回路素子であるMOS+−ランジスタのゲート
ノくターン31が精度よく配置形成されている。この回
折格子30にはさらに例えば第13図(a)に示したよ
うな十字の位置合わせマーク(第12図では図示せず)
か形成されている。第12図の32はウエノ・上に形成
される干渉縞を示したものである。第9図の場合と同様
格子30にレーザビーム12.13が入射肱レチクル上
の位置合わせノぐターンが合うように位置合わ仕される
0このノくターン(格子30投影f象) Jd、図中3
3に示すものである。このノくターフ33にλ、コシて
、ウエノ′−W上の格子34が十字マ一りの位置合わせ
パターンとして重ね合わさ/’Lる。
FIG. 12 shows another embodiment according to the present invention. The difference between this embodiment and case I in FIG. On the reticle R, for example, a diffraction grating 3Q formed on the scribe line,
For example, the gate turn 31 of a MOS+- transistor, which is a circuit element, is arranged and formed with high precision. This diffraction grating 30 further includes a cross alignment mark (not shown in FIG. 12) as shown in FIG. 13(a), for example.
or is formed. Reference numeral 32 in FIG. 12 shows interference fringes formed on the wafer. As in the case of FIG. 9, the laser beams 12 and 13 are aligned to the grating 30 so that the alignment notches on the reticle are aligned. 3rd year middle school
This is shown in 3. The grating 34 on the Ueno'-W is superimposed on this turf 33 by λ as a cross-shaped alignment pattern.

この格子34は、ウェハW上に従来の光ル゛δ光bCま
り形成されているので、本発明に」:るレーザホログラ
フィによる干渉縞露光の干渉縞の練「1」はと濶1いパ
ターンが得られない。よってウエノ・W」二の(6子3
4のピッチが干渉縞のピッチの整数倍のパターンである
と、第13図(b)に示すように光検知手段りの位置で
十字及びウニ・・上の位装置合わせ・ぐターフ34との
重なり合ったパターンの回折r象がf(Jられ、この回
折像のモアレ縞から精密なGン、’ im合わせを行な
うことができる。
Since this grating 34 is formed on the wafer W by the conventional light beam δ light bC, the interference fringe pattern 1 of the interference fringe exposure by laser holography according to the present invention is a very large pattern. is not obtained. Therefore, Ueno W” 2 (6 children 3
If the pitch of 4 is an integral multiple of the pitch of the interference fringes, as shown in FIG. The diffraction r images of the overlapping patterns are subjected to f(J), and precise G and 'im alignment can be performed from the moiré fringes of this diffraction image.

また、位置合わせ中のレーザ光の波長(はウニ・・W上
に形成されるレジスi・を感光しない波長であることが
望ましく、位置合わせには、たとえ(〆」、赤い光を用
い、位置合わぜした後には、従来の紫外光による露光を
行なうと位置合わぜ及び面光かm′j単に行なえる。
In addition, it is desirable that the wavelength of the laser beam during alignment is a wavelength that does not sensitize the resist i formed on the sea urchin. After alignment, conventional ultraviolet light exposure can be performed to simply align and illuminate the area.

