JPS6064429A - Oxidizing and diffusing device - Google Patents

Oxidizing and diffusing device

Info

Publication number
JPS6064429A
JPS6064429A JP17128683A JP17128683A JPS6064429A JP S6064429 A JPS6064429 A JP S6064429A JP 17128683 A JP17128683 A JP 17128683A JP 17128683 A JP17128683 A JP 17128683A JP S6064429 A JPS6064429 A JP S6064429A
Authority
JP
Japan
Prior art keywords
pressure
reaction
cap
reaction chamber
boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17128683A
Other languages
Japanese (ja)
Inventor
Haruo Shimoda
下田 春夫
Kazunori Imaoka
今岡 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17128683A priority Critical patent/JPS6064429A/en
Publication of JPS6064429A publication Critical patent/JPS6064429A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Abstract

PURPOSE:To prevent the intrusion of a contaminate, and to improve the controllability of the distribution of the thickness of a film by forming a cap section for a reaction tube in double tube structure and setting the pressure of the internal space of an external cap section at pressure higher than pressure in a reaction chamber for the reaction tube. CONSTITUTION:An external cap section 21 made of quartz glass is mounted in a shape that the outside section of a cap 14 section for a reaction tube 11 is covered under a sealed state through a proper space. The section 21 consists of a cap proper 22 and an external cap 23. The pressure PA' of an internal space 21a is kept at pressure slightly higher than atmospheric pressure PA. Pressure PR in a reaction chamber 11a is kept at pressure slightly lower than pressure PA' in the space 21a. Accordingly, an oxide film formed on a wafer 15 is not contaminated, and the excellent film is obtained.

Description

【発明の詳細な説明】 (イ)発明の技術分野 本発明はば化拡散装置に関し、特に、シリコンのIC(
集積回路)基板等の試料の表面に岐化又は拡散作用によ
って薄い酸化膜を形成する装置の構造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field of the invention The present invention relates to a vaporization diffusion device, and particularly relates to a silicon IC (
This invention relates to the structure of an apparatus that forms a thin oxide film on the surface of a sample such as an integrated circuit (integrated circuit) substrate by branching or diffusion.

(ロ)技術の背景 例えば、シリコンICの製造工程において、シリコン(
St)基板上に薄い酸化膜(St(h)を作シ込む工程
は、ICの機能に対する影響力が大きいため、非常に重
安な工程である。このよりな11j1.化膜の形成工程
に酸化拡散装置が多用されている。
(b) Background of the technology For example, in the manufacturing process of silicon ICs, silicon (
The process of forming a thin oxide film (St(h) on the St) substrate has a large influence on the function of the IC, so it is a very expensive process. Oxidation diffusion devices are often used.

この種の酸化膜は、特に、汚染されず粕浄で良質である
ことと、厚さく深さ)の均一性が反末される。最近は、
ICのパターンがますlす微細化される傾向にアシ、こ
れに伴って、1波化膜の厚さも、さらに一層薄く形成す
る心安にせまられている。
This type of oxide film is particularly notable for its good quality, non-contamination, and uniformity in thickness and depth. Nowadays,
As IC patterns tend to become increasingly finer, there is a need to make the thickness of the single wave film even thinner.

例えば、MOS−ICのゲート酸化膜は、非常に薄く形
成することが必要とされ、特に汚染されず清浄で良質で
、しかも厚さく深さ)分布の均一性が要求される。この
独の咳化展の厚さとしては、例えば、1メガビット程度
の超LSI外においては、100A程度の非常に薄い酸
化膜が請求される。
For example, the gate oxide film of a MOS-IC needs to be formed very thinly, and is particularly required to be uncontaminated, clean, and of good quality, and to have a uniform thickness and distribution. As for the thickness of this oxidation film, for example, a very thin oxide film of about 100A is required outside of VLSIs of about 1 megabit.

