JPS606518B2 - Manufacturing method of hologram wavefront conversion element - Google Patents

Manufacturing method of hologram wavefront conversion element

Info

Publication number
JPS606518B2
JPS606518B2 JP6861477A JP6861477A JPS606518B2 JP S606518 B2 JPS606518 B2 JP S606518B2 JP 6861477 A JP6861477 A JP 6861477A JP 6861477 A JP6861477 A JP 6861477A JP S606518 B2 JPS606518 B2 JP S606518B2
Authority
JP
Japan
Prior art keywords
light
coherent
hologram
conversion element
wavefront conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6861477A
Other languages
Japanese (ja)
Other versions
JPS543561A (en
Inventor
信夫 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6861477A priority Critical patent/JPS606518B2/en
Publication of JPS543561A publication Critical patent/JPS543561A/en
Publication of JPS606518B2 publication Critical patent/JPS606518B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は半導体レーザや発光ダイオード等の半導体発
光素子から射出された光を効率良く光フアィバに導くた
めに使用されるホログラム波面変換素子の製作方法に係
わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a holographic wavefront conversion element used to efficiently guide light emitted from a semiconductor light emitting element such as a semiconductor laser or a light emitting diode to an optical fiber.

半導体レーザ、発光ダイオード等の半導体発光素子と光
フアィバを用いた光フアイバ通信方式は適用範囲の広い
優れた通信方式であるため現在非常に注目され、実用化
を目差した研究開発が各所で進められている。
Optical fiber communication systems that use semiconductor light-emitting devices such as semiconductor lasers and light-emitting diodes and optical fibers are currently attracting a lot of attention because they are excellent communication systems with a wide range of applications, and research and development is progressing in various places with the aim of putting them into practical use. It is being

この研究開発の重要なテーマの一つは半導体発光素子と
光フアィバの光結合効率をいかにして高くするかという
問題である。何故なら、半導体レーザから放射される光
は半導体レーザの活性層が矩形状であるためp−n接合
面に平行な方向と垂直な方向とでは放射角が大幅に異な
り、また発光ダイオードから放射される光は発光部の拡
がりのため指向性が非常に悪く、単にレンズで収束した
だけでは一点に集中することができず、光を効率良く光
フアィバに入射させることができないからである。そこ
で半導体発光素子と光フアィバの光結合効率を向上させ
るため円柱レンズを用いる方法、球レンズを用いる方法
、半球レンズの組み合わせを用いる方法、ホログラム(
ホログラム波面変換素子)を用いる方法等多数の方法が
研究されている。
One of the important themes of this research and development is how to increase the optical coupling efficiency between semiconductor light emitting devices and optical fibers. This is because the active layer of the semiconductor laser has a rectangular shape, so the radiation angle of the light emitted from the semiconductor laser is significantly different between the direction parallel to the p-n junction surface and the direction perpendicular to it, and the light emitted from the light emitting diode is This is because the light has very poor directivity due to the spread of the light emitting part, and cannot be concentrated at one point simply by converging with a lens, making it impossible to efficiently input the light into the optical fiber. Therefore, in order to improve the optical coupling efficiency between the semiconductor light emitting device and the optical fiber, there are methods using cylindrical lenses, methods using spherical lenses, methods using a combination of hemispherical lenses, and methods using holograms (
A number of methods are being studied, including methods using holographic wavefront conversion elements.

