JPS6065703A - Production of high-purity chlorine dioxide - Google Patents

Production of high-purity chlorine dioxide

Info

Publication number
JPS6065703A
JPS6065703A JP17424683A JP17424683A JPS6065703A JP S6065703 A JPS6065703 A JP S6065703A JP 17424683 A JP17424683 A JP 17424683A JP 17424683 A JP17424683 A JP 17424683A JP S6065703 A JPS6065703 A JP S6065703A
Authority
JP
Japan
Prior art keywords
acid
manganese
chlorine dioxide
dioxide
chlorate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17424683A
Other languages
Japanese (ja)
Inventor
Makoto Ebisawa
海老沢 誠
Isao Isa
伊佐 功
Shigeoki Shibuya
渋谷 盛興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP17424683A priority Critical patent/JPS6065703A/en
Publication of JPS6065703A publication Critical patent/JPS6065703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:The reaction between a chlorate salt and MnCO3 or a divalent Mn compound in an acidic solution is followed by allowing ClO2 in the gas generated to be absorbed in the acidic solution whereby simultaneous production of high-purity ClO2 and MnO2 excellent in cell properties can be effected. CONSTITUTION:Air, an acidic solution of 0.1-20N and an chlorate salt solution are fed through lines 12-14 into the generating tank 11 in which MnCO3 or a divalent Mn compound containing its carbonate salt at least as a part and Mn oxide to effect the reactions at 25-70 deg.C, and the Mn oxide to which the MnO2 formed adheres is led into the separator 21 where the MnO2 is separated. The acidic solution is introduced into the crystallizer 42, then recycled through the line 15 to the tank 11. In the meantime, the gas generated in the tank 11 is introduced into the absorption column 41 where ClO2 is absorbed in the acidic solution and the remaining CO2 and air is exhausted through line 42 outside the system. Then, the ClO2 in the column 61 is eliminated by the air introduced from the line 63 and recovered through line 64.

Description

【発明の詳細な説明】 本発明は塩素酸塩を還元剤を用いて還元し、二酸化!素
を製造する方法において、還元剤として炭酸マンガン又
は炭酸マンガンを含む二価のマンガン化合物を用いて高
純度二酸化tA素を安全かつ効率よく製造し、同時に主
として電池材料として有用な二酸化マンカンを製造する
方法に関するものである。
[Detailed Description of the Invention] The present invention reduces chlorate using a reducing agent and oxidizes it! In a method for producing tA element, high-purity tA element dioxide is safely and efficiently produced using manganese carbonate or a divalent manganese compound containing manganese carbonate as a reducing agent, and at the same time mancane dioxide, which is mainly useful as a battery material, is produced. It is about the method.

二酸化塩素は大規模な装ftを用いて、大量にパルプの
徐白剤として使用されている。また脂肪の脱色、工業廃
棄物中よジフェノール分の除去、uト煙脱硝などの環境
保全、公害防止の分野にも広く使用されている。さらに
近年、上水道の殺菌^理に塩素が使用されているが、塩
素処理による発ガン性物質であるトリハロメタンの生成
が問題となっている。塩素の代替えとしてトリハロメタ
ンの生成しない二酸化塩素が有望視されている。しかし
ながら二酸化塩素は常温でガス状であシ、燥発の危欧性
があるために二酸化#A素は使用場所において製造され
ている。この理由から二酸化塩素の発生が安全かつ容易
に行なわれる高純度二酸化塩素の製造法が切望されてい
る。
Chlorine dioxide is used as a pulp bleaching agent in large quantities and in large scale applications. It is also widely used in the fields of environmental protection and pollution prevention, such as decolorizing fats, removing diphenols from industrial waste, and denitrifying smoke. Furthermore, in recent years, chlorine has been used to disinfect water supplies, but the production of trihalomethanes, a carcinogen, due to chlorine treatment has become a problem. Chlorine dioxide, which does not generate trihalomethanes, is seen as a promising alternative to chlorine. However, since chlorine dioxide is in a gaseous state at room temperature and there is a risk of drying out, elemental dioxide #A is manufactured at the site of use. For this reason, there is a strong need for a method for producing high-purity chlorine dioxide in which chlorine dioxide can be generated safely and easily.

二酸化塩素am素酸塩1例えは塩素酸ナトリウムに還元
剤として塩酸を作用させる除に鉱(1)式の化学反応式
によル生成する。
An example of chlorine dioxide chloride is produced by the chemical reaction formula (1) when sodium chlorate is treated with hydrochloric acid as a reducing agent.

