JPS6065224A - Steam manifold in multi-cylinder internal-combustion engine of boiling-cooling type - Google Patents

Steam manifold in multi-cylinder internal-combustion engine of boiling-cooling type

Info

Publication number
JPS6065224A
JPS6065224A JP17208183A JP17208183A JPS6065224A JP S6065224 A JPS6065224 A JP S6065224A JP 17208183 A JP17208183 A JP 17208183A JP 17208183 A JP17208183 A JP 17208183A JP S6065224 A JPS6065224 A JP S6065224A
Authority
JP
Japan
Prior art keywords
steam
cylinder
water jacket
boiling
inlet port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17208183A
Other languages
Japanese (ja)
Other versions
JPH039287B2 (en
Inventor
Takao Kubotsuka
窪塚 孝夫
Masahiko Kindo
雅彦 金堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17208183A priority Critical patent/JPS6065224A/en
Publication of JPS6065224A publication Critical patent/JPS6065224A/en
Publication of JPH039287B2 publication Critical patent/JPH039287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point

Abstract

PURPOSE:To enable steam to be smoothly derived from a water jacket, by mounting a steam manifold to independently communicate its respective inlet port in each cylinder to the upper position of its water jacket and guiding the inlet port to an outlet port through a steam collector, in the case of an engine of boiling-cooling type. CONSTITUTION:A steam manifold 30 is mounted to the side end face of a cylinder head 11 through a mounting flange 31, and a respective inlet port 32 provided in each cylinder is independently communicated to a communication port part 17A in the upper position of an outer wall 16 of a main combustion chamber 15 and in a gas-phase refrigerant space in the upper of a water jacket 17 of the cylinder head 11. Then the inlet port 32, having a smooth curved wall, is communicated to a steam collector 33 in the upper position. Further an outlet port 35 is provided in an upper part in the vicinity of an almost central upper end in a longitudinal direction of the steam collector 33.

Description

【発明の詳細な説明】 く技術分野〉 本発明は冷媒の気化潜熱を利用してシリンダ及び燃焼室
外壁を冷却するいわゆる沸騰冷却式多気筒内燃機関にお
いて、ウォータジャケット上位の気相部から冷媒の沸騰
蒸気を外部に導く蒸気マニホルドに関する。
[Detailed Description of the Invention] Technical Field> The present invention relates to a so-called boiling-cooled multi-cylinder internal combustion engine that uses the latent heat of vaporization of a refrigerant to cool cylinders and the outer wall of a combustion chamber. This invention relates to a steam manifold that guides boiling steam to the outside.

〈背景技術〉 沸騰冷却式内燃機関は例えば特公昭57−57608号
公報に開示されておシ、これを第1図によって説明する
<Background Art> A boiling-cooled internal combustion engine is disclosed in Japanese Patent Publication No. 57-57608, for example, and will be explained with reference to FIG.

即ち、機関1のウォータジャケット2内にはその大部分
の容積を占める液相冷媒りが満たされておシ、該液相冷
媒を気筒との間に熱交換させ、沸騰気化させて蒸気(気
相冷媒V)を発生させる。
That is, the water jacket 2 of the engine 1 is filled with a liquid-phase refrigerant that occupies most of its volume, and the liquid-phase refrigerant is heat exchanged with the cylinders and boiled and vaporized to form steam (vapor). A phase refrigerant V) is generated.

発生した蒸気をウォータジャケット2のシリンダヘッド
内上位空間に捕集した後、蒸気通路3を介してコンデン
サ4に導き、ここで放熱させ、凝縮するととにより再び
液冷媒に戻す。
After the generated steam is collected in the upper space within the cylinder head of the water jacket 2, it is led to the condenser 4 via the steam passage 3, where it is radiated heat, condensed, and returned to liquid refrigerant.

液化した冷媒は、冷媒通路5を介してフィードポンプ6
により再びウォータジャケット2内へと還流される。
The liquefied refrigerant is passed through the refrigerant passage 5 to the feed pump 6
The water is then refluxed into the water jacket 2 again.