発明の効果 以上本発明によ不位置合わせ方法によってレチクル上に
形成された格子から出た回折光全ウニ・・上に設けた格
子上に照射し、ウエノ・上の格子から回折された光の強
度を観察して、ウエノ・上のパター7をレチクルに対し
て高精度に位置合わせすることができる。さらに、レチ
クルやウエノ蔦上に設けた図形を用いて短時間のうちに
位置合わせすることができる。址だ、位置合わせの精度
はウエノ・土の格子ピッチが1μmのとき数1Qoへの
位置合わせ精度が可能である。また、実施例では第1の
基板をレチクル、第2の基板をウエノ・とじたが、レチ
クル以外の通常のフォトマスクあるいはその他の一般的
な二つの物体間の位置合わせが可能である。廿/c1実
施例ではレチクルに入射した光は肴)で透過光の場合を
示したが、レチクルからの反射光でも可能である。
Effects of the Invention According to the present invention, all of the diffracted light emitted from the grating formed on the reticle by the misalignment method is irradiated onto the grating provided on the reticle, and the diffracted light from the grating on the reticle is irradiated. By observing the strength, the putter 7 on the wafer can be aligned with the reticle with high precision. Furthermore, positioning can be performed in a short time using a reticle or a pattern provided on the vine. However, when the grid pitch of Ueno/Soil is 1 μm, alignment accuracy of several 1 Qo is possible. Further, in the embodiment, the first substrate is a reticle and the second substrate is bound with a wafer, but it is also possible to align two ordinary photomasks or other general objects other than a reticle.廿/c1 In the embodiment, the light incident on the reticle is transmitted light, but it is also possible to use reflected light from the reticle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)i”J従来のフォトマスク上の合わせマー
クの514而図、同(b)は従来のウエノ・上の位置合
わせの状態の平[111図、第2図は本発明の一実施例
のウェハとレチクルとの間の6’L置合わせの構成図、
第3図(は本発明による格子と二光束干渉縞との相対位
置の説明図、第4図は本発明によるウエノ・上の格子の
一例の平面図、第6図は本発明による1分間合わせに用
いるウェハ上の回折格子からの回11r >tの強度の
観察角度依存性を示す図、第6図は本発明による位置合
わせ時に起きる回折光強度の変fI′L依存性を示す図
、第7図は本発明による位16合わせ時の各構成要素及
び操作説明図、第8図(a) 、 (b)は本発明によ
る位置合わせ方法の説明図、第9図は本発明による位置
合わせ方法の他の一実施例の構成図、第10図(a) 
、 (b)は第9図に示した位置合わせ方法の説明図、
第11図は本発明による(5′/′、lI′1′合せ方
法のさらに他の実施例の概略構成図、第12図はレチク
ル上のパターン平面図、第13図(a) 汀本発明によ
るさらに他の位置合せ方法の説IJJ図、第13図(b
)は回折像の平面図である。 11・・・・・・平行光、12,13,16,17゜1
8.23,25.26・・・・・・光束、14,15゜
19.20.2j 、30・・・・・・回折格子、18
・・・・・・・反射光、23・・・・・・参照光束、R
・・・・レチクル、W・・・・・・半導体ウェハ、D・
・・・・光検知器、G・・・格子。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 (0−) ! (’t)) 第2図 1 E3 5 Hり 一% −θ? −θ、0 θ、 θ2L/z第 6I7
1 O1々 ρ 3躬 21、 第 8 図 (1)(b) 個も 隼 1 2 real 第13N (す
Fig. 1(a) shows the alignment mark on the conventional photomask; Fig. 1(b) shows the alignment mark on the conventional photomask; A block diagram of a 6'L alignment between a wafer and a reticle in one embodiment,
FIG. 3 is an explanatory diagram of the relative positions of the grating according to the present invention and the two-beam interference fringes, FIG. 4 is a plan view of an example of the upper grating according to the present invention, and FIG. 6 is a 1-minute alignment diagram according to the present invention. FIG. 6 is a diagram showing the observation angle dependence of the intensity of the diffraction grating on the wafer used for 11r > t, FIG. Fig. 7 is an explanatory diagram of each component and operation during alignment according to the present invention, Figs. 8 (a) and (b) are explanatory diagrams of the alignment method according to the present invention, and Fig. 9 is an explanatory diagram of the alignment method according to the present invention. Configuration diagram of another embodiment, FIG. 10(a)
, (b) is an explanatory diagram of the positioning method shown in FIG. 9,
FIG. 11 is a schematic configuration diagram of still another embodiment of the (5'/', lI'1' alignment method according to the present invention, FIG. 12 is a plan view of the pattern on the reticle, and FIG. 13 (a) is the present invention. IJJ diagram, Figure 13 (b
) is a plan view of the diffraction image. 11...Parallel light, 12, 13, 16, 17°1
8.23, 25.26... Luminous flux, 14, 15° 19.20.2j, 30... Diffraction grating, 18
......Reflected light, 23...Reference light flux, R
... Reticle, W ... Semiconductor wafer, D.
...photodetector, G...grid. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure (0-)! ('t)) Fig. 2 1 E3 5 Hri1% -θ? -θ, 0 θ, θ2L/zth 6I7
1 O1 ρ 3 躬 21, Fig. 8 (1) (b) 1 2 real 13th N (Su

Claims (5)