従って、この柚の酸化拡散装置としては、」二連の如き
非常に薄い酸化膜でも、汚染を最少限に抑え清浄で良質
で、しかも厚さが均一分布の酸化膜を形成し得る宿造を
有するものが要望されている。
Therefore, as an oxidation diffusion device for this yuzu, we have created a structure that can minimize contamination and form a clean, high-quality oxide film with a uniform thickness distribution, even with a very thin oxide film such as a double layer. What we have is in demand.

(ハ)従来技術と問題点 第1図は従来の酸化拡散装置を説明するだめの図である
。同図において、符号10は装置全体を示し、11は石
英ガラスから成る反応管、11aは反応室、12は反応
室11aに連通して反応管に一体状に連結して設けられ
た石英ガラスから成る反応ガス(酸化剤)Glの流入ボ
ート、13は流入ポート12と同様にして形成された排
気ガスG2の流出ボート、14は石英ガラスからなるキ
ャップ、15は円板状のウェーハ(多数のICチップを
含んでいるシリコン基板)、16は複数枚のつ工−ハ1
5を支持するホルダー、17はウェーハ15を加熱する
ためのヒータ、PAは大気圧(760xH5l )、p
Rは反応室11a内の圧力をそれぞれ示す。キャップ1
4は結合部工8が共通摺シ合せ加工され、結合部18に
よって反応管11に着脱可能に密着嵌合されている。そ
して、このキャップ14を取外してウェーハ15の出し
入れが行なわれる。ウェーハ15はヒータ17によって
1000°C〜1100℃程度の高温に加熱される。
(c) Prior Art and Problems FIG. 1 is a diagram for explaining a conventional oxidation diffusion device. In the figure, reference numeral 10 indicates the entire apparatus, 11 is a reaction tube made of quartz glass, 11a is a reaction chamber, and 12 is a quartz glass tube integrally connected to the reaction tube in communication with the reaction chamber 11a. 13 is an outflow boat for exhaust gas G2 formed in the same manner as inlet port 12, 14 is a cap made of quartz glass, and 15 is a disk-shaped wafer (a large number of ICs). (silicon substrate containing chips), 16 is a plurality of chips - 1
17 is a heater for heating the wafer 15, PA is atmospheric pressure (760xH5l), p
R represents the pressure inside the reaction chamber 11a. cap 1
4 has a common sliding joint 8 and is tightly fitted to the reaction tube 11 through the joint 18 in a removable manner. Then, the cap 14 is removed and the wafer 15 is taken in and taken out. The wafer 15 is heated to a high temperature of about 1000° C. to 1100° C. by the heater 17.

そして流入ポート12から反応ガスGt(例えば02ガ
ス)を反応室11a内に送シ込むと、高温に加熱された
ウェーハ(シリコン基& ) 15 a面テ反応が起き
、表面にStowの順化膜が形成される。
When a reaction gas Gt (for example, 02 gas) is fed into the reaction chamber 11a from the inflow port 12, a reaction occurs on the a-side of the wafer (silicon base &) 15 heated to a high temperature, and a Stow acclimation film is formed on the surface. is formed.

この場合は、いわゆる熱酸化によって酸化膜が形成され
る。そして、反応後の排気ガスG、は流出ボート13か
ら大気中に排気される。従って、この場合、反応室11
a内の圧力へは大気圧PAよりも若干高いか、又はほと
んど回じに近い値であり、PR≧PAの状態に保たれて
いる。しかし、圧力PRは反応ガスG、を送シ込むだめ
の出力分だけ大気圧PAよりも若干高い場合が多い。結
合部18は共辿摺シ合せ加工のため反応管11とキャッ
プ14をほぼ児全に密着結合しているが、内外の圧力差
によシ若干のもれが生ずる可能性かめる。従って、この
場合、PR≧PAの関係にあるので、結合部18から反
応室11a内への外気の侵入が防止され、清浄で良質な
酸化膜を形成することができる。
In this case, an oxide film is formed by so-called thermal oxidation. The exhaust gas G after the reaction is then exhausted into the atmosphere from the outflow boat 13. Therefore, in this case, the reaction chamber 11
The pressure inside a is slightly higher than the atmospheric pressure PA, or is almost at a value close to the rotational pressure, and is maintained in a state of PR≧PA. However, the pressure PR is often slightly higher than the atmospheric pressure PA by the output of the reservoir into which the reaction gas G is pumped. Although the joint portion 18 is formed by a co-sliding process, the reaction tube 11 and the cap 14 are almost tightly joined together, but there is a possibility that some leakage may occur due to the pressure difference between the inside and outside. Therefore, in this case, since there is a relationship of PR≧PA, intrusion of outside air from the joint portion 18 into the reaction chamber 11a is prevented, and a clean and high-quality oxide film can be formed.