かかる沸騰冷却システムは、冷媒の気化潜熱を利用して
機関を冷却するため、その冷却効率が高く、またコンデ
ンサにあっては高温蒸気と外気との大きな温度差におい
て熱交換するため放熱効果に優れている。また前記冷媒
の沸騰は燃焼室壁等高温になシ易い部分から開始される
から均一冷却が図れる。
Such boiling cooling systems use the latent heat of vaporization of the refrigerant to cool the engine, so they have high cooling efficiency, and the condenser has excellent heat dissipation effects because it exchanges heat with the large temperature difference between high-temperature steam and the outside air. ing. Further, since the boiling of the refrigerant starts from the portions that are easily exposed to high temperatures, such as the walls of the combustion chamber, uniform cooling can be achieved.

これらのことから沸騰冷却によると、燃焼室壁等の壁温
を材料の耐久性及び耐ノツク性等に支障を生じない範囲
でできるだけ高くして前記冷却を行うことができ、熱効
率上極めて好ましい結果を得ることができる。
For these reasons, boiling cooling allows the wall temperature of the combustion chamber to be as high as possible within a range that does not affect the durability and knock resistance of the material, resulting in extremely favorable results in terms of thermal efficiency. can be obtained.

ところでこのような特徴的な効果を有する沸騰冷却シス
テムの冷媒サイクルにおいては、図示のように前記蒸気
通路3がパイプ状であって単にシリンダヘッドの気筒列
方向端部に連結されておシ、気相冷媒7層の最外端から
蒸気を外部に誘引する壁及び燃焼室壁を覆うように構成
しているため、と 気相冷媒の占める容積が比較的小さくなっているのが実
情でおる。
By the way, in the refrigerant cycle of the evaporative cooling system that has such a characteristic effect, the steam passage 3 is pipe-shaped and is simply connected to the end of the cylinder head in the cylinder row direction, as shown in the figure. The actual situation is that the volume occupied by the vapor phase refrigerant is relatively small because it is configured to cover the wall that draws vapor to the outside from the outermost end of the seven layers of phase refrigerant and the wall of the combustion chamber.

従って蒸気取出口に近い気筒周囲のウォータジャケット
部から発生した蒸気は円滑にコンデンサ4に誘引される
が、逆に蒸気取出口から遠く離れた反対端のウォータジ
ャケット部に発生した蒸気は気相冷媒7層内に淀み易く
なり、その淀んだ蒸気の放熱が円滑になされなくなるた
め局所的に高熱化する気筒が生じたシ、特に蒸気通関の
パイプ径が小さい場合には通路抵抗の相乗的効果によシ
局所的にウォータジャケット2の排気ポート壁や燃焼室
壁等の部位が過熱するおそれが生じるものであった。
Therefore, the steam generated from the water jacket part around the cylinder near the steam outlet is smoothly drawn into the condenser 4, but conversely, the steam generated in the water jacket part at the opposite end far from the steam outlet is transferred to the vapor phase refrigerant. 7 It becomes easy to stagnate in the 7th layer, and the heat dissipation of the stagnant steam cannot be done smoothly, resulting in cylinders that locally become hot.Especially when the diameter of the pipe for steam clearance is small, the synergistic effect of passage resistance Otherwise, there is a risk that parts of the water jacket 2 such as the exhaust port wall and the combustion chamber wall may become locally overheated.

〈発明の目的〉 本発明は上記に鑑み全ての気筒に関してウォータジャケ
ット部から蒸気を円滑に導き出せるよう−にすることを
目的とする。
<Objective of the Invention> In view of the above, an object of the present invention is to enable steam to be smoothly led out from the water jacket section for all cylinders.

〈発明の構成〉 上記目的の達成のために本発明では専用の蒸気マニホル
ドを設け、各気筒のウォータジャケット上位に夫々独立
して連通すべく形成した入口ボートを通じてウォータジ
ャケット上位の蒸気を滞流させることなく、容量の大き
な、従って通路抵抗の小さい蒸気コレクタ内に円滑に導
いて集合させ、該蒸気コレクタの上部に設けた出口ボー
トから円滑に蒸気を外部に導き出すように前記蒸気マニ
ホルドを構成した。
<Structure of the Invention> In order to achieve the above object, the present invention provides a dedicated steam manifold, and allows the steam above the water jackets to stagnate through inlet boats formed to communicate independently above the water jackets of each cylinder. The steam manifold is configured so that the steam is smoothly guided and collected in a steam collector having a large capacity and therefore low passage resistance without any trouble, and the steam is smoothly guided to the outside from an outlet boat provided at the upper part of the steam collector.