【特許請求の範囲】[Claims] (1)位11′”亡合わせすべき二枚の基板の第1の基
板上の光束が入射する前記第1の基板面上に第1の回折
格子が二個設けられており、谷々の回折格子にJニー・
て回AJ? した1)II記第2光束及び第3の光束を
第2のノー、1反曲上に入射させ、前記第2の基板面上
に設けら!■だ第2の回折格子によって反射又は透過し
/C第4の九東金光検知手段に導ひき、この手段(・(
J: −、て光強度をdill :ボすることにより、
前記第2の〕、(板i1U J−: l’j入射した三
光束の干渉縞と前記第2のツ)(敗聞上の第2の回j斤
格子との相対位置を検知1−1+iiJ rig第1の
基板と第2の基板の相対位置を合イ)−直ることを′持
σyとする位置合わせ方法。
(1) Two first diffraction gratings are provided on the surface of the first substrate on which the light flux on the first substrate of the two substrates to be aligned is provided. J knee on the diffraction grating
Te times AJ? 1) The second and third light beams described in II are made incident on the second no.1 curve, and are provided on the second substrate surface! ■It is reflected or transmitted by the second diffraction grating and guided to the fourth Kuto gold light detection means (・(
J: -, by dill the light intensity:
(Plate i1U J-: Interference fringes of the three incident beams of light and the second) (Detect the relative position with the second grid on the board 1-1+iiJ A positioning method in which the relative positions of the first substrate and the second substrate are aligned.
(2)・′、A’、52のう告1プ」二に設けた規−恭
な第2の回折格J−の一部分t(この格子の)c’=i
 Jυノとにr異なる図形が形・J′v、さf)てb・
す、この図形により概略の位置合わせを行なうことを特
徴とする特許請求の・1111囲第1項記載の位置合わ
仕方法。
(2)・', A', 52 Notices 1P' 2 - A part of the revered second diffraction grating J- t (of this grating) c' = i
The shapes that are different from Jυ and r are the shapes J′v, and b)
The positioning method according to claim 1, wherein the rough positioning is performed using this figure.
(3)第1の基板上に設けた二つの規則的な第1の回折
格子の一部分にこの格子の周期とにlkXなる図形が前
記二つの格子に対称(C形成さtlており、6々の前記
第1の回折格子によ一〕て回折し八−二尤東を第2の基
板」二の第2の回折格子(C入射し、前、11シM2の
回折格子によって回折した尤に含よ11−る前記図形に
より概略の位置合わせを行なうことを!R+徴とする特
許請求の範囲第1項記+1市の位1〆f含わ((方法。
(3) In a part of two regular first diffraction gratings provided on the first substrate, a figure with a period of this grating and lk The first diffraction grating of 1] is diffracted by the first diffraction grating of 8-2. 11-11- The method of claim 1, in which the !R+ feature is to perform approximate positioning using the figures containing 11-.
(4)位置合わせすべき二枚の基板の第1のノ+’r1
k l:にコヒーレントな第1の光束を入射(−1前記
第1の光束が入射する前記第1の基板面上に第1の回折
格子が設けられており、[)IJ記第1の回尉格r−に
よって回折した第2の光束金弟2の基板面+−:V(二
入射させ、前記回折した第2の光束とoJ+渉の参1!
(需用第3の光束を同時に第2の早ζ板面上に入射さ一
1t、前記第2の基板面J:に設けら7n、/ζ第2の
回j1白i’i J−によって前記第2.第3の光束の
反射又&;j 、411.′4 (。 た第4の光束を光検知手段に導びき、この手段によって
光強lWを測定することにより、前記第2の7i!、板
面上に入射した前記第2および第3の光束の干渉縞と前
記第2の基板面上の第2の回折格子との山ス・」位II
iを、険知し、前記第1の基板と第2の基板との41」
対位置を合わせることを特徴とする位置合せ方法。
(4) First no +'r1 of two substrates to be aligned
A first diffraction grating is provided on the first substrate surface on which the first light beam is incident, and a first diffraction grating is provided on the surface of the first substrate on which the first light beam is incident on [). The substrate surface of the second beam diffracted by the second beam r-: V
(The third luminous flux is simultaneously incident on the second fast ζ plate surface 1t, the second substrate surface J: 7n, /ζ second time j1 white i'i J- By guiding the reflected fourth light flux of the second and third light fluxes to a light detection means and measuring the light intensity lW by this means, 7i!, the angle between the interference fringes of the second and third light beams incident on the plate surface and the second diffraction grating on the second substrate surface II
41 of the first substrate and the second substrate.
An alignment method characterized by aligning pairs.
(5)第2の基板」二に設けた規則的な第2の回折格子
の一部分にこの第2の回折格子とは異なる図形が形成さ
れ、この図形により概略の位置合わせを行うことを特徴
とする特許請求の軛囲第4項記載の位置合わせ方法。
(5) A pattern different from that of the second diffraction grating is formed in a part of the regular second diffraction grating provided on the second substrate, and rough alignment is performed using this pattern. The positioning method according to claim 4 of the patent claim.
JP58175354A 1983-04-15 1983-09-22 Position aligning method Granted JPS6066819A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58175354A JPS6066819A (en) 1983-09-22 1983-09-22 Position aligning method
US06/599,734 US4636077A (en) 1983-04-15 1984-04-12 Aligning exposure method
US07/296,721 USRE33669E (en) 1983-04-15 1989-01-12 Aligning exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175354A JPS6066819A (en) 1983-09-22 1983-09-22 Position aligning method