この中でホログラム波面変換素子を用いる方法は複雑な
波面変換が可能なこと、ホログラム波面変換素子の製作
条件により半導体発光素子と光フアィバの位置関係を任
意に選ぶことができること等の特徴を持っており、変換
効率を高くできる可能性がある。ホログラム波面変換素
子を用いる方法による半導体発光素子と光フアィバの結
合は次のようにして行なわれる。半導体発光素子から射
出された直後の光の断面と同じ大きさの開口を通過して
その閉口によって回祈された(半導体発光素子からの出
射光と同じような波面の)コヒーレント発散光と収束球
面波の干渉によって形成される干渉縞を記録材料に記録
してホログラム波面変換素子を製作し、このホログラム
波面変換素子を、ホログラム波面変換素子と半導体発光
素子の位置関係がホログラム波面変換素子製作時の開口
と記録材料の位置関係と同じ‘こなるように、半導体発
光素子と組み合わせると、半導体発光素子から射出され
た光はホログラム波面変換素子によりホログラム波面変
換素子製作時の収束球面波と同じ性質の光に波面変換さ
れる。そこでホログラム波面変換素子により波面変換さ
れた光が収束する所に光フアイバの端面を配置すると、
収束光は効率良く光ファィバに入射する。このホログラ
ム波面変換素子に用いる方法による半導体発光素子と光
フアィバの光結合の効率は、もしホログラム波面変換素
子の回折効率が100%であるならば、ほとんど100
%に近くなる。
Among these methods, the method using a hologram wavefront conversion element has the following characteristics: complex wavefront conversion is possible, and the positional relationship between the semiconductor light emitting element and the optical fiber can be arbitrarily selected depending on the manufacturing conditions of the hologram wavefront conversion element. Therefore, it is possible to increase the conversion efficiency. The coupling between a semiconductor light emitting device and an optical fiber using a method using a holographic wavefront conversion device is performed as follows. Coherent diverging light (with the same wavefront as the light emitted from the semiconductor light emitting device) that passes through an aperture with the same size as the cross section of the light immediately emitted from the semiconductor light emitting device and is recirculated by the closing of the aperture, and a convergent spherical surface. A hologram wavefront conversion element is manufactured by recording interference fringes formed by wave interference on a recording material, and the positional relationship between the hologram wavefront conversion element and the semiconductor light emitting element is the same as when the hologram wavefront conversion element was manufactured. In order to maintain the same positional relationship between the aperture and the recording material, when combined with a semiconductor light emitting element, the light emitted from the semiconductor light emitting element is converted by the hologram wavefront conversion element into a convergent spherical wave with the same properties as the convergent spherical wave when manufacturing the hologram wavefront conversion element. The wavefront is converted into light. Therefore, if the end face of the optical fiber is placed where the light whose wavefront has been converted by the holographic wavefront conversion element converges,
The convergent light efficiently enters the optical fiber. If the diffraction efficiency of the hologram wavefront conversion element is 100%, the efficiency of optical coupling between the semiconductor light emitting element and the optical fiber by the method used for this hologram wavefront conversion element is almost 100%.
%.

しかし実用的なホログラムの回折効率は大部分ほぼ60
%止まりであるため、半導体発光素子と光フアィバの結
合効率も必然的に60%以下となり、40%ほどの光は
全く利用されない。ホログラム波面変換素をィンラィン
(in−line)ホoグラムにすれば0次回折光およ
び−1次回折光(共樋再生光)のうち光軸附近の光も光
フアィバに入射し、光エネルギーは光軸附近に集中して
いるから、結合効率がかなり向上するが、高い光結合効
率を得るためには半導体発光素子とホログラム波面変換
素子の間隔を数肋以下にする必要があり、ホログラム波
面変換素子製作時に関口と記録材料の間にコヒーレント
発散光と収束球面波を同軸にするための半透明鏡を挿入
することは非常に困難であり、かりに挿入できたとして
も今度は半透明鏡の裏面反射が有害な干渉縞のもとにな
ったり、閉口によって発散された発散光の波面をみだし
たりするため、従来のホログラム波面変換素子は全てオ
フアキシス(off−axis)型であり、インライン
型にすることができなかった。この結果従来のホログラ
ム波面変換素子の光結合効率は必ずしも十分ではなく、
このため実用化が遅れていた。この発明の目的は従来の
オフアキシス型のホログラム波面変換素子の不十分な光
結合効率を改善するために、ィンラィン型のホログラム
波面変換素子の製作方法を提供することである。この発
明の原理は次の通りである。
However, the diffraction efficiency of most practical holograms is approximately 60
%, the coupling efficiency between the semiconductor light emitting device and the optical fiber will inevitably be less than 60%, and about 40% of the light will not be used at all. If the hologram wavefront conversion element is made into an in-line hologram, the light near the optical axis among the 0th-order diffracted light and -1st-order diffracted light (co-regenerated light) will also enter the optical fiber, and the optical energy will be transferred to the optical axis. Since they are concentrated in the vicinity, the coupling efficiency improves considerably, but in order to obtain high optical coupling efficiency, it is necessary to reduce the distance between the semiconductor light emitting element and the hologram wavefront conversion element to less than a few ribs. Sometimes it is very difficult to insert a semi-transparent mirror between Sekiguchi and the recording material to make the coherent diverging light and the converging spherical wave coaxial, and even if it could be inserted, the back reflection of the semi-transparent mirror would cause All conventional hologram wavefront conversion elements are of off-axis type, and it is not possible to make them in-line type, because they may cause harmful interference fringes or cause the wavefront of divergent light emitted by the closed aperture to be exposed. could not. As a result, the optical coupling efficiency of conventional hologram wavefront conversion elements is not necessarily sufficient.
For this reason, practical application was delayed. An object of the present invention is to provide a method for manufacturing an in-line type hologram wavefront conversion element in order to improve the insufficient optical coupling efficiency of the conventional off-axis type hologram wavefront conversion element. The principle of this invention is as follows.

