JPS6065940A - Power equally distributing gearing using conical shaft - Google Patents
Power equally distributing gearing using conical shaftInfo
- Publication number
- JPS6065940A JPS6065940A JP17166383A JP17166383A JPS6065940A JP S6065940 A JPS6065940 A JP S6065940A JP 17166383 A JP17166383 A JP 17166383A JP 17166383 A JP17166383 A JP 17166383A JP S6065940 A JPS6065940 A JP S6065940A
- Authority
- JP
- Japan
- Prior art keywords
- gear
- conical shaft
- planetary gear
- elastic member
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/2809—Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
- F16H1/2836—Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels by allowing limited movement of the planets relative to the planet carrier or by using free floating planets
Landscapes
- Retarders (AREA)
- Gear Transmission (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
この発明は例えば遊星歯車装向のように中心歯車に対し
て複数個の歯車を噛合わせてなる歯車装置において、伝
達動力を複数個の歯車に等しく分配することができる動
力等配装置に関するものである。Detailed Description of the Invention Technical Field The present invention relates to a gear system in which a plurality of gears are meshed with a central gear, such as a planetary gear arrangement, in which transmitted power is equally distributed to the plurality of gears. This relates to a power equalization device that can perform
従来技術
従来、この種の歯車装置の一例として、第1図に示すよ
うなギャードモータの減速機構がある。BACKGROUND ART Conventionally, as an example of this type of gear device, there is a geared motor speed reduction mechanism as shown in FIG.
この減速機構では、モータケース1内に支承されたモー
タ軸2を太陽歯車としての外歯車3に連動させ、この外
歯車3と固定内歯車4との間に3個の遊星歯車5を噛合
させ、この遊星歯車5を回動可能に支持するキャリア6
を出力軸7に連動させている。この遊星歯車機構では、
第2図に示すように、各遊星歯車5の中心間距離L1並
びに各遊星歯車5と外歯車3との中心間距[L 2が完
全に一致すると、各遊星歯車5は等分に配置されるため
、各歯車3.4.5に誤差がなければ、負荷が各遊星歯
車5に平均してかかり、各歯車3.4゜5は予期した強
さを発揮して振動騒音も生じないのであるが、実際には
前記L1.L2を完全に一致させることは到しく、又8
遊星歯車5の軸受部分や各歯車3,4.,5にも必ず誤
差があるため、この等配は実質的には非常に困難であり
、大きな技術的課題である。In this reduction mechanism, a motor shaft 2 supported in a motor case 1 is interlocked with an external gear 3 as a sun gear, and three planetary gears 5 are meshed between the external gear 3 and a fixed internal gear 4. , a carrier 6 rotatably supporting the planetary gear 5
is linked to the output shaft 7. In this planetary gear mechanism,
As shown in FIG. 2, if the center-to-center distance L1 of each planetary gear 5 and the center-to-center distance [L2] between each planetary gear 5 and the external gear 3 completely match, each planetary gear 5 will be equally spaced. Therefore, if there is no error in each gear 3.4.5, the load will be applied to each planetary gear 5 on average, and each gear 3.4.5 will exhibit the expected strength and no vibration noise will be generated. However, in reality, the above L1. It is difficult to match L2 completely, and 8
The bearing portion of the planetary gear 5 and each gear 3, 4. .
目的
本発明の目的は中心歯車に対して噛合う複数個の歯車、
例えば前述したように中心歯車としての外歯車に噛合う
各遊星歯車に負荷が等分にかが為ように構成することに
より、歯車機構の小形化を図るとともに振動騒音を防止
することができる動力等配装置を提供することにある。Object The object of the present invention is to provide a plurality of gears meshing with a central gear,
For example, as mentioned above, by configuring the structure so that the load is applied equally to each planetary gear that meshes with the external gear as the central gear, the gear mechanism can be made smaller and vibration noise can be prevented. The purpose is to provide an equal distribution device.