〈実施例〉 以下に本発明の実施例を第2図〜第4図に基づいて説明
する。
<Example> Examples of the present invention will be described below based on FIGS. 2 to 4.

第2図(A)〜(D)は本発明を多気筒ディーゼル機関
に適用したもので、シリンダヘッド11にはグロープラ
グ及び噴射弁を臨ませた副燃焼室12が形成され、該副
燃焼室12に噴射供給された燃料はピストン13の圧縮
作用により着火されて噴口14より主燃焼室15内に火
炎及び未燃成室15の外壁16が臨むシリンダヘッド内
のウォータジャケット17は連通路1Bを介してシリン
ダブロック19の各シリンダ壁20を囲繞するウォータ
ジャケット21に連通している。そして液相冷媒はシリ
ンダブロック19のウォータジャケット21を満たし更
にはシリンダヘッド11の下部を遣斧1.でシリンダ跡
20及び各燃焼室15゜12の外壁16を覆い、これよ
シ熱を奪って沸騰気化する。沸騰蒸気はウォータジャケ
ット17の上位の気相冷媒空間に集合する。尚図中26
は噴射ノズル取付孔、27はグロープラグ取付孔、28
は吸気マニホルド、29は排気マニホルドである。
FIGS. 2(A) to 2(D) show the present invention applied to a multi-cylinder diesel engine, in which a cylinder head 11 is formed with an auxiliary combustion chamber 12 facing a glow plug and an injection valve, and the auxiliary combustion chamber The fuel injected into the cylinder head 12 is ignited by the compression action of the piston 13, and a flame enters the main combustion chamber 15 from the nozzle 14. The water jacket 17 in the cylinder head facing the outer wall 16 of the unburned chamber 15 passes through the communication passage 1B. It communicates with a water jacket 21 surrounding each cylinder wall 20 of the cylinder block 19 via the cylinder block 19 . The liquid phase refrigerant then fills the water jacket 21 of the cylinder block 19 and further flows through the lower part of the cylinder head 11. This covers the cylinder remains 20 and the outer walls 16 of each combustion chamber 15.degree. 12, which absorbs heat and boils and vaporizes. The boiling vapor collects in the gas phase refrigerant space above the water jacket 17. 26 in the figure
is the injection nozzle mounting hole, 27 is the glow plug mounting hole, 28
29 is an intake manifold, and 29 is an exhaust manifold.

一方、シリンダヘッド11の側端面にはアツベ鋳造され
た本発明に係る蒸気マニホルド30が取付フランジ31
を介してボルト締め等の固定手段により取付される。そ
して蒸気マニホルド30に相冷媒空間であってかつ前記
主燃焼室15の外壁16上方位置の連通ポート部17A
に夫々独立して連通する。該連通ボート部17Aはウォ
ータジャケット17の気相冷媒空間の蒸気を直上方に導
いた後、清らカーに蒸気マニホルド30の入口ボート3
2に導く内面形状を有しており、また入口ボート32は
夫々等しい通路面積を有していてかつ滑らかな凸壁で入
口ボート32よυ高位の蒸気コレクタ33に連通してい
る。
On the other hand, on the side end surface of the cylinder head 11, a steam manifold 30 according to the present invention, which is cast at Atsube, is mounted on a mounting flange 31.
It is attached by fixing means such as bolting. A communication port portion 17A that is a phase refrigerant space in the steam manifold 30 and located above the outer wall 16 of the main combustion chamber 15
communicate with each other independently. The communication boat section 17A guides the steam in the gas phase refrigerant space of the water jacket 17 directly above, and then connects it to the inlet boat 3 of the steam manifold 30 to the clean car.
Each inlet boat 32 has an equal passage area and communicates with a steam collector 33 located at a higher level than the inlet boat 32 by a smooth convex wall.