しかし、この極の酸化膜は、・シリコン自身が反応して
成長するだめ、膜が薄い時は酸化反応が早いが(膜の成
長スピードが早い)、膜が厚くなるに従って次第に遅く
なってくるという特性を有している。また、一方では、
ウェーハ15の温度と反応室11a内の圧力PRとによ
って酸化反応のスピードが決められる。すなわち、ウェ
ーハ15の温度管一定とすると、圧力PRが低くなるに
従って膜の成長スピードは遅くなる。この従来の装置1
0の場合は、反応室11a内の圧力PRが大気圧PAと
ほぼ同じで比較的高いため、背に膜が薄い時に膜の成長
スピードが早いという機能を有している。従って、との
従来の装置10は、通常の酸化膜を形成する場合は良質
な膜が得られるが、前述したようなMOS−ICのゲー
ト酸化膜のように非常に薄い膜(例えば、厚さが100
X程度)を形成する場合は、膜の成長スピードが非常に
早いため、膜の厚さを所定値に正確に制御することが非
常に困難であり、1厘の厚さを均一分布に形成する制御
性に欠けるという問題がある。そこで、この問題を解決
すべく、膜の成長スピードを遅くするためPR<PAの
状態にすると、今度は、結合部18から大気が反応室1
1 a l’Jに侵入し、この大気中の水分、窒素等が
反応ガスG1 と共に反応して酸化膜を汚染して良質な
I杖化膜が得られないということになる。
However, the oxide film at this pole does not grow by reacting with the silicon itself, so when the film is thin, the oxidation reaction is fast (the film grows quickly), but as the film becomes thicker, it gradually slows down. It has characteristics. Also, on the other hand,
The speed of the oxidation reaction is determined by the temperature of the wafer 15 and the pressure PR in the reaction chamber 11a. That is, assuming that the temperature tube of the wafer 15 is constant, the film growth speed becomes slower as the pressure PR becomes lower. This conventional device 1
In the case of 0, the pressure PR in the reaction chamber 11a is almost the same as the atmospheric pressure PA and is relatively high, so that the film has a function of increasing the growth speed when the film is thin on the back. Therefore, when forming a normal oxide film, the conventional device 10 can obtain a good quality film, but the film is very thin (for example, the thickness is is 100
When forming a film with a thickness of about There is a problem of lack of controllability. Therefore, in order to solve this problem, in order to slow down the growth speed of the film, we set the state PR<PA, and this time, the atmosphere flows from the joint 18 to the reaction chamber 1.
1 a l'J, moisture, nitrogen, etc. in the atmosphere react with the reaction gas G1 and contaminate the oxide film, making it impossible to obtain a good quality I-containing film.

また、このような薄い酸化膜の形成に際し、従来よシ知
られている減圧気相成長装置(CVD 装置)を使用す
ることが考えられる。このCVD装置は反応管内の圧力
(PR)を大気圧(PA)よりもかなシ低い圧力(例え
ば、1〜10#711(f程度)に保つので膜の成長ス
ピードを遅くできるという利点がある。しかし、反応管
に連結してマニホールドと呼ばれている金属製(ステン
レス製の場合が多い)のキャップ部分(ウェーハの出し
入れ部分)が設けられている。このため、このCVD装
置で、前述したような要求のきひしい酸化膜を形成する
場合は、このキャップ部分の釜属が高温にさらされるこ
とになシ、この金AItsからの汚染(吻賀によって膜
が汚染されて良好な酸化膜を得ることができない。
Further, in forming such a thin oxide film, it is conceivable to use a conventionally known reduced pressure vapor deposition apparatus (CVD apparatus). This CVD apparatus maintains the pressure (PR) inside the reaction tube at a pressure slightly lower than atmospheric pressure (PA) (for example, about 1 to 10 #711 (f)), so it has the advantage of slowing down the film growth speed. However, there is a metal (often stainless steel) cap part (a part for loading and unloading wafers) called a manifold connected to the reaction tube. When forming an oxide film with strict requirements, it is important that the pot metal in the cap part be exposed to high temperatures, and contamination from this gold AIts (proboscis) may contaminate the film and prevent a good oxide film from being formed. I can't.