Na0IO3−1−2HO1−+ 0101 +3≦O
1,−1−Mail十110 −・(りまた前記(1)
式の反応と共に二酸化塩素を生成しない下記(2)式の
副反応が起る。
Na0IO3-1-2HO1-+ 0101 +3≦O
1, -1-Mail 1110 - (Rimata (1)
Along with the reaction of the formula, a side reaction of the following formula (2) that does not produce chlorine dioxide occurs.

Na010.−1−6HO1−+ 301.−) Ma
il +5H,O−(2)従来、脚1生する塩素を最小
限にするために、(1)式ているが、(2)式の反応が
起らないとしても、発生は66.7−以上にはならない
。t fc高純度の二酸化塩素を生成する一つの方法は
特開昭55−162404に記載されているように塩素
酸ナトリウムを亜硫酸ガスで還元する方法である。この
反応は(3)式によ)示されるが、反応が遅いために塙
六酸ナトリnaolo3+3≦So@→0101+3≦
N62804 ++ (3)ラムおよび亜硫酸ガスの転
化率が低く、かつ未反応の亜硫酸ガスが二酸化塩素のi
度゛を低下させる。
Na010. -1-6HO1-+ 301. -) Ma
il +5H,O- (2) Conventionally, formula (1) has been used to minimize the amount of chlorine produced in leg 1, but even if the reaction of formula (2) does not occur, the generation will be 66.7- It doesn't go beyond that. t fc One method for producing high-purity chlorine dioxide is to reduce sodium chlorate with sulfur dioxide gas, as described in JP-A-55-162404. This reaction is shown by equation (3), but because the reaction is slow, naolo3+3≦So@→0101+3≦
N62804 ++ (3) The conversion rate of ram and sulfur dioxide gas is low, and unreacted sulfur dioxide gas is converted into chlorine dioxide.
Reduce the temperature.

また亜硫酸ガスの気化など複雑な装散を必要とし、高濃
度の排酸が出るなど多くの欠点がある。
It also has many drawbacks, such as requiring complicated dispersion such as vaporizing sulfur dioxide gas and producing high-concentration exhaust acid.

また二酸化マンカンは特に電池材料として有用であシ、
マンカン電池、アルカリ電池など杖大量に使用され、近
年高エネルギー密度電池として江目されているリチウム
電池にも使用されている。
Mankan dioxide is also particularly useful as a battery material.
It is widely used in manganese batteries, alkaline batteries, etc., and is also used in lithium batteries, which have been gaining attention as high-energy density batteries in recent years.

現在、電池用二酸化マンカンが主に用いられておシ、天
然二酸化マンガンは近年良質なものが入手困難となシ、
tた電解二酸化マンカンは亀カコストの上昇によシ、そ
の経済性が失われつつある。
Currently, manganese dioxide is mainly used for batteries, but natural manganese dioxide has become difficult to obtain in recent years.
The economic efficiency of electrolytic mankan dioxide is being lost due to the rising cost of carbon dioxide.

上記した理由によシミ池特性の優れた、かつ経済的な二
酸化マンガンの製造法が切望されている。
For the reasons mentioned above, there is a strong need for an economical method for producing manganese dioxide that has excellent stain retention characteristics.

本発明の目的は高純度の二酸化塩素を安全に、容易に、
かつ安価に製造すると共に電池特性の優れた二酸化マン
ガンを同時に製造する方法を提供することにある。
The purpose of the present invention is to safely and easily produce high-purity chlorine dioxide.
Another object of the present invention is to provide a method for simultaneously producing manganese dioxide that is inexpensive and has excellent battery characteristics.

本発明者らは上記目的を達成するために種々研究を行な
った結果、本発明に到達した。
The present inventors conducted various studies to achieve the above object, and as a result, they arrived at the present invention.

すなわち、本発明は高純度二酸化塩素を製造する方法に
おいて、塩素酸塩と炭酸マンガンまた紘少なくともその
一部を炭酸塩として含む二価のマンガン化合物とを酸性
溶液中で25Cないし70CおよびWl濃度0.1ない
し20規定で反応させ、#噴キ≠省発生するガス中の二
酸化塩素を酸溶液に吸収させた後該二酸化塩素を放散し
、高純度二酸化塩素および二酸化マンカytl−同時に
得ることを特徴とする高純度二酸化塩素の製造法である
That is, the present invention provides a method for producing high-purity chlorine dioxide, in which a chlorate and a divalent manganese compound containing manganese carbonate or at least a part thereof as a carbonate are mixed in an acidic solution at 25C to 70C and a Wl concentration of 0. .The chlorine dioxide in the generated gas is absorbed into an acid solution by reacting at 1 to 20 normal, and the chlorine dioxide is diffused to simultaneously obtain high-purity chlorine dioxide and manka ytl dioxide. This is a method for producing high-purity chlorine dioxide.