従ってウォータジャケット17内の蒸気を各気筒毎に独
立して、略均等量だけ、高位の蒸気コレクタ33内に円
滑に導くことができるから、ウォータジャク“シト1フ
上位の気相冷媒空間の通気性を良くし蒸気の滞流を生じ
させることが力い。
Therefore, the steam in the water jacket 17 can be smoothly guided into the higher steam collector 33 in an approximately equal amount for each cylinder independently, so that the vapor phase refrigerant space above the water jacket 1f can be ventilated. It is effective to improve the properties and create a stagnation of steam.

ことにおいて蒸気コレクタ33は入口ポート32より高
位に設けであるから、蒸気コレクタ33内に凝縮した液
滴を入口ポート32を介してウォータジャケット17内
に自重流させるドレン作用をもたらす。
In particular, since the steam collector 33 is located at a higher level than the inlet port 32, it provides a draining effect that causes droplets condensed in the steam collector 33 to flow through the inlet port 32 into the water jacket 17.

蒸気コレクタ33はシリンダ列に平行に延びる略円筒状
体からなっていて、その両端がウエルチ・プラグ34に
よシ閉鎖されている。このためその形状はコンパクト化
され製作性は極めて容易となり、更には吸気マニホルド
28付近へのレイアウト性が良い。そして該蒸気コレク
タ33の長手方向略中央上端付近等の上部に出口ポート
35を連通接続する。該出口ボート35及び前記蒸気コ
レクタ330通路面積は充分大きく設定されてお、シ、
各入口ポート32から流入する蒸気流が相互に干渉し合
って局所的に蒸気がウォータジャケット17内に淀むよ
うなととのないようになっている。かくして円滑に導か
れた蒸気は出口ポート35を経由して図示しない(第1
図参照)コンデンサへと送られる。
The steam collector 33 is formed of a generally cylindrical body extending parallel to the cylinder row, and both ends thereof are closed by Welch plugs 34. Therefore, its shape is compact, manufacturing is extremely easy, and furthermore, it is easy to layout near the intake manifold 28. An outlet port 35 is connected to the upper part of the steam collector 33, such as near the upper end in the center in the longitudinal direction. The passage area of the outlet boat 35 and the steam collector 330 is set to be sufficiently large.
The steam flows flowing in from each inlet port 32 are prevented from interfering with each other and causing steam to locally stagnate in the water jacket 17. The steam smoothly guided in this way passes through the outlet port 35 (not shown).
(see figure) is sent to the capacitor.

尚蒸気コレクタ33の上端一部には注水口36が設けら
れる。このため、蒸気マニホルド30が冷却系の最高位
となりその上端の注水口36からのフランジ37端面に
はNO〃リングによるシール構造を装着するだめのリン
グ溝38が設けてあ夛、従ってフランジ面の製作精度を
落としてもシール性を確保でき、またウォータジャケッ
ト17並びに蒸気マニホルド30内が負圧になった際の
エア混入を防止できる。
A water inlet 36 is provided at a portion of the upper end of the steam collector 33. For this reason, the steam manifold 30 is at the highest position in the cooling system, and the end face of the flange 37 from the water inlet 36 at its upper end is provided with a ring groove 38 for installing a sealing structure using an NO ring. Sealing performance can be ensured even if manufacturing precision is reduced, and air can be prevented from entering when the insides of the water jacket 17 and steam manifold 30 become negative pressure.

尚上記実施例において、出口ボート35の位置は蒸気コ
レクタ33の長手方向略中央位置に設けである。この結
果従来のように各入口ポート32からの距離に長大なも
のがなくなシ、即ち通気抵抗が平均化し、各気筒から略
均−な蒸気量を外部に取り出すことができる。
In the above embodiment, the outlet boat 35 is located approximately at the center of the steam collector 33 in the longitudinal direction. As a result, there is no need for a long distance from each inlet port 32 as in the prior art, that is, the ventilation resistance is averaged, and a substantially equal amount of steam can be extracted from each cylinder to the outside.