に)発明の目的 本発明の目的は、上記従来技術の問題点に鑑み、酸化膜
の反応スピードを遅くシ、かつ不純物の侵入を容易に防
止することができ、きわめて薄い膜でもその厚さを所定
値に均一に分布形成することができると共に、汚染され
ない良質の膜を形成し得る酸化拡散装置を提供すること
にある。
B) Purpose of the Invention In view of the problems of the prior art described above, the purpose of the present invention is to slow down the reaction speed of the oxide film, easily prevent the intrusion of impurities, and reduce the thickness of even an extremely thin film. It is an object of the present invention to provide an oxidation diffusion device capable of uniformly distributing a predetermined value and forming a high-quality film that is not contaminated.

(ホ)発明の構成 そして、この目的を達成するために、本発明に依れば、
底面にば化膜を形成すべき試料を収納する反応室を形成
しかつ該反応室に連通ずる反応ガスの流入ボートと抽気
ガスの流出ボートを有する反応管を備えた酸化拡散装置
において、前記反応管のキャップ部分の外側部を適宜な
空間を介して密閉状態に釈う形状に形成されかつ反応ガ
スの流入ボートと流出ボートをMする外側キャップ部分
を前記反応管に一体状に連結して設けることにより、前
記反応管のキャップ部分を2M管構造に形成し、前記外
側キャップ部分の内部空間の圧力が前記反応室内の圧力
よりも大となるように制御卸されていることを特徴とす
る酸化拡散装置が提供される。
(E) Structure of the invention In order to achieve this object, according to the present invention,
In the oxidation diffusion apparatus, the reaction tube is provided with a reaction tube which forms a reaction chamber for accommodating a sample on which a film is to be formed on the bottom surface, and has a reaction gas inflow boat and a bleed gas outflow boat communicating with the reaction chamber. An outer cap part is integrally connected to the reaction tube and is formed in a shape that seals the outer part of the cap part of the tube through an appropriate space and connects an inflow boat and an outflow boat for the reaction gas. The oxidation method is characterized in that the cap portion of the reaction tube is formed into a 2M tube structure, and the pressure in the internal space of the outer cap portion is controlled to be higher than the pressure inside the reaction chamber. A diffusion device is provided.