発明の構成
本発明はこの目的を達成すべく、中心歯車3に対して噛
合う複数個の歯車5をそれぞれ円すい軸部9に対しその
大径側へ向かう方向に弾性部材15による推力を与えて
組付けたものであって、伝達動力の大小に応じて円すい
軸部9上の各歯車5の軸方向位置を変化させて円すい軸
部9上でこれに嵌まり合う各歯車5の円すい穴13を軸
方向に移動させることにより、軸と穴の隙間Sを変化さ
せて円すい軸部9の軸心と荷重を受(プている歯車5の
回転軸心との心違い距ll1lleを変化させ、大負荷
を受(]でいる歯車5では荷重を減少させ、小負荷を受
けている歯車5では荷重を増大さゼて、動力を等配させ
るようにしたものである。Structure of the Invention In order to achieve this object, the present invention provides a plurality of gears 5 meshing with the central gear 3 with a thrust force by an elastic member 15 in a direction toward the larger diameter side of the conical shaft portion 9, respectively. The axial position of each gear 5 on the conical shaft part 9 is changed according to the magnitude of transmitted power, and the conical hole 13 of each gear 5 is fitted into the conical shaft part 9. By moving the gear in the axial direction, the gap S between the shaft and the hole is changed, and the misalignment distance ll1lle between the axial center of the conical shaft portion 9 and the rotational axis of the gear 5 that receives the load is changed, The load is reduced on the gear 5 that is receiving a large load, and the load is increased on the gear 5 that is receiving a small load, so that the power is evenly distributed.
実施例
以下、本発明を第1図に示すギャードモータの減速機構
に具体化した第一実施例を第3図〜第8図に従って説明
すると、前記キャリア6の一側面には3本の支軸8が1
20度間隔で固着され、その突出部分の外周面がテーパ
ー状に形成されるとともに、そのテーパー状円すい軸部
9の先端には受けリング10が固定されている。この円
すい軸部9には遊星歯車5がカラー11を介して挿嵌さ
れ、前記モータ@2の外歯車3と固定内歯車4との間に
噛合されるようになっている。この遊星歯車5の内周に
は滑り軸受メタル12が嵌着され、この滑り軸受メタル
12の内周面は前記円すい軸部9に密接されるようにテ
ーパー状の円すい穴13となっている。この円すい軸部
9の小径側において、前記受はリング10と遊星歯車5
の一側面との間にはカラー14を介して弾性部材15に
め実施例では第18〜21図に示す凹ばねを使用してい
る。)が介在され、この弾性部材15により遊星歯車5
に対し円すい軸部9の大径側に向かう推力が与えられて
いる。Embodiment A first embodiment in which the present invention is embodied in a speed reduction mechanism for a geared motor shown in FIG. 1 will be described below with reference to FIGS. is 1
They are fixed at intervals of 20 degrees, and the outer circumferential surface of the protruding portion is formed into a tapered shape, and a receiving ring 10 is fixed to the tip of the tapered conical shaft portion 9. A planetary gear 5 is inserted into this conical shaft portion 9 via a collar 11, and is meshed between the external gear 3 and the fixed internal gear 4 of the motor @2. A sliding bearing metal 12 is fitted onto the inner periphery of the planetary gear 5, and the inner peripheral surface of the sliding bearing metal 12 forms a tapered conical hole 13 so as to be brought into close contact with the conical shaft portion 9. On the small diameter side of this conical shaft portion 9, the receiver is connected to the ring 10 and the planetary gear 5.
In the embodiment, a concave spring shown in FIGS. 18 to 21 is used, which is connected to one side of the elastic member 15 via a collar 14. ) is interposed, and this elastic member 15 causes the planetary gear 5 to
A thrust force directed toward the larger diameter side of the conical shaft portion 9 is applied to the conical shaft portion 9 .