半導体発光素子から射出された直後の光の断面とほぼ同
じ大きさの関口を通過しトこの関口によって回折された
コヒーレント発散光と参照光との干渉による千渉綿と、
前記のコヒーレント発散光とほぼ同じ光軸上を前記コヒ
ーレント発散光と同じ方向に進んで記録面の後方の任意
の点に収束するコヒーレント収束光と前記参照波と同じ
性質の参照波との干渉による干渉縞とを同じ記録材料に
重ねて記録することによってホログラムを製作し、この
ホログラムを記録時の参照波と同じ性質の光で照明する
と「ホログラムからはほぼ同じ光軸上を同方向に進むコ
ヒーレント発散光とコヒーレント収束光が再生され、こ
れらが干渉するので、この干渉縞を記録すれば、ィンラ
ィン型のホログラム波面変換素子を製作することができ
る。したがって本発明によるホログラム波面変換素子の
製作方法の特徴は半導体発光素子から射出された直後の
光の断面とほぼ同じ大きさの関口を通過し、この関口に
よって回折されたコヒーレント発散光と参照光との干渉
による干渉縞と、前記コヒーレント発散光とほぼ同じ光
軸上を前記コヒーレント発散光と同じ方向に進んで記録
面の後方の任意の点に収束するコヒーレント収束光と前
記参照波と同じ性質の参照波との干渉による干渉縞とを
同じ記録材料に重ねて記録することによってホログラム
を製作し、このホログラムから同時に再生されるコヒー
レント発散光とコヒーレント収束光が干渉して形成する
干渉縞を前記記録材料の背後に置いた別の記録材料に記
録する点にある。
The light emitted from the semiconductor light-emitting device passes through a Sekiguchi whose cross section is approximately the same size as the cross-section of the light, and is diffracted by the Sekiguchi.
Due to interference between a coherent convergent light that travels in the same direction as the coherent diverging light on almost the same optical axis as the coherent diverging light and converges at an arbitrary point behind the recording surface, and a reference wave having the same properties as the reference wave. A hologram is produced by recording interference fringes on the same recording material, and when this hologram is illuminated with light that has the same properties as the reference wave during recording, ``the hologram produces a coherent beam that travels in the same direction on almost the same optical axis.'' Divergent light and coherent convergent light are reproduced and interfere with each other, so if this interference pattern is recorded, an in-line type hologram wavefront conversion element can be manufactured.Therefore, the method for manufacturing a hologram wavefront conversion element according to the present invention The feature is that the light passes through a Sekiguchi whose size is almost the same as the cross section of the light immediately after being emitted from the semiconductor light emitting device, and interference fringes are formed due to the interference between the coherent divergent light diffracted by the Sekiguchi and the reference light, and the coherent divergent light and the reference light. Coherent convergent light that travels in the same direction as the coherent diverging light on almost the same optical axis and converges at an arbitrary point behind the recording surface and interference fringes caused by interference with a reference wave having the same properties as the reference wave are recorded in the same way. A hologram is produced by overlapping recording on a material, and interference fringes formed by the interference of coherent divergent light and coherent convergent light that are simultaneously reproduced from this hologram are recorded on another recording material placed behind the aforementioned recording material. It is in the point of doing.

以下本発明について図面を参照して説明する。第1図は
従来オフアキシス型のホログラム波面変換素子を製作す
るために用いられている光学装置の構成の1例を示す図
で、101はしーザ装置などのコヒーレント光発生装置
、102はコヒーレント光発生装置101から射出され
たコヒーレント光ビーム、103はコヒーレント光ビー
ム102を2方向に分けるためのビーム・スプリッタ、
104,105は反射鏡、106はコヒーレント光ビー
ムの直径を拡げるための逆望遠鏡型光学系、107は逆
望遠鏡型光学系106で拡げられた太いコヒーレント光
ビーム108を光フアィバに効率良く入射するコヒーレ
ント収束光にするためのレンズ、109は半導体発光素
子から射出された直後の光の断面とほぼ同じ大きさの関
口110を有する遮蔽板で、関口1 1川まその1例を
第2図に示すように矩形関口等である。111は記録材
料で、その面は開ロ1 10の方に向いている。
The present invention will be explained below with reference to the drawings. FIG. 1 is a diagram showing an example of the configuration of an optical device conventionally used to manufacture an off-axis type holographic wavefront conversion element, in which 101 is a coherent light generator such as a laser device, 102 is a coherent light generating device, and 102 is a coherent light generating device such as a laser device. A coherent light beam emitted from a generator 101, 103 a beam splitter for splitting the coherent light beam 102 into two directions;
104 and 105 are reflecting mirrors, 106 is an inverted telescope type optical system for expanding the diameter of the coherent light beam, and 107 is a coherent optical system for efficiently inputting the thick coherent light beam 108 expanded by the inverted telescope type optical system 106 into the optical fiber. A lens for converging light, 109 is a shielding plate having a Sekiguchi 110 that is approximately the same size as the cross section of the light just emitted from the semiconductor light emitting element. This is a rectangular Sekiguchi etc. Reference numeral 111 denotes a recording material, the side of which faces the opening 110.