更に詳しく説明すると、本発明の方法において、酸性溶
液中にマンカン酸化物を存在させて塩素酸塩と炭酸マン
カンまたは少なくともその一部を炭酸塩として含む二価
のマンガン化合物を反応させることによシ、マンガン酸
化物を重質化することができると同時に二酸化塩素の発
生速度・を早くすることができる。
More specifically, in the method of the present invention, mancane oxide is present in an acidic solution, and chlorate is reacted with a divalent manganese compound containing mancane carbonate or at least a part thereof as a carbonate. , the manganese oxide can be made heavier, and at the same time, the rate of generation of chlorine dioxide can be increased.

本発明の方法に用いるマンカン酸化物は好ましくLマン
ガンと酸素の原子比が1対1ないし2であシ、更に好ま
しくは炭酸マンガンを焙焼して得られる酸化物である。
The manganese oxide used in the method of the present invention preferably has an atomic ratio of L manganese to oxygen of 1:1 to 2, and is more preferably an oxide obtained by roasting manganese carbonate.

本発明の方法に用いる塩素酸塩としては塩素酸ナトリウ
ム、塩素酸カリウム、tRm Fリチウム、塩素酸カル
シウムおよび塩素酸マグネシウムの群の化合物から選け
れfclまたは2種以上の混合物である。
The chlorate used in the method of the present invention is fcl selected from the group of sodium chlorate, potassium chlorate, tRm F lithium, calcium chlorate and magnesium chlorate, or a mixture of two or more thereof.

本発明の方法に用いる二価のマンカン化合物は硝酸マン
カン、硫酸マンガン、塩化マンカン、 PG俄マンカン
、水[ISマンカンおよび一酸化マン〃ンの群の化合物
から選はれた1または2種以上の混合物である。
The divalent mancan compound used in the method of the present invention is one or more compounds selected from the group of mancan nitrate, manganese sulfate, mancan chloride, PG mancan, water [IS mancan and mancan monoxide]. It is a mixture.

本発明の方法における酸性溶液中の@は硝酸。@ in the acidic solution in the method of the present invention is nitric acid.

硫酸、塩酸、#lI酸およびそれらの混酸である。?I
t1酸を用いfc@合の酸濃度は2規定ないし15規定
の範囲とし、硫酸を用いた場合のi!濃度は5規定ない
し18規定の範囲とし、塩酸を用い71C場合の酸濃度
は(L2規定ないし3規定の範囲とし、俗酸を用いた場
合の酸濃度は3規定ないし18規定の範囲とし、また混
酸を用いた場合の酸濃度は各h・め酸の最も小さい下限
濃度ないし最も大きい上限濃度の範囲とする。各hto
酸の下限濃度よυ低い濃度ては反応が充分な速度で進行
しない。また上限濃度よシ高い濃度では二酸化塩素の発
生速度が著しく増加し、危険な状態となる。
These are sulfuric acid, hydrochloric acid, #lI acid, and mixed acids thereof. ? I
When using t1 acid, the acid concentration for fc@ is in the range of 2N to 15N, and when using sulfuric acid, i! The concentration should be in the range of 5N to 18N, and when hydrochloric acid is used at 71C, the acid concentration is in the range of (L2N to 3N), and when common acid is used, the acid concentration is in the range of 3N to 18N, and When using a mixed acid, the acid concentration is in the range from the smallest lower limit concentration to the largest upper limit concentration of each h.
If the acid concentration is lower than the lower limit, the reaction will not proceed at a sufficient rate. Furthermore, if the concentration is higher than the upper limit concentration, the rate of generation of chlorine dioxide will increase significantly, creating a dangerous situation.