Publications (2)

Publication Number Publication Date
JPS6066819A true JPS6066819A (en) 1985-04-17
JPH0441485B2 JPH0441485B2 (en) 1992-07-08

Family

ID=15994602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175354A Granted JPS6066819A (en) 1983-04-15 1983-09-22 Position aligning method

Country Status (1)

Country Link
JP (1) JPS6066819A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489430A (en) * 1987-09-30 1989-04-03 Toshiba Corp Position aligning method
JPH01255222A (en) * 1988-04-05 1989-10-12 Toshiba Corp Ttl aligner
JP2007180548A (en) * 2005-12-27 2007-07-12 Asml Netherlands Bv Pattern alignment method and lithography apparatus
CN102789137A (en) * 2012-07-16 2012-11-21 中国科学院光电技术研究所 Reflection-type lithography aligning device based on moire fringe
CN103955124A (en) * 2014-05-05 2014-07-30 中国科学院微电子研究所 Aligning device of optical precision system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489430A (en) * 1987-09-30 1989-04-03 Toshiba Corp Position aligning method
JPH01255222A (en) * 1988-04-05 1989-10-12 Toshiba Corp Ttl aligner
JP2007180548A (en) * 2005-12-27 2007-07-12 Asml Netherlands Bv Pattern alignment method and lithography apparatus
JP4543026B2 (en) * 2005-12-27 2010-09-15 エーエスエムエル ネザーランズ ビー.ブイ. Pattern alignment method and lithographic apparatus
CN102789137A (en) * 2012-07-16 2012-11-21 中国科学院光电技术研究所 Reflection-type lithography aligning device based on moire fringe
CN103955124A (en) * 2014-05-05 2014-07-30 中国科学院微电子研究所 Aligning device of optical precision system

Also Published As

Publication number Publication date
JPH0441485B2 (en) 1992-07-08

Similar Documents

Publication Publication Date Title
KR100306471B1 (en) Mask Pattern Projection Device
CN1495540B (en) Alignment system of photoetching system utilizing at least two wavelengths and its method
US5100237A (en) Apparatus for projecting a mask pattern on a substrate
DE69817491T2 (en) LITHOGRAPHIC EXPOSURE DEVICE WITH AN ALIGNMENT DEVICE OUTSIDE THE EXPOSURE AXIS
JPH0752088B2 (en) Alignment method
US4771180A (en) Exposure apparatus including an optical system for aligning a reticle and a wafer
JPS6066819A (en) Position aligning method
JPH07270189A (en) Apparatus for detecting fixed point
JPH0544817B2 (en)
JPS6066818A (en) Position aligning method
JP2578742B2 (en) Positioning method
JPS61208220A (en) Exposure apparatus and positioning method
JPS6286722A (en) Exposure device
JPS6173958A (en) Exposing device
JPS63185024A (en) Aligner
JPS62128120A (en) Exposing unit
JPH0695007B2 (en) Positioning method and exposure apparatus
JPH0334307A (en) Semiconductor wafer exposing method
JPH0441486B2 (en)
JPH0441285B2 (en)
JPS6318624A (en) Exposure apparatus
JPH07101665B2 (en) Exposure equipment
JPS63298102A (en) Position aligning method
JPH02298016A (en) Aligner
JPH021506A (en) Aligning device