この光学装置により、開口110で回折され、発散され
たコヒーレント発散光112としンズ107で収束され
たコヒーレント収束光113とが形成する干渉縞を記録
材料111に記録すると、オフアキシス型のホログラム
波面変換素子ができる。第3図は第1図の光学装置を用
いて作ったオファキシス型のホログラム波面変換素子に
より半導体発光素子と光フアィバを光学的に結合するた
めの光学配置を示す図で、301は半導体発光素子、3
02は半導体発光素子から射出された発散光、303は
第1図の光学装置を用いて作ったオフアキシス型のホロ
グラム波面変換素子、304はホログラム波面変換素子
303により発散光302が波面変換された収束光、3
05は光ファィバである。
When this optical device records interference fringes formed by the coherent divergent light 112 diffracted and diverged by the aperture 110 and the coherent convergent light 113 converged by the lenses 107 on the recording material 111, an off-axis hologram wavefront conversion element is generated. I can do it. FIG. 3 is a diagram showing an optical arrangement for optically coupling a semiconductor light emitting device and an optical fiber by an ophaxis-type hologram wavefront conversion device made using the optical device shown in FIG. 1, and 301 is a semiconductor light emitting device; 3
02 is the diverging light emitted from the semiconductor light emitting element, 303 is an off-axis type hologram wavefront conversion element made using the optical device shown in FIG. light, 3
05 is an optical fiber.

半導体発光素子301とホログラム波面変換素子303
の位置関係は第1図の関口110と記録材料111の位
置関係と同じなので、発散光302はホログラム波面変
換素子303により第1図の収束光113と同じような
収束光304に変換され、光ファィバ305に効率よく
入射する。ただし、この場合は発散光302と収束光3
04の光軸が必然的にある角度をなしている(オフアキ
シスである)ため、結合効率はホログラム波面変換素子
303の回折効率を越えることはできず、0次回折光お
よび一1次回折光(共節再生光)の全てが無駄になる。
第4図はこの発明によるィンラィン型のホログラム波面
変換素子の製作方方法において第1回目の露光を行なう
たの光学装置の一実施例の構成を示す図で、401はし
ーザ装置などのコヒーレント光発生装置、402はコヒ
ーレント光発生装置401から射出されたコヒーレント
光ビーム、403はコヒーレント光ビーム402を2方
向に分けるためのビーム・スプリツタ、404,405
は反射鏡、406はコヒーレント光ビームの直径を拡げ
るための逆望遠鏡型光学系、407は半導体発光素子か
ら射出された直後の光の断面とほぼ同じ大きさの開□4
08を有する遮蔽板で、開○408は第2図に示したよ
うな矩形等の閉口である。
Semiconductor light emitting device 301 and hologram wavefront conversion device 303
Since the positional relationship between the Sekiguchi 110 and the recording material 111 in FIG. 1 is the same as that between the Sekiguchi 110 and the recording material 111 in FIG. The light enters the fiber 305 efficiently. However, in this case, the divergent light 302 and the convergent light 3
Since the optical axis of 04 necessarily forms a certain angle (off-axis), the coupling efficiency cannot exceed the diffraction efficiency of the hologram wavefront conversion element 303, and the 0th-order diffracted light and the 11th-order diffracted light (coarticulated) All of the playback light) is wasted.
FIG. 4 is a diagram showing the configuration of an embodiment of an optical device for performing the first exposure in the method for manufacturing an in-line type hologram wavefront conversion element according to the present invention. A light generator, 402 is a coherent light beam emitted from the coherent light generator 401, 403 is a beam splitter for splitting the coherent light beam 402 into two directions, 404, 405
is a reflecting mirror, 406 is an inverted telescope type optical system for expanding the diameter of the coherent light beam, and 407 is an aperture □4 whose size is approximately the same as the cross section of the light immediately after it is emitted from the semiconductor light emitting device.
08, the opening 408 is a closed opening such as a rectangle as shown in FIG.