本発明の方法における反応温度は25゛Cないし70C
を用いる。250以下では反応が充分な速度で進行しな
い。また70C以上では二酸化塩素の発生速度が著しく
遠くなシ危険な状態となるばかシでなく塩素酸塩の二酸
化塩素への転化率の低下、すなわち塩素数基原単位の増
加を併う。良に生成した二酸化塩素が塩素と酸素とに分
解し、時には鋤発が起る。好ましくは50Cないし60
C本発明の方法におけるm溶液の配は硝酸、塩m、燐酸
およびそれらの混酸である。そのWln度はα01規定
ないし2 PJl、定である。a01規定以下では(4
)式および(5)式の反応が十分な速度をもって進行M
n0O1−1−21+−+ Mn”十H20+oo□↑
 −(4)Mn”+20103−+ Mno2+cto
2↑ ・(5)しない。また2規定以上としても効果が
特に1沼められない。
The reaction temperature in the method of the present invention is 25°C to 70°C.
Use. If it is less than 250, the reaction will not proceed at a sufficient rate. Moreover, at 70C or higher, the rate of generation of chlorine dioxide is extremely slow, which does not lead to a dangerous situation, but also causes a decrease in the conversion rate of chlorate to chlorine dioxide, that is, an increase in the basic unit of chlorine. Chlorine dioxide, which is normally produced, decomposes into chlorine and oxygen, sometimes resulting in plowing. Preferably 50C to 60
C The m solution in the method of the present invention is nitric acid, salt m, phosphoric acid, and mixed acids thereof. Its Wln degree is α01 specified to 2 PJl, constant. Below the a01 regulations (4
) and (5) reactions proceed at sufficient speed M
n0O1-1-21+-+ Mn”10H20+oo□↑
-(4)Mn"+20103-+Mno2+cto
2↑ ・(5) Don't do it. Also, even if there are 2 or more provisions, the effect will not be particularly swamped by 1.

本発明の方法の一つの真施態様を際付図面に従うて説明
すると、発生WJ11にマンガン酸化物およびRrt!
マンガンまfcd少なくともその一部を炭酸塩として含
む二価のマンカン化合物を水に分散させ、ライン12よ
シ空気を導入してお・く。ライン15よシ酸性母液をま
たはライン14よシ酸を。
One true embodiment of the method of the present invention will be explained with reference to the accompanying drawings. Manganese oxide and Rrt! are generated in WJ11.
A divalent manganese compound containing at least a part of manganese fcd as a carbonate is dispersed in water, and air is introduced through line 12. Line 15 with citric acid mother liquor or line 14 with citric acid.

またライン15よシ塩素欧塩水溶iをそれぞれざら主槽
11に導入し反応を1711始1′る。発生楢11で生
成した戻敲カスおよび二に化塩素社空気と共に気相よシ
除かれ、生成した二酸化マンカンはあらかじめ加えた固
体として存在するマンカン酸化物る。重質化は(5)式
の反応によシ生成する二酸化マンガ/の量を多くすれば
よシ重質化される。
In addition, aqueous solution of cyclochloride (i) was introduced into the main tank 11 through the line 15, and reactions were carried out from 1711 to 1'. The recombinant scum produced in the generator 11 and the chlorine dinitride air are removed in the gas phase, and the produced mankan dioxide is the mankan oxide that was previously added as a solid. The weight can be further increased by increasing the amount of manga dioxide produced by the reaction of formula (5).

重質化されたマンガン酸化物はライン22を通して酸性
溶液と共にマンガン酸化物分離機21に導かれ、酸性溶
液と分離されライン23を通して系外に除き水洗、中和
、水洗、乾燥した後、電池用二酸化マンガンとして用い
られる。
The heavy manganese oxide is led to the manganese oxide separator 21 together with an acidic solution through a line 22, separated from the acidic solution, and removed from the system through a line 23, washed with water, neutralized, washed with water, dried, and then used for batteries. Used as manganese dioxide.

マンガン酸化物分離機によシ分離された重性溶液はライ
ン32よシ晶析分離機31に導かれ、用いた塩素酸塩中
の金ハイオンと酸性溶液中のP根からなる塩は晶析分離
機31で冷却または濃縮によシ晶析され、ライン53よ
シ除去される。酸性母液はライン15を通して発生槽1
1にもどされ、ゐ。
The heavy solution separated by the manganese oxide separator is led to the crystallization separator 31 through a line 32, and the salt consisting of the gold ion in the chlorate used and the P radical in the acidic solution is crystallized. It is crystallized by cooling or concentration in the separator 31 and removed through the line 53. Acidic mother liquor passes through line 15 to generation tank 1.
It is set back to 1.