(へ)発明の実施例 以下、本発明の実施例を図面に基いて詳細に説明する。(f) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第2南は本発明の酸化拡散装置4を説明するだめの図で
ある。尚、同図において、前出の第1図と同一部分又は
相当部分には同一符号が符されている。従って、符号1
1は石英ガラスから成る反応管、11aは反応室、12
は反応室11aに連通して反応管11に一体状に連結し
て設けられた反応ガス(阪化剤)Glの流入ボート、1
3は流入ボート12と同様にして形成された排気ガスG
2の流出ボート、14は石英カラスから成るキャップ、
15はウェーハ(多数のICチップを含んでいるシリコ
ン基板)、16は複数枚のウェーハ15を支持するホル
ダー、17はウェーハ15(つまシ、反応室11a内)
を加熱するためのヒータ、18はキャップ14の共通摺
り合せ加工された結合部(低合部)、PAは大気圧(7
60−Hr)、PRは反応室11a内の圧力、G1は反
応ガス(例えば、0、ガス)、G、は反応後の排気ガス
をそれぞれ示す。そして、これらの各部分は、前出の第
1図の場合と同様に形成され同様に機能するものである
ため、と\ではその説明を省略する。
The second south is a diagram for explaining the oxidation diffusion device 4 of the present invention. In this figure, the same or equivalent parts as those in FIG. 1 mentioned above are designated by the same reference numerals. Therefore, code 1
1 is a reaction tube made of quartz glass, 11a is a reaction chamber, 12
1 is an inflow boat for a reaction gas (hanification agent) Gl, which is connected to the reaction chamber 11a and integrally connected to the reaction tube 11;
3 is an exhaust gas G formed in the same manner as the inflow boat 12.
2 an outflow boat, 14 a cap made of quartz crow;
15 is a wafer (silicon substrate containing a large number of IC chips), 16 is a holder that supports multiple wafers 15, and 17 is a wafer 15 (inside the reaction chamber 11a).
18 is a joint part (low joint part) where the cap 14 is commonly rubbed, and PA is atmospheric pressure (7
60-Hr), PR represents the pressure inside the reaction chamber 11a, G1 represents the reaction gas (for example, 0 gas), and G represents the exhaust gas after the reaction. Since each of these parts is formed in the same manner and functions in the same manner as in the case of FIG. 1, the explanation thereof will be omitted.

さて、第2図において、符号20は本発明の酸化拡散装
置全体を示す。図示のように、反応管11のキャップ1
4部分の外側部を適宜な空間を介して密閉状態に被う形
状で反応管11に一体状に連結して形成された石英ガラ
ス製の外側キャップ部分21が設けられている。この外
側キャップ部分21はキャップ本体22と外側キャップ
23とから成り、キャップ23は共通摺夛合せ加工され
た結合部24によってキャップ本体22に着脱げ能に密
着回合されている。ざらに外(Illキャップ部分21
には反応ガスG、の流入ボート25と流出ボート26が
一体状に設けられている。このように、本実施例は、反
応管11のキャップ14部分が2重管構造に形成されて
いる。反応管11の流入ボート12は、流量制御弁27
を介して二股状に形成された反応ガスG、の供給管28
の一方の分岐路28aに接続されている。そして夕k 
9(+1キャップ部分の流入ボート25はガスJjl路
用ホース(例えば、テフロンチューブ)29と逆止め弁
30を介して供給管28の他方の分岐路28bに接続さ
れている。反応管11の流出ボート13は自生ポンプ3
1に接続され、該真空ポンプ31は駆動モータ32によ
りて駆動される。真空ポンプ31は反応室11a内で反
応後の排気カスGtt強制的に排気させると共に反応室
11a内の圧力PRを必要に応じた真空圧に保つ役割を
果す。流量制御弁27は反応室11a内に送シ込む反応
ガスG、の流量を制御する役割を果す。逆止め弁30は
供給管28に圧送されてきた反応ガスG1をif:l 
過させ、外fi11キャップ部分21によって形J戊さ
れた内部空間21aに向けて送出すると共に、万一の場
合にψj11えてビ1部空間21aからの反応ノノスG
Iの逆流を防止する役割を果す。従って、内部空間21
aの圧力P^は通常は大気圧PAよシも若干高く保たれ
、少くともPAよシも低くなることはない。この結果、
PAとPAの関係は常にPλ≧PAの状態が維持される
ことになり、外気が結合部24を介して内部空間21a
内に侵入することが完全に防止される。このため内部空
間21aの内部はすべて反応ガスG、によって占められ
ている。一方、反応室11a内の圧力PRは、前述した
ように所望の真空圧に保たれているため、内部空間21
a内の圧力PAとの関係はPR<PAの状態になる。従
って、内部空間21a内のガスがキャップ14の結合部
18を介して反応室11a内に若干侵入する場合がある
が、この内部空間2Ia内から侵入するガスは前述した
ように反応ガスG1自身であるため、ウェーハ15上に
形成される酸化膜は汚染されることなく清浄で良質な膜
に形成することができる。