さて、第5.6図は遊星歯車5が弾性部材15により円
すい軸部9の大径側のカラー11に押付けられた軽負荷
状態を示し、この軽負荷状態で第1図の出力軸7に大き
な負荷がかかると、遊星歯車5は第7.8図に示すよう
に円すい軸部9の小径側に向かって距11aだけ移動す
る。その結果、遊星歯車5の滑り軸受メタル12の円す
い穴135−
と円すい軸部9の外周面との間の隙間Sが大きくなり、
円すい軸部9の軸心に対して遊星歯車5の回転軸心がe
だけ心違いとなって遊星歯車5が片寄る。そして、3個
の遊星歯車5のうち、いずれhl 1個に製作誤差等の
原因で他の遊星歯車5より大きい負荷がかかると、この
負荷を軽減しようとして、軸方向移動距離aが大きくな
る。そのため、心違い距@eが他の遊星歯車5よりも大
きくなるので、当該遊星歯車5は負荷を軽減する方向へ
後退することになって、負担する負荷は軽減され、その
負荷は伯の遊星歯車5が負担する。このように各遊星歯
車5はその軸方向移動距離緩衝自動調節されて、動力が
3個の遊星歯車5に等しく分配されたところで、遊星歯
車5に生ずる推力と弾性部材15の弾性力とが釣り合い
、遊星歯車5はその釣り合い位置で回転することになる
。Now, FIG. 5.6 shows a light load state in which the planetary gear 5 is pressed against the collar 11 on the large diameter side of the conical shaft portion 9 by the elastic member 15. In this light load state, the output shaft 7 of FIG. When a large load is applied, the planetary gear 5 moves by a distance 11a toward the smaller diameter side of the conical shaft portion 9, as shown in FIG. 7.8. As a result, the gap S between the conical hole 135- of the sliding bearing metal 12 of the planetary gear 5 and the outer circumferential surface of the conical shaft portion 9 becomes larger.
The rotation axis of the planetary gear 5 is e relative to the axis of the conical shaft portion 9.
However, the planetary gear 5 is shifted to one side due to a misunderstanding. If one of the three planetary gears 5 is subjected to a larger load than the other planetary gears 5 due to a manufacturing error or the like, the axial movement distance a increases in an attempt to reduce this load. Therefore, the misalignment distance @e becomes larger than the other planetary gears 5, so the planetary gear 5 moves backward in the direction of reducing the load, and the load it bears is reduced. Gear 5 bears the burden. In this way, each planetary gear 5 is automatically adjusted to buffer its axial travel distance, and when the power is equally distributed to the three planetary gears 5, the thrust generated in the planetary gear 5 and the elastic force of the elastic member 15 are balanced. , the planetary gear 5 will rotate in its balanced position.
第9図に示す第二実施例においては、前記第一実施例に
おける滑り軸受メタル12に代えて、スラスト玉軸受付
き針状ころ軸受16を用いてあり、この軸受16と円す
い軸部9との間にテーパース6−
リーブ17が嵌合され、このテーパースリーブ17が円
すい軸部9上を遊星歯車5とともに移動して、円すい軸
部9の軸心と遊星歯車5の回転軸心との心違い距@eが
変化し、第一実施例と同様に動力等配が行われる。又、
第一実施例では、円すい軸部9上で遊星歯車5をその大
径側に向かって押込む弾性部材15として皿ばねを使用
しているが、この実施例では弾性部材15としてコイル
ばねを使用している。In the second embodiment shown in FIG. 9, a needle roller bearing 16 with a thrust ball bearing is used in place of the sliding bearing metal 12 in the first embodiment. A tapered sleeve 6-leave 17 is fitted in between, and this tapered sleeve 17 moves together with the planetary gear 5 on the conical shaft 9 to prevent the axial center of the conical shaft 9 and the rotational axis of the planetary gear 5 from being misaligned. The distance @e changes, and equal power distribution is performed as in the first embodiment. or,
In the first embodiment, a disc spring is used as the elastic member 15 that pushes the planetary gear 5 toward the larger diameter side on the conical shaft portion 9, but in this embodiment, a coil spring is used as the elastic member 15. are doing.