、h生41!11で生成した炭酸ガスおよび二酸化塩素
紘空気と共に吸収塔41に導かれる。吸収塔41は図に
示したように精製%51と放散、%61fC連結されて
おシ各塔間に酸溶液を2イン43を通して循環させてお
く。酸溶液と接触することにょシ二酸化塩禿紘酸溶液に
溶解し、炭酸カスは空気ととともにライン42を通して
系外に除かれる。吻収塔からの酸溶液はライン52よp
uFi塔51に導かれる。ここでライン53よシ少介の
空気を導入し、わずかに溶解した炭酸ガスをライン54
全通して放散させ、酸溶液に溶解しでいる二m化塩素の
純度を高める。1?J製塔からの酸溶液はライン62を
通して放散塔61に導かれ、ライン63よシ空気を導入
して溶解している二酸化塩素を放散させ、空気と共に炭
酸カスを含まない高■度二酸化塩素をライン64から得
る。この二m化塩素は冷水に溶解して二酸化塩素水溶液
としてもよく、過酸化水素を含むアルカリ溶液に吸収し
て亜塩六酸塩としてもよい。
, h raw material 41!11 is led to an absorption tower 41 together with carbon dioxide gas and chlorine dioxide gas. As shown in the figure, the absorption column 41 is connected to the purification column 51, the dispersion column 61fC, and the acid solution is circulated between each column through the 2-in 43. Upon contact with the acid solution, the carbon dioxide salt dissolves in the acid solution, and the carbon dioxide scum is removed from the system through line 42 along with air. The acid solution from the anus collection tower is routed to line 52.
Guided to uFi tower 51. Here, a small amount of air is introduced through the line 53, and slightly dissolved carbon dioxide is introduced into the line 53.
The purity of the chlorine dimide already dissolved in the acid solution is increased by dissipating it throughout the solution. 1? The acid solution from the J tower is led to the stripping tower 61 through the line 62, and air is introduced through the line 63 to diffuse the dissolved chlorine dioxide. Obtained from line 64. This chlorine dimide may be dissolved in cold water to form a chlorine dioxide aqueous solution, or may be absorbed into an alkaline solution containing hydrogen peroxide to form a hexachloride salt.

;従来の二酸化塩素の製造法においては(り式および(
3)式のごとく、副生放物は塩化ナトリウム、硫酸ナト
リウムであシ低価値のものであっfco本発明の方法に
よれは高H度の二酸化塩素を製造でき、同時に電池用二
酸化マンカンとして有用な重yi化されたマン77/酸
化物を得ることができるので、二酸化塩素およびマンカ
ン酸化物の両者の4造コストが大巾に削減できた。
; In the conventional production method of chlorine dioxide,
3) As shown in the formula, the by-products are sodium chloride and sodium sulfate, which are of low value.By the method of the present invention, chlorine dioxide with a high H degree can be produced, and at the same time, it is useful as mankan dioxide for batteries. Since it is possible to obtain a heavy manganese 77/oxide, the production costs for both chlorine dioxide and mankan oxide can be significantly reduced.

また本発明によシ得られたマンガン酸化物は従来の電解
二酸化マンガンよシ優れた電池骨性を示した。例えば炭
酸マンガンをpa飾して得たマンカン酸化物(Mn0.
90%、充填密度2.1kが)を存在させ、塩素酸ナト
リウムと炭酸マンガンと反応させ、重質化したマンカン
酸化物(Mn0295%、充填密度2.3偽りを得た。
Furthermore, the manganese oxide obtained according to the present invention showed superior battery bone properties to conventional electrolytic manganese dioxide. For example, mankan oxide obtained by decorating with manganese carbonate (Mn0.
90%, packing density 2.1 k) was present and reacted with sodium chlorate and manganese carbonate to obtain a heavy mankan oxide (95% Mn, packing density 2.3 k).

この259を単一型塩化亜鉛型電池に組み、4オ、−ム
の連続放電を行なった結果、1.7vからo、asv−
1でに低下する時間は23時間であった。また電解二酸
化マンガン(IC−1)は18時間であった。
This 259 was assembled into a single type zinc chloride battery, and as a result of continuous discharge of 4 ohm, the result was 1.7v to o, asv-
The time it took for the temperature to drop to 1 was 23 hours. Further, electrolytic manganese dioxide (IC-1) was used for 18 hours.

次に実施例によって本発明の詳細な説明する。Next, the present invention will be explained in detail by way of examples.