Now, in FIG. 2, reference numeral 20 indicates the entire oxidation diffusion device of the present invention. As shown, the cap 1 of the reaction tube 11
An outer cap portion 21 made of quartz glass is provided which is integrally connected to the reaction tube 11 and covers the outer portions of the four portions in a sealed manner with an appropriate space therebetween. The outer cap portion 21 is composed of a cap body 22 and an outer cap 23, and the cap 23 is removably attached to the cap body 22 in close contact with a joint portion 24 which is formed by a common sliding fit. Roughly outside (Ill cap part 21
An inflow boat 25 and an outflow boat 26 for the reaction gas G are integrally provided. In this way, in this embodiment, the cap 14 portion of the reaction tube 11 is formed into a double tube structure. The inflow boat 12 of the reaction tube 11 has a flow control valve 27.
A supply pipe 28 for reactant gas G formed in a bifurcated shape via
is connected to one branch path 28a. and evening k
The inflow boat 25 of the 9 (+1 cap portion) is connected to the other branch line 28b of the supply pipe 28 via a gas Jjl line hose (for example, a Teflon tube) 29 and a check valve 30. Boat 13 is a natural pump 3
1, and the vacuum pump 31 is driven by a drive motor 32. The vacuum pump 31 plays the role of forcibly exhausting the exhaust gas Gtt after the reaction in the reaction chamber 11a and maintaining the pressure PR in the reaction chamber 11a at a vacuum pressure as required. The flow rate control valve 27 plays a role of controlling the flow rate of the reaction gas G sent into the reaction chamber 11a. The check valve 30 controls the reaction gas G1 that has been force-fed into the supply pipe 28 if:l
The outer fi 11 is sent out toward the inner space 21a shaped like J by the cap part 21, and in case of an emergency, the reaction nonosu G from the bi 1 part space 21a is
It plays a role in preventing the backflow of I. Therefore, the internal space 21
The pressure P^ at a is normally maintained slightly higher than the atmospheric pressure PA, and at least does not become lower than the atmospheric pressure PA. As a result,
The relationship between PA and PA is such that the state of Pλ≧PA is always maintained, and the outside air flows through the joint 24 into the internal space 21a.
Intrusion into the interior is completely prevented. Therefore, the entire interior of the internal space 21a is occupied by the reaction gas G. On the other hand, since the pressure PR in the reaction chamber 11a is maintained at the desired vacuum pressure as described above, the internal space 21a
The relationship with the pressure PA in a is PR<PA. Therefore, the gas in the internal space 21a may slightly enter the reaction chamber 11a through the joint 18 of the cap 14, but the gas entering from within the internal space 2Ia is the reaction gas G1 itself as described above. Therefore, the oxide film formed on the wafer 15 can be formed as a clean and high-quality film without being contaminated.