前記第−実施例及び第二実施例では、弾性部材15が各
遊星歯車5ごとに独立して別体になっているが、第10
図〜第14図に示す第三実施例では、前記各弾性部材1
5を一体的にして第13図に示すように一枚の波形リン
グばね18として(≧る。又、前記第−実施例及び第二
実施例では、各弾性部材15を支える受けリング10も
各遊星歯車5ごとに独立して別体になっているが、この
実施例ではこの受けリング10も一体的にして第12図
に示すように一枚の共通受(プリング1つとしている。In the first embodiment and the second embodiment, the elastic member 15 is separately provided for each planetary gear 5, but in the tenth embodiment
In the third embodiment shown in FIGS. to 14, each of the elastic members 1
5 are integrated into one waveform ring spring 18 as shown in FIG. Although each planetary gear 5 is an independent and separate body, in this embodiment, this receiving ring 10 is also integrated into one common bearing (one pulling) as shown in FIG.
前記波形リングばね18においては、120度間隔で3
個の挿通孔20が形成され、前記支軸8の円すい軸部9
に嵌合されるようになっている。この波形リングばね1
8は各挿通孔20(”j近の山部18aとこの山部18
a間の谷部181〕とにより波形状をなし、各谷部18
bが前記共通受(プリング19により支持されるととも
に、山部18aの一側面は遊星歯車5に接するカラー1
4の一側面に当接し、遊星歯車5を円すい軸部9の大径
側へ付勢してこの山部18aを前記弾性部材15と同様
な機能を持つ弾性部15としている。In the waveform ring spring 18, three
through-holes 20 are formed, and the conical shaft portion 9 of the support shaft 8
It is designed to be mated to the This wave ring spring 1
8 indicates each insertion hole 20 (the ridge 18a near “j” and the ridge 18
troughs 181] between a) to form a wave shape, and each trough 18
b is supported by the common receiver (pring 19), and one side of the crest 18a is the collar 1 in contact with the planetary gear 5.
4 and urges the planetary gear 5 toward the larger diameter side of the conical shaft portion 9, making this peak portion 18a an elastic portion 15 having the same function as the elastic member 15.
さて、第14図に示すように一つの遊星歯車5Bの負荷
が大きくなって円すい軸部9B上で波形リングばね18
の弾性部15が圧縮されて小径側へ移動すると、その波
形リングばね18の弾性部15は破線で示すように変形
して、他の遊星歯車5A、5Cを円すい軸部9A、9C
の大径側へ押戻す推力を増大させる作用を積極的に生出
すことになり、動力の等配に対して有効である。Now, as shown in FIG. 14, the load on one planetary gear 5B increases and the waveform ring spring 18 on the conical shaft portion 9B
When the elastic portion 15 of the wave ring spring 18 is compressed and moved toward the smaller diameter side, the elastic portion 15 of the wave ring spring 18 is deformed as shown by the broken line, and the other planetary gears 5A, 5C are connected to the conical shaft portions 9A, 9C.
This actively produces an effect of increasing the thrust force pushing back toward the larger diameter side, which is effective for equal distribution of power.
又、前記波形リングばね18に代えて第22図に示すリ
ングばね18を用いてもよい。このリングばね18の外
周には3本の腕部15が形成され、この腕部15を弾性
部としている。このリングばね18の機能も波形リング
ばね18の場合と同様である。Further, instead of the waveform ring spring 18, a ring spring 18 shown in FIG. 22 may be used. Three arm parts 15 are formed on the outer periphery of this ring spring 18, and these arm parts 15 serve as elastic parts. The function of this ring spring 18 is also similar to that of the waveform ring spring 18.