実施例1 炭酸マンカンを焙焼して得たマンカン酸化物1、 OK
f 、炭R−r ンヵ/LIL12Kfおよび本釣2.
 OK9 ’i内容量5tのカラス表門つロフラス:f
f(発生m )に入れ、攪拌しながら98%硫rR0,
6Btf:徐りに加え%#旦とんどの炭酸カスを追い出
し加温して/、n r’ br15L −4> 4NO
i n?QlnJlk m 1.、J 〜 、−a41
、−+ −−−+りた。次に” t/min の割合で
空気を吹き込みながら650 V/1塩素塩素トナトリ
ウム水溶液口542t時間で添加し、炭酸カスおよび二
酸化填へを発生させた。二価マンガンイオンがなくなる
まで反応を続行し1反応を完結させた。仁の時の塩素酸
すまた発生槽から出る二酸化塩素ガス純度83%であっ
た。100%0.1規定硫酸水溶液に二酸化塩素を吸収
させ、空気で退い出したところ二酸化塩素カス純度は9
7%となった。発生槽のスラリー中の重質化したマンカ
ン酸化物をグラスフィルターで濾別し、水洗、乾燥して
重質化したマンカン酸化物1.1KFを得た。この25
Fを単−屋の塩化亜鉛型電池に組み、4オーム連れ放電
を行なった結果、1.7vから0.85 Vまでに低下
する時間は23時間であった。
Example 1 Mankan oxide 1 obtained by roasting carbonated mankan
f, charcoal R-r linker/LIL12Kf and main fishing 2.
OK9 'i Karasuomotetsuro Frusu with an internal capacity of 5 tons: f
f (generated m) and add 98% sulfur rR0, while stirring.
6Btf: Gradually add % # once to expel carbonate scum and warm /, n r' br15L -4> 4NO
In? QlnJlk m1. , J ~ , -a41
, −+ −−−+ Rita. Next, while blowing air at a rate of "t/min, 650 V/1 sodium chloride aqueous solution was added for 542 t hours to generate carbon dioxide scum and carbon dioxide. The reaction was continued until divalent manganese ions disappeared. The first reaction was completed.The purity of the chlorine dioxide gas coming out of the chloric acid smut generation tank was 83%.The chlorine dioxide was absorbed into a 100% 0.1N sulfuric acid aqueous solution and evacuated with air. However, the purity of chlorine dioxide scum is 9
It was 7%. The heavy mankan oxide in the slurry in the generation tank was filtered out using a glass filter, washed with water, and dried to obtain 1.1 KF of heavy mankan oxide. This 25
When F was assembled into a single-cell zinc chloride battery and discharged across 4 ohms, it took 23 hours for the voltage to drop from 1.7V to 0.85V.

反応液中の酸、二価マンカン化合物、堪素敲塩および二
敢化塩素吸収のためのρ溶液の柚類および濃度、反応温
情を膏多同称介緯鯰左行外−昏その結果を第1表に示し
た。
The acid in the reaction solution, the divalent mankan compound, the salt content and the concentration of the ρ solution for the absorption of divalent chlorine, the reaction temperature, and the result. It is shown in Table 1.

第1表よシ反応温度をaSCと高くすると塩素酸塩原単
位は非常に高くなシ、放電特性も悪くなる。また簡単に
酸溶液で炭酸カスおよび二酸化塩
As shown in Table 1, when the reaction temperature is raised to aSC, the chlorate consumption rate becomes extremely high and the discharge characteristics also deteriorate. It is also easy to remove carbonate scum and dioxide salts in acid solution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一夾施例を示すフローシートである。 11・・・・・・発生槽 21・・・・・・マンカン酸
化物分離機31・・・・・・晶析分離器 41・・・・
・・吸収塔51・・・・・・精製塔 61・・・・・・
放散塔部11 手 続 補 正 書 昭和58年11月18日 特許庁長官 若 杉 和 夫 殿 1、事件の宍示 昭和58年特許願餓174246号 に補正をする者 明IvIIl@の「発明の詳細な説明」の橢5、N8正
の内容 (1)明細書第1頁第4行の「アルカリ電池などは」を
「アルカリ電池などに」に訂正する。 (2)明細書第10頁第4行の「(4)式および(5)
式の反応が十分な速度をもりて進行」を「(4)式およ
び(5)式で生成した二酸化塩素と炭酸カスとの分離が
不十分である。」 と訂正する。 (3)明細書第10頁第4行の「しない。J を削除す
る。 以 上
FIG. 1 is a flow sheet showing one embodiment of the present invention. 11... Generation tank 21... Mankan oxide separator 31... Crystallization separator 41...
... Absorption tower 51 ... Purification tower 61 ...
Dispersion Tower Section 11 Procedures Amendment Written November 18, 1981 Kazuo Wakasugi, Director General of the Patent Office. 5, N8 Correct Contents of "Detailed Explanation" (1) "For alkaline batteries, etc." in line 4 of page 1 of the specification is corrected to "for alkaline batteries, etc." (2) “Formula (4) and (5)” on page 10, line 4 of the specification
"The reaction in equation (4) and (5) are proceeding at a sufficient speed" should be corrected to "separation of chlorine dioxide and carbon dioxide produced in equations (4) and (5) is insufficient." (3) Delete “No.J” on page 10, line 4 of the specification.