409は記録材料で、その面は開□408の方に向いて
いる。
409 is a recording material whose side faces toward the open square 408.

この光学装置により、開□408で回折され、発散され
たコヒーレント発散光410と逆望遠鏡型光学系406
で拡大されたコヒーレント光ビーム(参照光)411と
が形成する干渉縞に記録材料409を露光する。この段
階ではまだ記録材料409に現像等の処理はほどこさな
い。第5図はこの発明によるィンラィン型のホログラム
波面変換素子の製作方法において第2回目の露光を行な
うための光学装置の一実施例の構成を示す図で、第4図
に示した光学装置の閉口408を有する遮蔽板407が
コヒ−レント光ビームを拡げるための逆望遠鏡型光学系
501と逆望遠鏡型光学系501で拡げられた太いコヒ
ーレント光ビーム502を光フアィバに効率良く入射す
るコヒーレント収束光にするためのレンズ503で置換
されている点だけが第4図に示した光学装置と異なって
いる。
By this optical device, coherent divergent light 410 diffracted and diverged by the aperture 408 and the inverted telescope type optical system 406
The recording material 409 is exposed to interference fringes formed by the coherent light beam (reference light) 411 expanded by the laser beam. At this stage, the recording material 409 is not yet subjected to processing such as development. FIG. 5 is a diagram showing the configuration of an embodiment of an optical device for performing the second exposure in the method of manufacturing an in-line type holographic wavefront conversion element according to the present invention, and shows the structure of an embodiment of the optical device for performing the second exposure in the method of manufacturing an in-line type hologram wavefront conversion element according to the present invention. A shielding plate 407 having 408 converts the inverted telescope type optical system 501 for expanding the coherent light beam and the thick coherent light beam 502 expanded by the inverted telescope type optical system 501 into coherent convergent light that efficiently enters the optical fiber. The only difference from the optical device shown in FIG. 4 is that it is replaced with a lens 503.

ただし、レンズ503で収束されたコヒーレント収束光
504の光軸5041とコヒーレント発散光410の光
軸4101はほぼ一致するように配慮されている。この
光学装置により、コヒーレント収束光504とコヒーレ
ント光ビーム(参照光)411とが形成する干渉縞を記
録材料409に、先に露光したコヒーレント発散光41
0とコヒーレント光ビーム411が形成する干渉縞に重
ねて、記録し、その後記録材料409に現像等の処理を
ほどこすとホログラムが完成する。このようにして製作
したホログラムを、第6図に示すように、コヒーレント
光発生装置601から射出されたコヒーレント光ビーム
602の直径を逆望遠鏡型光学系603で拡大した、ホ
ログラム記録時のコヒーレント光ビーム(参照光)41
1と同じ性質の、コヒーレント光ビーム604によりホ
ログラム製作時のコヒーレント光ビーム(参照光)41
1と同じ入射角で照明すると、ホログラム605からは
それぞれホログラム記録時のコヒーレント発散光410
とコヒーレント収束光504に相当するコヒーレント発
散光606とコヒーレント収束光607が再生され、こ
れらの光が干渉して干渉縞を形成するから、形成された
干渉縞をホログラム605の背後に置いた記録材料60
8に記録し、記録材料608に現像等の処理をほどこす
とィンラィン型のホログラム波面変換素子ができる。
However, care is taken so that the optical axis 5041 of the coherent convergent light 504 converged by the lens 503 and the optical axis 4101 of the coherent diverging light 410 almost coincide. With this optical device, interference fringes formed by the coherent convergent light 504 and the coherent light beam (reference light) 411 are transferred onto the recording material 409 by the previously exposed coherent diverging light 411.
0 and the interference fringes formed by the coherent light beam 411 are recorded, and then the recording material 409 is subjected to processing such as development to complete a hologram. As shown in FIG. 6, the hologram produced in this way is a coherent light beam at the time of hologram recording, in which the diameter of a coherent light beam 602 emitted from a coherent light generator 601 is expanded by an inverted telescope type optical system 603. (Reference light) 41
Coherent light beam (reference light) 41 during hologram production by coherent light beam 604 having the same properties as 1.
When illuminated at the same incident angle as 1, each hologram 605 emits coherent divergent light 410 during hologram recording.
A coherent divergent beam 606 corresponding to the coherent convergent beam 504 and a coherent convergent beam 607 are reproduced, and these beams interfere to form interference fringes. 60
8, and by subjecting the recording material 608 to processing such as development, an in-line hologram wavefront conversion element is obtained.