第15.16図に示す第四実施例は遊星歯車機構以外の
歯車装置に応用したものであって、入力軸2に固定した
外歯車3と出力軸7に固定した内歯車4との間に複数個
の中間歯車5を噛合わせ、この中間歯車5を固定支軸8
により回動可能に支承している。そして、第16図に示
すようにこの固定支軸8の形状並びにこの固定支軸8に
対する中間歯車5の取付構造は前記第一実施例と同様に
なっている。又、前記第二実施例及び第三実施例をこの
歯車装置に応用することも可能である。The fourth embodiment shown in Figs. 15 and 16 is applied to a gear device other than a planetary gear mechanism, and there is a gap between an external gear 3 fixed to the input shaft 2 and an internal gear 4 fixed to the output shaft 7. A plurality of intermediate gears 5 are meshed together, and this intermediate gear 5 is attached to a fixed support shaft 8.
It is rotatably supported by. As shown in FIG. 16, the shape of the fixed support shaft 8 and the structure for attaching the intermediate gear 5 to the fixed support shaft 8 are the same as in the first embodiment. It is also possible to apply the second and third embodiments to this gear device.
第17図に示す第五実施例においては、前記第一実施例
における大径側のカラー11とキャリア6との間にも各
遊星歯車5ごとに別体の弾性部材21(この実施例では
前記器ばねを使用している。In the fifth embodiment shown in FIG. 17, a separate elastic member 21 (in this embodiment, a separate elastic member 21 for each planetary gear 5) is also provided between the collar 11 on the large diameter side in the first embodiment and the carrier 6. A spring is used.
)を介在させ、各遊星歯車5を円すい軸部9の小径側へ
も付勢して小径側の弾性部15との釣り合一〇−
いで各遊星歯車5を中立位置に保持している。従って、
各遊星歯車5は円すい軸部9の小径側へも大径側へも移
動することができ、前記負荷の等配を行い易くなる。又
、前記第二実施例から第四実施例にもこの弾性部材21
を同様に取イ」けてもよい。), the planetary gears 5 are also biased toward the smaller diameter side of the conical shaft portion 9, and each planetary gear 5 is held at a neutral position by balance with the elastic portion 15 on the smaller diameter side. Therefore,
Each planetary gear 5 can move toward both the small diameter side and the large diameter side of the conical shaft portion 9, making it easier to equally distribute the load. Moreover, this elastic member 21 is also used in the second to fourth embodiments.
may be taken in the same way.
なお、前記各実施例では、減速歯車装置を例示したが、
これらの入力軸と出力軸とを逆に用いて増速機構として
も応用することができる。In addition, although the reduction gear device was illustrated in each of the above embodiments,
It can also be applied as a speed increasing mechanism by using these input shafts and output shafts in reverse.
又、前記実施例に限らず、次のように構成することも可
能であるわ
(イ)前記実施例では、モータ軸2から太陽歯車として
の外歯車3への連動はモータ軸2に直接外歯車3を形成
して行っているが、モータ軸2と外歯車3との間に他の
連動機構を介在させることもできる。なお、キャリア6
と出力軸7との連動の場合にも同様である。Furthermore, the structure is not limited to the embodiment described above, and the following configuration is also possible. Although the gear 3 is formed, other interlocking mechanisms may be interposed between the motor shaft 2 and the external gear 3. In addition, carrier 6
The same applies to the case of interlocking with the output shaft 7.
(ロ)ti星歯車機構は一段のものを例示したが、二段
以上の減速のものにも応用することができる。(b) Although a one-stage Ti star gear mechanism is illustrated, it can also be applied to a two-stage or more reduction gear mechanism.
(ハ)支軸8のテーパーの向きを逆にする。(c) Reverse the direction of the taper of the support shaft 8.