Claims (1)

【特許請求の範囲】 1、高純度二酸化塩素を製造する方法において。 塩素酸塩と炭酸マンガンま次は少なくともその一部を炭
酸塩として含む二価のマンカン化合物とを酸性溶液中で
25cないし7rJCおよび11%度0.1ないし20
規定で反応させ、発生するガス中の二酸化埋木をR溶W
に収取さぜfc、後該二酸化塩素を放散し、高純度二酸
化塩素および二酸化マンカンを同時に得ることを特徴と
する高純度二酸化塩素の!R造法。 2、酸性溶液中にマンガン酸化物を存在させて反応する
ことを特徴とする特rf請求の範囲第IJF4記載の製
造法。 &マンガン酸化物がマンカンとWR素の原子比か1対1
ないし2であることを特徴とする特許鎮4、マンガン酸
化物が炭酸マンガンを焙焦して得られる酸化物であるこ
と金特倣とする特許請求の範囲第2項記載の製造法。 5、塩素酸塩が塩素酸ナトリウム、塩素酸カリウム、塩
素酸リチウム、塩ffi ?カルシウムおよび塩素酸マ
グネシウムの群の化合物から迦ばれた1または2種以上
の混合物であることを/Iテ自とする特許請求の範囲第
1項記載の製造法。 6、二価のマンカン化合物が硝酸マンガン、硫ρ、マン
ガン、塩化マンカン、燈門マンカン、水敲化マンガンお
よび一酸化マンノjンの群の化合物から選はれ7c1ま
たは2杓以上の混合物であることを特徴とする特許請求
の範囲231項記載の製造法。 Z酸性溶液中の酸が?il’+ riヱ、ffL敲、塩
酸、燐畝ふ・よびそれらの混織であることを管倣と甘る
特許請求の範囲第1項記載の製造法。 a酸濃度が好ましくは硝酸の2ないし15規定、冊数の
3ないし18規定、塩酸の0.2ないし6各々の酸の最
も小さい下限濃度ないし最も大きい上限濃度の範囲であ
ることを特徴とする特許請求の範囲第1項記載の製造法
。 9敗溶液の酸が硝酸、硫酸、塩酸、隣酸およびそれらの
混酸であることを特徴とする特許請求の範囲第1項記載
の製造法。 1α酸溶液の酸濃度が(LOI規定ないし2規定である
ことを特徴とする特許請求の範囲第9項の製造法。 11、反応温度が好ましくは50CないしSSCである
ことを特徴とする特許請求の範囲第1項記載の製造法。 12、高純度二酸化塩素を製造する方法において、塩素
酸塩と炭酸マンカンまたは炭酸マンカンを含む二価のマ
ンカン化合物とを酸性溶液中で250ないし60Cおよ
び[%度α1ないし20規定で反応させる第一工程、得
られた二酸化マンカンを分離後中和および/または水洗
して乾燥する第三の工程、分離母液から該塩素酸塩中の
金厩イオンと核酸のi!!根からなる副生塩を分離除去
した酸を含む回収液を第1の工程に戻すことからなる第
三の工程および第一の工程において発生するガス中の二
酸化塩水を酸溶液に吸収させた後該二酸化塩素を放散す
る第四工程からなることを特徴とする高純度二酸化塩素
の製造法。 仏酸性溶液中にマンガン酸化物を存在させて反応を行な
わしめることを特徴とする特許請求の範囲第1項記載の
製造法。
[Claims] 1. A method for producing high purity chlorine dioxide. chlorate and manganese carbonate, a divalent manganese compound containing at least a part of it as carbonate, in an acidic solution with 25c to 7rJC and 11% degree 0.1 to 20
React according to the specified conditions, and remove the buried wood dioxide in the generated gas.
High-purity chlorine dioxide is collected into fc, and then the chlorine dioxide is diffused to obtain high-purity chlorine dioxide and mankan dioxide at the same time! R construction method. 2. The manufacturing method according to claim IJF4, characterized in that the reaction is carried out in the presence of manganese oxide in an acidic solution. &The atomic ratio of manganese oxide to mankan and WR element is 1:1.
4. The manufacturing method according to claim 2, wherein the manganese oxide is an oxide obtained by roasting manganese carbonate. 5. Chlorate is sodium chlorate, potassium chlorate, lithium chlorate, saltffi? The manufacturing method according to claim 1, wherein the manufacturing method is a mixture of one or more compounds derived from the group of calcium and magnesium chlorate. 6. The divalent mancan compound is selected from the group of manganese nitrate, ρ sulfur, manganese, manganese chloride, manganese manganese, manganese chloride, and manganese monoxide, and is a mixture of 7c1 or more. 232. The manufacturing method according to claim 231, characterized in that: Z What is the acid in the acidic solution? 2. The manufacturing method according to claim 1, which includes il'+ri, ffL, hydrochloric acid, phosphorus, and a mixture thereof. A patent characterized in that the acid concentration is preferably in the range of 2 to 15N for nitric acid, 3 to 18N for the number of volumes, and 0.2 to 6 for hydrochloric acid, from the smallest lower limit concentration to the largest upper limit concentration of each acid. The manufacturing method according to claim 1. 9. The production method according to claim 1, wherein the acid in the sulfuric acid solution is nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, or a mixed acid thereof. The production method according to claim 9, characterized in that the acid concentration of the 1α acid solution is (LOI standard to 2 normal). 11. A patent claim, characterized in that the reaction temperature is preferably 50C to SSC. 12. In the method for producing high-purity chlorine dioxide, a chlorate and a mankane carbonate or a divalent mankane compound containing mankane carbonate are mixed in an acidic solution at 250 to 60 C and [% The first step is to react at a temperature of α1 to 20 normal, the third step is to separate the obtained mankan dioxide, neutralize it and/or wash it with water, and dry it. i!! The third step consists of returning the acid-containing recovered solution from which the by-product salts from the roots have been separated and removed to the first step, and the salt dioxide water in the gas generated in the first step is absorbed into the acid solution. A method for producing high-purity chlorine dioxide, which comprises a fourth step of dissipating the chlorine dioxide after the reaction.A patent claim characterized in that the reaction is carried out in the presence of manganese oxide in a French acidic solution. The manufacturing method according to item 1.
JP17424683A 1983-09-22 1983-09-22 Production of high-purity chlorine dioxide Pending JPS6065703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17424683A JPS6065703A (en) 1983-09-22 1983-09-22 Production of high-purity chlorine dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17424683A JPS6065703A (en) 1983-09-22 1983-09-22 Production of high-purity chlorine dioxide