その意味において各入口ポート32から出口ボート35
に至る通路抵抗をよシ均−化する必要があれば、入口ポ
ート32から出口ボート35までの距離が長い程、入口
ポート32の通路面積を大にし或いは長さを短く形成す
ればよい。その実施例を第3図に示す。この実施例は出
口ポート35Aを蒸気コレクタ33の長牟方向端部に設
けたものであるが、入口ボート32と出口ポート35A
との距離が長い程、入口ポート32の長さを短くした例
を示す。
In that sense, from each inlet port 32 to the outlet boat 35
If it is necessary to further equalize the passage resistance leading to this, the longer the distance from the inlet port 32 to the outlet boat 35, the greater the passage area of the inlet port 32 or the shorter its length. An example thereof is shown in FIG. In this embodiment, the outlet port 35A is provided at the longitudinal end of the steam collector 33, but the inlet boat 32 and the outlet port 35A are
An example is shown in which the length of the inlet port 32 is shortened as the distance from the inlet port 32 is longer.

また、蒸気コレクタ33にあっては、蒸気流量に応じて
通路断面積を増大するのが通路抵抗を減することとなる
。従って第4図に示すように単一の入口ボー)32Bの
みから導かれた蒸気が流通する蒸気コレクタ部断面積よ
シも、上記蒸気流に加え他の入口ポート32bから導か
れた蒸気が合流する蒸気コレクタ部断面積を大とすべく
、出口ポート35に向けて蒸気コレクタ33Aの天壁を
αだけ傾斜させれば、入口ポー)32a、32bを流れ
る蒸気流の等量化を図ることができ、この場合ひいては
蒸気の前記天壁に沿った円滑な流れを促すことができる
Furthermore, in the steam collector 33, increasing the passage cross-sectional area according to the steam flow rate reduces passage resistance. Therefore, as shown in FIG. 4, the cross-sectional area of the steam collector section through which the steam led only from a single inlet port 32B flows, is also different from the cross-sectional area of the steam collector section through which the steam led only from the single inlet port 32B flows, and the steam led from the other inlet port 32b in addition to the above steam flow joins. If the top wall of the steam collector 33A is inclined by α toward the outlet port 35 in order to increase the cross-sectional area of the steam collector portion, it is possible to equalize the steam flow flowing through the inlet ports 32a and 32b. In this case, smooth flow of steam along the ceiling wall can be promoted.

〈発明の効果〉 以上述べたように本発明によれば、各気筒毎に夫々独立
してウォータジャケット上位の気相冷却空間に夫々連通
する複数の入口ボートと、これよシも高位に配置されて
入口ボートから流入する蒸気を集合する蒸気コレクタと
、該蒸気コレクタの上部から蒸気を外部に導く出口ボー
トと、を備えて構成された蒸気マニホルドを設けたので
、ウォータジャケット内の蒸気を各気筒毎に均等量だけ
外部に誘引し、局所的な蒸気の淀みを防止することがで
きる。このため各気筒毎に液相冷媒の蒸気発生を均一に
行わせしめることが可能となり、シリンダ壁及び燃焼室
壁の局所的な過熱を防止して、シリンダヘッドの熱変形
、及び破損を未然に防止できると共に、蒸気の円滑な誘
引もあわさって機関の冷却性能を極めて向上することが
できる。
<Effects of the Invention> As described above, according to the present invention, each cylinder has a plurality of inlet boats each independently communicating with the gas phase cooling space above the water jacket, and a plurality of inlet boats arranged at a higher position. A steam manifold is provided, which includes a steam collector that collects steam flowing in from the inlet boat, and an outlet boat that guides the steam to the outside from the upper part of the steam collector. It is possible to prevent local stagnation of steam by drawing an equal amount of steam to the outside. This makes it possible to generate vapor from the liquid phase refrigerant uniformly in each cylinder, preventing local overheating of the cylinder wall and combustion chamber wall, and preventing thermal deformation and damage to the cylinder head. In addition to this, together with the smooth induction of steam, the cooling performance of the engine can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰冷却式多気筒内燃機関の従来例を示す概略
系統図、第2図は本発明の一実施例を示し、(A)は縦
断面図、(B)は同上に用いられた蒸気マニホルド単体
側面図、(C)は(B)のC−C矢視断面図、(D)は
(B)の出口ポート部の断面図テ舎弗、第3図及び第4
図は夫々本発明の他の実施例を示す蒸気マニホルド単体
の側面図である。 11・・・シリンダヘッド 17.21・・・ウオーク
タ 35,35A・・・出ロポート 特許出願人 日産自動車株式会社 代理人弁理士笹 島 富二雄
Fig. 1 is a schematic system diagram showing a conventional example of a boiling-cooled multi-cylinder internal combustion engine, Fig. 2 shows an embodiment of the present invention, (A) is a longitudinal cross-sectional view, and (B) is the same as that used in the above. A side view of the steam manifold alone, (C) is a cross-sectional view taken along the line C-C in (B), (D) is a cross-sectional view of the outlet port section in (B), Figures 3 and 4.
Each figure is a side view of a single steam manifold showing other embodiments of the present invention. 11...Cylinder head 17.21...Walker 35,35A...Proport patent applicant Fujio Sasashima, patent attorney representing Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 沸騰冷却式多気筒内燃機関のシリンダヘッドに連結され
ウォータジャケット上位から冷媒の沸騰蒸気を外部に誘
引する蒸気マニホルドであって、各気筒のウォータジャ
ケット上位に夫々独立して連通ずる気筒数に応じた入口
ボートと、該入口ポートが連通し該入口ポートよシも高
位に配置されて蒸気を集合する蒸気コレクタと、該蒸気
コレクタの上部から蒸気を外部に導く出口ポートと、を
有することを特徴とする沸騰冷却式多気筒内燃機関の蒸
気マニホルド。
A steam manifold that is connected to the cylinder head of a boiling-cooled multi-cylinder internal combustion engine and draws boiling vapor of refrigerant to the outside from above the water jacket, and is connected to the above water jacket of each cylinder independently according to the number of cylinders. It is characterized by having an inlet boat, a steam collector that communicates with the inlet port and is arranged at a higher level than the inlet port to collect steam, and an outlet port that guides the steam to the outside from the upper part of the steam collector. Steam manifold of boiling-cooled multi-cylinder internal combustion engine.
JP17208183A 1983-09-20 1983-09-20 Steam manifold in multi-cylinder internal-combustion engine of boiling-cooling type Granted JPS6065224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17208183A JPS6065224A (en) 1983-09-20 1983-09-20 Steam manifold in multi-cylinder internal-combustion engine of boiling-cooling type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17208183A JPS6065224A (en) 1983-09-20 1983-09-20 Steam manifold in multi-cylinder internal-combustion engine of boiling-cooling type