10−
効果
以上詳述した本発明によれば、中心歯車2に対して噛合
う複数個の歯車5をそれぞれ円すい軸部9に対しその大
径側へ向かう方向に弾性部材15による推力を与えて取
付けるだけの簡単な構造で、各歯車5の負荷の等配を容
易かつ確実に行うことができ、ひいては振動騒音を極力
防止するとともに装置全体を小形にすることができ、実
用効果の大きい動力等配性能を付与できる歯車装置とし
て優れた発明である。10- Effects According to the present invention described in detail above, the plurality of gears 5 meshing with the center gear 2 are each given a thrust by the elastic member 15 to the conical shaft portion 9 in the direction toward its large diameter side. With a simple structure that requires only installation, it is possible to easily and reliably distribute the load on each gear 5 evenly, which in turn prevents vibration and noise as much as possible and makes the entire device compact, providing power, etc. with great practical effects. This is an excellent invention as a gear device that can provide distribution performance.
第1図は従来のギャードモータの減速機構を示す断面図
、第2図はその遊星歯車機構部分のみを示す概略図、第
3図〜第8図は第一実施例を示し、第3図は遊星歯車機
構を示す正面図、第4図はその縦断面図、第5図は円す
い軸部上の遊星歯車の軽負荷時数付状態を示す部分断面
図、第6図はそのX 1−X i線断面図、第7図は同
じく大角荷時取付状態を示す部分断面図、第8図はその
X 2−×2線断面図、第9図は第二実施例において円
すい軸部と遊星歯車との取付状態を示す部分断面図、第
10図〜第14図は第三実施例を示し、第10図は遊星
歯車機構を示す正面図、第11図はその縦断面図、第1
2図は共通受はリングの斜視図、第13図は波形リング
ばねの斜視図、第14図はその波形リングばねの作用を
示す展開図、第15図は第四実施例にかかる歯車装置の
概略図、第16図はこの実施例において円すい軸部と遊
星歯車との取付状態を示す部分断面図、第17図は第五
実施例において円すい軸部と遊星歯車との取付状態を示
す縦断面図、第18〜21図はそれぞれ冊ばねを示す斜
視図、第22図はリングばねの別個を示す斜視図である
。
モータ軸(入力軸)2、外歯車3、固定内歯車(内歯車
)4、遊星歯車(中間歯車)5、出力軸7、支軸(固定
支軸)8、円すい軸部9、受はリング10.滑り軸受メ
タル12、円すい穴13、弾性部材(弾性部)15、ス
ラスト玉軸受付き針状ころ軸受16、テーパースリーブ
17、リングばね18、共通受はリング19゜
第6図 第5図
rX・
特開DHGO−65940(6)Fig. 1 is a sectional view showing a conventional geared motor speed reduction mechanism, Fig. 2 is a schematic view showing only the planetary gear mechanism part, Figs. 3 to 8 show the first embodiment, and Fig. 3 is a planetary gear mechanism. A front view showing the gear mechanism, FIG. 4 is a longitudinal sectional view thereof, FIG. 5 is a partial sectional view showing the planetary gear on the conical shaft in a light load condition, and FIG. 6 is its X 1-X i 7 is a partial sectional view showing the installation state when loaded at a large angle, FIG. 8 is a sectional view taken along the X2-x2 line, and FIG. 10 to 14 show the third embodiment, FIG. 10 is a front view showing the planetary gear mechanism, FIG. 11 is a vertical sectional view thereof, and FIG.