また、反応室11a内の圧力PRを前述したように所望
の低圧(真空圧)に設定することにょシ、酸化膜の成長
スピードを遅くすることができるので、きわめて薄い(
例えば、10oX程度)酸化膜を形成する場合でもその
厚さく深さ)加減を十分に制御することができ厚さの分
布を良好に均一化することができる。また、本実施例は
、不純物拡散を目的とした、酸化拡散工程も使用するこ
とができ、前記説明と同様な理由で良質の薄い酸化膜を
得ることができる。また、本実施例は、反応ガスとして
塩酸等の毒性を有するガスを使用する場合もきわめて有
用性が高い。
Furthermore, by setting the pressure PR in the reaction chamber 11a to a desired low pressure (vacuum pressure) as described above, the growth speed of the oxide film can be slowed down, resulting in an extremely thin (
For example, even when forming an oxide film of about 100X, its thickness and depth can be sufficiently controlled, and the thickness distribution can be made uniform. Further, in this embodiment, an oxidation diffusion process for the purpose of impurity diffusion can be used, and a thin oxide film of good quality can be obtained for the same reason as explained above. Furthermore, this embodiment is extremely useful even when a toxic gas such as hydrochloric acid is used as the reaction gas.

尚、本発明は、上記実施例に限定されるものではなく、
例えば、シリコン基板のみならず他の材質の基板にも適
用でき、また、内部空間21aのPAと、反応室11a
の内圧PRとは上記例示の如くそれぞれ略大気圧と真空
圧に限定されることなく、それぞれもつと高圧の場合で
もPA〉PRの状態を保つことにより適用することがで
きる。又、反応管材質も石英ガラスに限定されることな
く、SiC(炭化ケイ素)その他の物質に於いても可能
であることはいうまでもない。
Note that the present invention is not limited to the above embodiments,
For example, it can be applied not only to silicon substrates but also to substrates made of other materials.
The internal pressure PR is not limited to approximately atmospheric pressure and vacuum pressure, respectively, as illustrated above, but can be applied even when the pressure is high by maintaining the state PA>PR. Further, the material of the reaction tube is not limited to quartz glass, and it goes without saying that other materials such as SiC (silicon carbide) can also be used.

(ト)発明の効果 以上、詳細に説明したように、本36明の敗化拡散装置
は、反応管のキャップ部分を2重管構造に形成し、外側
キャップ部分の内部空間の圧力を反応管の反応室内の圧
力よりも高圧に設定して制御することによシ、汚染物質
の侵入防止及び膜の厚さ分布の制御性の向上を可能とし
、きわめて薄い酸化膜(例えば、厚さが100A程度)
でも汚染されず清浄で良質、かつ厚さく深さ)分布が均
一な酸化膜として形成できるといった効果大なるものが
あり、製品の機能の向上及び信頼性の向上に寄与するも
のである。
(G) Effects of the Invention As explained in detail above, the septic diffusion device of the present invention has a cap portion of a reaction tube formed into a double tube structure, and the pressure in the internal space of the outer cap portion is transferred to the reaction tube. By setting and controlling the pressure higher than the pressure inside the reaction chamber, it is possible to prevent the intrusion of contaminants and improve the controllability of the film thickness distribution. degree)
However, it has the great effect of being able to form an uncontaminated, clean, high-quality oxide film with a uniform thickness and depth distribution, which contributes to improved product functionality and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸化拡散装置の説明図、第2図は本発明
の酸化拡散装置の説明図である。 11・・・石英ガラスから成る反応管、11a・・・反
応室、12.25・・・反応ガス(岐化剤)Glの流入
ポー)、13・・・反応後の排気ガスG2の流出ボート
、14・・・石英ガラスから成るキャップ、18・・・
キャップ14の共通指シ合せ加工された結合部(嵌合部
)、20・・・本発明の酸化拡散装置、21・・・外側
キャップ部分、21a・・・外側キャップ部分21の内
部空間、22・・・キャップ本体、23・・・外側キャ
ップ、24・・・外1111キャップ23の共通4fl
D合せ加工された結合部(嵌合部)、26・・・反応ガ
スGIの流出ポート、27・・・流量制御弁、28・・
・2股状供給管、28a、28b・・・分岐路、3o・
・・逆止め弁、31・・・真空ポンプ、PA・・・大気
圧(760+anr)、p4・・・内部空間21a内の
圧ツバPR・・・反応室11a内の圧力。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西舘和之 弁理士 内田幸男 ヲF哩士 山 口 昭 l
FIG. 1 is an explanatory diagram of a conventional oxidation diffusion device, and FIG. 2 is an explanatory diagram of an oxidation diffusion device of the present invention. DESCRIPTION OF SYMBOLS 11... Reaction tube made of quartz glass, 11a... Reaction chamber, 12.25... Inflow port for reaction gas (branching agent) Gl), 13... Outflow port for exhaust gas G2 after reaction , 14... Cap made of quartz glass, 18...
Joint part (fitting part) of the cap 14 processed by common finger fitting, 20... Oxidation diffusion device of the present invention, 21... Outer cap part, 21a... Internal space of the outer cap part 21, 22 ...Cap body, 23...Outer cap, 24...Outer 1111 Common 4fl of cap 23
D-matched joint (fitting part), 26... Outflow port for reaction gas GI, 27... Flow rate control valve, 28...
・Bifurcated supply pipe, 28a, 28b...branch path, 3o・
...Check valve, 31...Vacuum pump, PA...Atmospheric pressure (760+anr), p4...Pressure collar PR in internal space 21a...Pressure in reaction chamber 11a. Patent applicant Fujitsu Ltd. Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Yukio Uchida F.A. Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1、表面に酸化膜を形成すべき試料を収納する反応室を
形成しかつ該反応室に連通ずる反応ガスの流入ボートと
排気ガスの流出ボートを有する反応管を備えた酸化拡散
装置において、前記反応管のキャップ部分の外側部を適
宜な空間を介して密閉状態に被う形状に形成されかつ反
応ガスの流入ボートと流出ボートを有する外側キャップ
部分を前記反応官に一体状に連結して設けることによシ
、前記反応管のキャップ部分を2重管構造に形成し、前
記外側キャンプ部分の内部空間の圧力が前記反応室内の
圧力よりも大となるように制御されていることを特徴と
する酸化拡散装置。
1. An oxidation diffusion device comprising a reaction tube which forms a reaction chamber for storing a sample on which an oxide film is to be formed, and which has a reaction gas inflow boat and an exhaust gas outflow boat communicating with the reaction chamber. An outer cap part is formed to cover the outer part of the cap part of the reaction tube in a sealed state through an appropriate space, and has an inflow boat and an outflow boat for reaction gas, and is integrally connected to the reaction vessel. Particularly, the cap portion of the reaction tube is formed into a double tube structure, and the pressure in the internal space of the outer camp portion is controlled to be higher than the pressure inside the reaction chamber. oxidation diffusion equipment.
JP17128683A 1983-09-19 1983-09-19 Oxidizing and diffusing device Pending JPS6064429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17128683A JPS6064429A (en) 1983-09-19 1983-09-19 Oxidizing and diffusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17128683A JPS6064429A (en) 1983-09-19 1983-09-19 Oxidizing and diffusing device