Publications (2)

Publication Number Publication Date
JPS6065224A true JPS6065224A (en) 1985-04-15
JPH039287B2 JPH039287B2 (en) 1991-02-08

Family

ID=15935180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17208183A Granted JPS6065224A (en) 1983-09-20 1983-09-20 Steam manifold in multi-cylinder internal-combustion engine of boiling-cooling type

Country Status (1)

Country Link
JP (1) JPS6065224A (en)

Also Published As

Publication number Publication date
JPH039287B2 (en) 1991-02-08

Similar Documents

Publication Publication Date Title
JP5093930B2 (en) Cooling water passage structure in cylinder head of internal combustion engine
US6748906B1 (en) Heat exchanger assembly for a marine engine
JPS6257825B2 (en)
US20110277708A1 (en) Cylinder Head for Internal Combustion Engine
JP6079594B2 (en) Multi-cylinder engine cooling structure
US2941521A (en) Engine head
JP5146031B2 (en) Cylinder head of internal combustion engine
JP3569636B2 (en) Cylinder head structure of multi-cylinder engine
US9470187B2 (en) EGR heat exchanger with continuous deaeration
JPH0226689B2 (en)
JPS6065224A (en) Steam manifold in multi-cylinder internal-combustion engine of boiling-cooling type
JPS6060242A (en) Coolant boiling and cooling type engine
JP2000205042A (en) Multicylinder engine
JPH025081Y2 (en)
JPS5840005B2 (en) Intake system for supercharged engines
JP2917608B2 (en) Internal combustion engine cooling system
JPH0571416A (en) Cooling water passage structure for multiple cylinder internal combustion engine
JPH0332762Y2 (en)
JPS641451Y2 (en)
WO2013183643A1 (en) Exhaust device for internal combustion engine
JPH0110426Y2 (en)
JPH0329571Y2 (en)
JPH037562Y2 (en)
JPH0248658Y2 (en)
JPH0718337B2 (en) Cylinder head cooling device for liquid-cooled air-cooled engine