Publications (1)

Publication Number Publication Date
JPS6065703A true JPS6065703A (en) 1985-04-15

Family

ID=15975269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17424683A Pending JPS6065703A (en) 1983-09-22 1983-09-22 Production of high-purity chlorine dioxide

Country Status (1)

Country Link
JP (1) JPS6065703A (en)

Similar Documents

Publication Publication Date Title
JP2584718B2 (en) Continuous production method of chlorine dioxide
JP2819065B2 (en) Method for producing chlorine dioxide
CA1333519C (en) Process for the production of chlorine dioxide
US2936219A (en) Production of chlorine dioxide
US4160012A (en) Process of refining sodium hexafluorosilicate containing gypsum
US3615195A (en) Fluosilic acid recovery
US4216195A (en) Production of chlorine dioxide having low chlorine content
JP2819066B2 (en) Method for producing chlorine dioxide
JPH03115102A (en) Production of chlorine dioxide
JPH0776081B2 (en) Chlorine dioxide production method
CA1105877A (en) Process for producing chlorine dioxide
JPS6065703A (en) Production of high-purity chlorine dioxide
DE2736797A1 (en) METHOD FOR PURIFYING EXHAUST GAS
US4178356A (en) Process for manufacturing chlorine dioxide
JPH06510271A (en) Method for producing concentrated hypochlorous acid solution
JPH02293301A (en) Production of chlorine dioxide
US3524728A (en) Closed cycle system for the generation of chlorine dioxide
EP0131378B2 (en) Process for the production of chlorine dioxide
US6921521B2 (en) Method of producing chlorine dioxide employs alkaline chlorate in a mineral acid medium and urea as a reducing agent
US6608008B1 (en) Lithium hydroxide compositions
JPS63162507A (en) Manufacture of calcium hypochlorite and product thereby
US4294813A (en) Process for forming calcium nitrite
SE453745B (en) Prodn. of chlorine-free chlorine di:oxide used as bleaching chemical
JPH09125171A (en) Method for recovering vanadium from vanadium-based electrolyte
JPS605004A (en) Manufacture of chlorine dioxide