第7図はこの発明による製作方法で作ったィンラィン型
のホログラム波面変換素子により半導体発光素子と光フ
アィバを光学的に結合するための光学装置で、701は
半導体発光素子、702は半導体発光素子から射出され
た発散光、703はこの発明による製作方法で作ったィ
ンラィン型ホログラム波面変換素子、704はホログラ
ム波面変換素子703により発散光了82が波面変換さ
れた収束光「 705は光フアィバである。
FIG. 7 shows an optical device for optically coupling a semiconductor light emitting element and an optical fiber using an inline type holographic wavefront conversion element manufactured by the manufacturing method according to the present invention, where 701 is a semiconductor light emitting element, and 702 is a semiconductor light emitting element. The emitted diverging light 703 is an in-line hologram wavefront conversion element manufactured by the manufacturing method according to the present invention, 704 is a convergent light whose wavefront is converted from the diverging light 82 by the hologram wavefront conversion element 703, and 705 is an optical fiber.

収束光704はホログラム記録時の光ファィバに効率良
く入射するコヒーレント収束光584と同様に収束する
ので、光フアィバ705に効率よく入射する。さらにこ
の場合は発散光702と収束光704の光軸がほぼ一致
しているので、集東光784ばかりでなく、0次回折光
や−1次回折光(共節再生光)の一部も光フアィバ70
5に入射し、ホログラム波面変換素子703の回折効率
が100%でなくても、半導体発光素子7QIと光フア
ィバ705の光結合の効率はかなり高くなる。なお上記
の実施例において、ホログラム605から必要な再生光
606,687の他に共鞠再生光が生じてもそれほど強
くないかぎりたいして問題ではないが、もし有害な場合
は記録材料409として言わゆる厚い記録材料を用いて
ホログラム605を体債ホ。
Since the convergent light 704 converges in the same manner as the coherent convergent light 584 that efficiently enters the optical fiber during hologram recording, it efficiently enters the optical fiber 705. Furthermore, in this case, since the optical axes of the diverging light 702 and the converging light 704 are almost the same, not only the convergent light 784 but also some of the 0th-order diffracted light and -1st-order diffracted light (coarticulated regenerated light) are also connected to the optical fiber 70.
Even if the diffraction efficiency of the hologram wavefront conversion element 703 is not 100%, the efficiency of optical coupling between the semiconductor light emitting element 7QI and the optical fiber 705 becomes considerably high. In the above embodiment, even if the hologram 605 generates co-reproducing beams in addition to the necessary reproducing beams 606 and 687, it is not a big problem as long as it is not very strong, but if it is harmful, the so-called thick recording material 409 Record the hologram 605 using a recording material.

グラムにして共師再生光を抑圧すればよい。また上記の
実施例においては、まずコヒーレント発散光410とコ
ヒーレント光ビーム411とによる干渉縞に記録材料4
89を露光し、次にコヒーレント収束光504とコヒー
レント光ビーム411とによる干渉縞を記録材料489
に記録したが、逆にまずコヒーレント収束光504とコ
ヒーレント光ビーム411とによる干渉縞に記録材料4
09を露光し、次にコヒーレント発散光410とコヒー
レント光ビーム411とによる干渉縞を記録材料409
に記録してももちろんかまわない。
All you have to do is turn it into a gram and suppress the co-master regeneration light. Further, in the above embodiment, first, the recording material 4 is formed on the interference fringes caused by the coherent diverging light 410 and the coherent light beam 411.
89 is exposed to light, and then interference fringes caused by the coherent convergent light 504 and the coherent light beam 411 are formed on the recording material 489.
However, conversely, the recording material 4 is first recorded on the interference fringes caused by the coherent convergent light 504 and the coherent light beam 411.
09 is exposed to light, and then interference fringes caused by the coherent divergent light 410 and the coherent light beam 411 are formed on the recording material 409.
Of course, it does not matter if it is recorded.