Fig. 2 is a perspective view of the common bearing ring, Fig. 13 is a perspective view of the wave ring spring, Fig. 14 is a developed view showing the action of the wave ring spring, and Fig. 15 is a gear device according to the fourth embodiment. Schematic diagram, FIG. 16 is a partial sectional view showing how the conical shaft part and the planetary gear are attached in this embodiment, and FIG. 17 is a vertical cross-sectional view showing how the conical shaft part and the planetary gear are attached in the fifth embodiment. 18 to 21 are perspective views showing a book spring, respectively, and FIG. 22 is a perspective view showing a separate ring spring. Motor shaft (input shaft) 2, external gear 3, fixed internal gear (internal gear) 4, planetary gear (intermediate gear) 5, output shaft 7, support shaft (fixed support shaft) 8, conical shaft part 9, bearing is ring 10. Slide bearing metal 12, conical hole 13, elastic member (elastic part) 15, needle roller bearing with thrust ball bearing 16, tapered sleeve 17, ring spring 18, common bearing is ring 19°. Open DHGO-65940 (6)
Claims (1)
すい軸部に対しその大径側へ向かう方向に弾性部材によ
る推力を与えて取付けたことを特徴とする円すい軸を用
いた動力等配歯車装置。 2、弾性部材は各歯車に共通な一枚のリングばねであっ
て、各歯車に対応する部分に弾性部が形成され、複数個
の歯車のうち一部の歯車がこの弾性部の推力に逆らって
円すい軸部の小径側に向かって移動したとき、他の弾性
部がこれと連動して他の歯車に対して円すい軸部の大径
側に向かう推力を増すように構成されている特許請求の
範囲第1項に記載の円すい軸を用いた動力等配歯車装置
。 3、弾性部材は各歯車ごとに別体である特許請求の範囲
第1項に記載の円すい軸を用いた動力等配歯車装置。 4、弾性部材は皿ばねである特許請求の範囲第3項に記
載の円すい軸を用いた動力等配歯車装置。 5、弾性部材はコイルばねである特許請求の範囲第3項
に記載の円すい軸を用いた動力等配歯車装置。[Claims] 1. A conical shaft characterized in that a plurality of gears meshing with a central gear are each attached to a conical shaft portion by applying a thrust by an elastic member in a direction toward the large diameter side of the conical shaft portion. Power uniform gearing device using. 2. The elastic member is a single ring spring common to each gear, and an elastic part is formed in a portion corresponding to each gear, and some of the gears resist the thrust of this elastic part. When the gear moves toward the small diameter side of the conical shaft part, another elastic part is configured to increase the thrust force directed toward the large diameter side of the conical shaft part with respect to other gears in conjunction with this. A power uniform gearing device using a conical shaft according to item 1. 3. An equal power gearing device using a conical shaft according to claim 1, wherein the elastic member is separate for each gear. 4. A power uniform gearing device using a conical shaft according to claim 3, wherein the elastic member is a disc spring. 5. A power uniform gearing device using a conical shaft according to claim 3, wherein the elastic member is a coil spring.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17166383A JPS6065940A (en) | 1983-09-17 | 1983-09-17 | Power equally distributing gearing using conical shaft |
PCT/JP1984/000447 WO1985001334A1 (en) | 1983-09-17 | 1984-09-17 | Gear apparatus |
EP84903451A EP0188616B1 (en) | 1983-09-17 | 1984-09-17 | Gear apparatus |
DE8484903451T DE3484539D1 (en) | 1983-09-17 | 1984-09-17 | TRANSMISSION. |
US06/730,719 US4771654A (en) | 1983-09-17 | 1984-09-17 | Gear system |
US07/248,239 US4885959A (en) | 1983-09-17 | 1988-09-19 | Gear system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17166383A JPS6065940A (en) | 1983-09-17 | 1983-09-17 | Power equally distributing gearing using conical shaft |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6065940A true JPS6065940A (en) | 1985-04-15 |
JPS641695B2 JPS641695B2 (en) | 1989-01-12 |
Family
ID=15927387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17166383A Granted JPS6065940A (en) | 1983-09-17 | 1983-09-17 | Power equally distributing gearing using conical shaft |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6065940A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6372947A (en) * | 1986-09-12 | 1988-04-02 | Takashi Takahashi | Controlling speed change gear |