Publications (1)

Publication Number Publication Date
JPS6064429A true JPS6064429A (en) 1985-04-13

Family

ID=15920499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17128683A Pending JPS6064429A (en) 1983-09-19 1983-09-19 Oxidizing and diffusing device

Country Status (1)

Country Link
JP (1) JPS6064429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046023A (en) * 2011-10-13 2013-04-17 核心能源实业有限公司 Thermal treatment furnace structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046023A (en) * 2011-10-13 2013-04-17 核心能源实业有限公司 Thermal treatment furnace structure

Similar Documents

Publication Publication Date Title
US4817558A (en) Thin-film depositing apparatus
US5578132A (en) Apparatus for heat treating semiconductors at normal pressure and low pressure
US6652650B2 (en) Modified susceptor for use in chemical vapor deposition process
KR20010034921A (en) Substrate support member with a purge gas channel and pumping system
JP3207832B2 (en) CVD reactor and method for producing epitaxially grown semiconductor wafers
KR100709801B1 (en) Precoat film forming method, idling method of film forming device, loading table structure, film forming device and film forming method
JP3578155B2 (en) Oxidation method of the object
JP2670515B2 (en) Vertical heat treatment equipment
JP4943536B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
TW202121510A (en) Method for forming RuSi film and substrate processing system
JPS6064429A (en) Oxidizing and diffusing device
JP4286981B2 (en) Single wafer heat treatment system
JP2003224079A (en) Heat treating method, heat treating device and manufacturing method for silicon epitaxial wafer
JPH09199424A (en) Epitaxial growth
JPS6010621A (en) Depressurized epitaxial growing equipment
JP2001026871A (en) Film forming method and film forming device
JP2000100809A (en) Film-forming method
JPH10223620A (en) Semiconductor manufacturing device
JPH04191375A (en) Substrate heating device
JPH01278715A (en) Film manufacturing device
JP2004095940A (en) Method of manufacturing semiconductor device
JP2004217956A (en) Substrate treatment apparatus
JP2001135581A (en) Film forming method and film forming apparatus
JPH01297820A (en) Apparatus and method for applying film to board
JP2012102404A (en) Method of manufacturing semiconductor device, and method and apparatus of processing substrate