以上詳述したようにこの発明によれば半導体発光素子と
光フアィバの光結合効率の高いィンラィン型のホログラ
ム波面変換素子を安価にかつ容易に製作することができ
る。
As described in detail above, according to the present invention, an in-line hologram wavefront conversion element with high optical coupling efficiency between a semiconductor light emitting element and an optical fiber can be manufactured easily and inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来オフアキシス型のホログラム波面変換素子
を製作するために用いられている光学装置の構成の1例
を示す図「第2図は半導体発光素子から射出された直後
の光の断面とほぼ同じ大きさの関口を有する遮蔽板の1
例を立体視的に示したもの、第3図は第1図の光学装置
を用いて作ったオファキシス型のホログラム波面変換素
子により半導体発光素子と光フアィバを光学的に結合す
るための光学配置を示す図、第4図はこの発明によるィ
ンラィン型のホログラム波面変換素子の製作方法におい
て第1回目の露光を行なうための光学装置の一実施例の
構成を示す図.第5図発明によるィンラィン型のホログ
ラム波面変換秦子み製作夫法において第1回目の露光を
行なうための光学装隣個の二実施例の構成を示す図、1
第5図はこの発明によるィンライン型のホログラム波面
変換素子の製作方法において第2回目の霧光を行なうた
めの光学装置の一実施例の構成を示す図、第6図は第4
図および第5図に示した光学装置により製作したホログ
ラムから再生されるコヒーレント発散光とコヒーレント
収束光が干渉して形成する干渉縞を記録するたの光学装
置の一実施例の構成を示す図、第7図はこの発明による
製作方法で作ったィンラィン型のホログラム波面変換素
により半導体発光素子と光フアィバを光学的に結合する
ための光学配置である。 図において、101,401,601‘まコヒーレント
光発生装置、102,402,602はコヒーレント光
ビーム、103,483はビーム。 スプリツタ、i04,竃05,404,405は反射鏡
、106,406,501,603は逆望遠鏡型光学系
、107,503はしンズ「 108,411,502
,604は太いコヒ−レント光ビーム、109,407
は遮蔽板、110,488は開□、111,409,6
08は記録材料、112,410はコヒーレント発散光
、113,504はコヒ−レント収束光、301,78
1は半導体発光素子、302,了02は発散光、303
,703はホログラム波面変換素子、384,704は
収束光、305,705は光フアィバ、4101はコヒ
ーレント発散光410の光軸「 5041はコヒーレン
ト収束光504の光軸、605はホログラム「 606
は再生されたコヒーレント発散光、607は再生された
コヒーレント収束光である。袋′図 繁2図 髪ぅ図 彩り図 第5図 紫ら図 髪7図
Figure 1 shows an example of the configuration of an optical device conventionally used to manufacture an off-axis type hologram wavefront conversion element. 1 of the shielding plates with the same size gates
An example is shown stereoscopically in Figure 3, which shows an optical arrangement for optically coupling a semiconductor light emitting element and an optical fiber using an ophaxis-type holographic wavefront conversion element made using the optical device shown in Figure 1. FIG. 4 is a diagram showing the configuration of an embodiment of an optical device for performing the first exposure in the method of manufacturing an in-line type hologram wavefront conversion element according to the present invention. FIG. 5 is a diagram illustrating the configuration of two adjacent embodiments of an optical device for performing the first exposure in the in-line hologram wavefront conversion method according to the invention, 1
FIG. 5 is a diagram showing the configuration of an embodiment of an optical device for performing the second fog light in the method for manufacturing an in-line type hologram wavefront conversion element according to the present invention, and FIG.
A diagram showing the configuration of an embodiment of an optical device for recording interference fringes formed by interference between coherent diverging light and coherent converging light reproduced from a hologram produced by the optical device shown in FIGS. FIG. 7 shows an optical arrangement for optically coupling a semiconductor light emitting device and an optical fiber using an in-line type holographic wavefront conversion element manufactured by the manufacturing method according to the present invention. In the figure, 101, 401, 601' are coherent light generators, 102, 402, 602 are coherent light beams, and 103, 483 are beams. Splitter, i04, 05, 404, 405 are reflectors, 106, 406, 501, 603 are inverted telescope type optical systems, 107, 503 are Shins. 108, 411, 502
, 604 is a thick coherent light beam, 109,407
is a shielding plate, 110,488 is open □, 111,409,6
08 is a recording material, 112, 410 is a coherent diverging beam, 113, 504 is a coherent converging beam, 301, 78
1 is a semiconductor light emitting device, 302, 02 is a diverging light, 303
, 703 are hologram wavefront conversion elements, 384 and 704 are convergent lights, 305 and 705 are optical fibers, 4101 is the optical axis of the coherent divergent light 410, 5041 is the optical axis of the coherent convergent light 504, and 605 is the hologram.
607 is the reproduced coherent divergent light, and 607 is the reproduced coherent convergent light. Fukuro' diagram, 2nd figure, hair figure, colored figure, 5th figure, purple figure, hair figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 半導体発光素子から射出された直後の光の断面とほ
ぼ同じ大きさの開口を通過し、前記開口によって回析さ
れたコヒーレント発散光と参照光との干渉による干渉縞
と、前記コヒーレント発散光とほぼ同じ光軸上を前記コ
ヒーレント発散光と同じ方向に進んで記録面の後方の任
意の点に収束するコヒーレント収束光と前記参照波と同
じ性質の参照波との干渉による干渉縞とを同じ記録材料
に重ねて記録することによってホログラムを製作し、前
記ホログラムから同時に再生されるコヒーレント発散光
とコヒーレント収束光が干渉して形成する干渉縞を前記
記録材料の背後に置いた別の記録材料に記録することに
よってホログラム波面変換素子を製作することを特徴と
するホログラム波面変換素子の製作方法。
1 Interference fringes due to interference between the reference light and the coherent diverging light that passes through an aperture that is approximately the same size as the cross section of the light immediately after being emitted from the semiconductor light emitting element and is diffracted by the aperture, and the coherent divergent light and the reference light. Coherent convergent light that travels in the same direction as the coherent diverging light on almost the same optical axis and converges at an arbitrary point behind the recording surface and interference fringes caused by interference with a reference wave having the same properties as the reference wave are recorded in the same way. A hologram is produced by overlapping recording on a material, and interference fringes formed by interference of coherent diverging light and coherent converging light that are simultaneously reproduced from the hologram are recorded on another recording material placed behind the recording material. A method for manufacturing a holographic wavefront conversion element, characterized in that the hologram wavefront conversion element is manufactured by:
JP6861477A 1977-06-09 1977-06-09 Manufacturing method of hologram wavefront conversion element Expired JPS606518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6861477A JPS606518B2 (en) 1977-06-09 1977-06-09 Manufacturing method of hologram wavefront conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6861477A JPS606518B2 (en) 1977-06-09 1977-06-09 Manufacturing method of hologram wavefront conversion element