JPS63167150A (en) * | 1986-12-29 | 1988-07-11 | Takashi Takahashi | Speed change gear for control |
WO2009134684A1 (en) * | 2008-04-30 | 2009-11-05 | The Timken Company | Epicyclic gear system with flexpins |
JP2010007799A (en) * | 2008-06-27 | 2010-01-14 | Hoya Corp | Gear support structure |
JP2012197873A (en) * | 2011-03-22 | 2012-10-18 | Seiko Epson Corp | Speed reducer |
CN103661943A (en) * | 2012-09-15 | 2014-03-26 | 张明奇 | Momentum balance device of aerospace aircraft |
US10443701B2 (en) * | 2016-10-07 | 2019-10-15 | Rolls-Royce Plc | Planetary gear box assembly |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4957274B2 (en) * | 2007-02-02 | 2012-06-20 | トヨタ自動車株式会社 | Differential device for vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4857058A (en) * | 1971-11-15 | 1973-08-10 | ||
JPS58124849A (en) * | 1982-01-18 | 1983-07-25 | マビロ−ル・システム・エス・ア− | Planetary gear train |
-
1983
- 1983-09-17 JP JP17166383A patent/JPS6065940A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4857058A (en) * | 1971-11-15 | 1973-08-10 | ||
JPS58124849A (en) * | 1982-01-18 | 1983-07-25 | マビロ−ル・システム・エス・ア− | Planetary gear train |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6372947A (en) * | 1986-09-12 | 1988-04-02 | Takashi Takahashi | Controlling speed change gear |
JPH0378504B2 (en) * | 1986-09-12 | 1991-12-13 | Takashi Takahashi | |
JPS63167150A (en) * | 1986-12-29 | 1988-07-11 | Takashi Takahashi | Speed change gear for control |
WO2009134684A1 (en) * | 2008-04-30 | 2009-11-05 | The Timken Company | Epicyclic gear system with flexpins |
CN102076992A (en) * | 2008-04-30 | 2011-05-25 | 迪姆肯公司 | Epicyclic gear system with flexpins |
US8430788B2 (en) | 2008-04-30 | 2013-04-30 | The Timken Company | Epicyclic gear system with flexpins |
JP2010007799A (en) * | 2008-06-27 | 2010-01-14 | Hoya Corp | Gear support structure |
JP2012197873A (en) * | 2011-03-22 | 2012-10-18 | Seiko Epson Corp | Speed reducer |
CN103661943A (en) * | 2012-09-15 | 2014-03-26 | 张明奇 | Momentum balance device of aerospace aircraft |
US10443701B2 (en) * | 2016-10-07 | 2019-10-15 | Rolls-Royce Plc | Planetary gear box assembly |
Also Published As
Publication number | Publication date |
---|---|
JPS641695B2 (en) | 1989-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1399682B1 (en) | Epicyclic gear system | |
WO1985001334A1 (en) | Gear apparatus | |
JPS6065940A (en) | Power equally distributing gearing using conical shaft | |
US6206800B1 (en) | Universally adaptable carrier and swing arm for planetary gear assembly | |
FR2713732A1 (en) | Transmission with orbital gears and distributed load. | |
US5730657A (en) | Shaft coupling | |
US3144790A (en) | Gear type transmissions | |
DE102018129164A1 (en) | DIFFERENTIAL | |
WO2015090977A1 (en) | Device with two interlocked gear trains | |
US5792020A (en) | Supporting structure of a ring gear supporting member in planetary gear device | |
JP2000179629A (en) | Small backlash planetary gear device | |
JP2726699B2 (en) | Planetary gear unit with backlash adjustment mechanism | |
JPS63231036A (en) | Epicyclic gear unit | |
US5498215A (en) | Reduction gear assembly | |
US4843912A (en) | Variable stiffness support ring | |
EP0926395A1 (en) | Gear-drive assembly | |
US20040048715A1 (en) | Planetary gear device | |
JPH07508825A (en) | Gear assembly structure of differential gear device | |
US5904633A (en) | Continously variable transmission | |
JP3068940B2 (en) | Backlashless planetary gear | |
JPS5828050A (en) | Backlash removing device for bevel gear mechanism | |
JPS6241445A (en) | Planetary gear | |
CA1067723A (en) | Infinitely variable speed drive mechanism | |
JPH06200987A (en) | Hypoid gear transmission device | |
CN112503142B (en) | NW type planetary gear speed reducer and transmission system |