Publications (2)

Publication Number Publication Date
JPS543561A JPS543561A (en) 1979-01-11
JPS606518B2 true JPS606518B2 (en) 1985-02-19

Family

ID=13378805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6861477A Expired JPS606518B2 (en) 1977-06-09 1977-06-09 Manufacturing method of hologram wavefront conversion element

Country Status (1)

Country Link
JP (1) JPS606518B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH626729A5 (en) * 1978-12-01 1981-11-30 Cabloptic Sa
JPS55147655A (en) * 1979-05-07 1980-11-17 Sony Corp Manufacture of in-line hologram lens
JPS55163566A (en) * 1979-06-05 1980-12-19 Sony Corp Hologram lens and its production and optical system signal using this hologram lens
CH635442A5 (en) * 1980-04-03 1983-03-31 Cabloptic Sa METHOD FOR COUPLING AT LEAST TWO OPTICAL FIBERS BY MEANS OF A HOLOGRAPHIC LENS AND DEVICE FOR CARRYING OUT SAID METHOD.
JPS56161582A (en) * 1980-05-14 1981-12-11 Sony Corp Production of in-line hologram lens
JPS60121657U (en) * 1984-01-26 1985-08-16 株式会社島津製作所 Light emitting diode for fiber communication

Also Published As

Publication number Publication date
JPS543561A (en) 1979-01-11

Similar Documents

Publication Publication Date Title
US4701005A (en) Light beam combining method and apparatus
US4054356A (en) Method of making hologram lenses
GB1104041A (en) Wavefront reconstruction using a coherent reference beam
US4907851A (en) Single-mode 1×N holographic fiber optics coupler
JP2572052B2 (en) Method and apparatus for manufacturing a reflection hologram for interconnecting nonlinear optical elements
US3632182A (en) Method and apparatus for interference pattern recording
US3542452A (en) Transitory hologram apparatus
JPS606518B2 (en) Manufacturing method of hologram wavefront conversion element
JPS62501106A (en) optical interconnect device
US4398792A (en) Holographic coupler for fiber optic systems
KR19990086537A (en) Holographic storage device
US3602570A (en) Apparatus for making annular holograms
US4682841A (en) Light radiation concentrator and method of making the same
US4836658A (en) Optical devices for forming image and reference beams with a polarizing beamsplitter and a spatial light modulator
KR100198532B1 (en) Hologram memory device
US4392709A (en) Method of manufacturing holographic elements for fiber and integrated optic systems
US4878718A (en) Method for holographic correction of beams of coherent light
US3658404A (en) Complex wave modifying structure holographic system
CN112731656A (en) Zero-order light filtering light path of liquid crystal spatial light modulator
US3633986A (en) Holographic recording system with a separately recorded reference beam
Prongué et al. HOE for clock distribution in integrated circuits: experimental results
JPH0150910B2 (en)
JPH0797162B2 (en) Optical beam expander
JPH0385578A (en) Hologram recorder
JP3046616B2 (en) Method for producing pattern of optical element for optical IC