JPS6064376A - Recording method of magnetic hologram - Google Patents

Recording method of magnetic hologram

Info

Publication number
JPS6064376A
JPS6064376A JP17373283A JP17373283A JPS6064376A JP S6064376 A JPS6064376 A JP S6064376A JP 17373283 A JP17373283 A JP 17373283A JP 17373283 A JP17373283 A JP 17373283A JP S6064376 A JPS6064376 A JP S6064376A
Authority
JP
Japan
Prior art keywords
thin film
magnetic
light
recording medium
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17373283A
Other languages
Japanese (ja)
Inventor
Hisataka Fujii
藤井 壽崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP17373283A priority Critical patent/JPS6064376A/en
Publication of JPS6064376A publication Critical patent/JPS6064376A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2224/00Writing means other than actinic light wave
    • G03H2224/06Thermal or photo-thermal means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2240/00Hologram nature or properties
    • G03H2240/20Details of physical variations exhibited in the hologram
    • G03H2240/25Magnetic variations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

PURPOSE:To obtain stably an image which has high resolving power and superior reproducibility of continuous gradations by recording hologram information on a specific magnetic thin film with thermomagnetic effect in a two-dimensional pattern of magnetism. CONSTITUTION:A thin film 2 of resin, a thin film 3 of amorphous TbFe, and a thin film 4 of SiOx (X: 1-2) are laminated on the surface of a glass substrate 1 successively. An essential body as a recording medium is the magnetic thin film 3 of amorphous TbFe. A light beam from a Q switched ruby laser 2 is transmitted through an object 29 to reach the surface of a recording medium 10. Its object light interferes with reference light to form an optical pattern containing image information on the object 29, and this pattern is recorded on the TbFe thin film 3 of the recording medium 10 by photo-electro-magnetic effect.

Description

【発明の詳細な説明】 この発明は、ホログラフィ技術に関し、特に、ホログラ
ム情報を熱磁気効果により磁気的に記録する磁気ホログ
ラム記録方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to holography technology, and particularly to a magnetic hologram recording method for magnetically recording hologram information using thermomagnetic effects.

周知のように、磁気ホログラムは、コヒーレント光によ
って作り出される物体光と参照光を干渉させた像情報を
含んだ光パターンを、記録媒体である磁性体薄膜に光熱
磁気効果によって書込み、磁化状態の2次元パターンと
して記録するものである。
As is well-known, magnetic holograms write an optical pattern containing image information created by interference of an object beam and a reference beam created by coherent light onto a magnetic thin film, which is a recording medium, by the photothermal magnetic effect. It is recorded as a dimensional pattern.

また記録した画像の再生には、磁性体薄膜の磁気光学効
果を利用し、これにコヒーレント光を照射することで記
録情報を光の形態で読出し、ファラデー効果やカー効果
によって光学画像を得る。
To reproduce a recorded image, the magneto-optic effect of a magnetic thin film is used, and by irradiating it with coherent light, the recorded information is read out in the form of light, and an optical image is obtained using the Faraday effect or Kerr effect.

この磁気ホログラムは、写真感材などを記録媒体とする
ホログラムと比較し、面倒な現像処理が不要であること
、旧記録情報の消去および再書込みが容易に行なえるこ
となどの利点を本質的に有しており、例えばディジタル
データは勿論のこと文書や写真などを記録するホログラ
ムメモリとしての応用など、大いに注目されている。
Compared to holograms using photosensitive materials as recording media, magnetic holograms have the essential advantages of not requiring troublesome development processing, and that old recorded information can be easily erased and rewritten. For example, it is attracting a lot of attention for its application as a hologram memory that records not only digital data but also documents and photographs.

しかしながら従来においては、磁気ホログラムによる画
像の記録・再生には解像度および中間階調の再現性など
の面において充分な特性が得られていないのが実情であ
る。
However, in the past, the reality is that recording and reproducing images using magnetic holograms has not achieved sufficient characteristics in terms of resolution and reproducibility of intermediate gradations.

従来の代表的な磁気ホログラム記録媒体はMnB1 (
マンガン・ビスマス)iJII!!であるが、これには
次のような問題点が指摘されている。
A typical conventional magnetic hologram recording medium is MnB1 (
Manganese/Bismuth) iJII! ! However, the following problems have been pointed out.

1vln3iのキューリ一点が約360℃と高く、情報
書込時に高出力の光が必要となり、従って大規模な光源
が必要となる。
The single Curie point of 1vln3i is as high as about 360° C., and high-output light is required when writing information, thus requiring a large-scale light source.

また、1yln3iの材質構造が多結晶であり、これが
記録密度を高める上で大きな制約となる。
Furthermore, the material structure of 1yln3i is polycrystalline, which is a major constraint in increasing the recording density.

また、MnB1は、保磁力の低いときの磁区の安定性が
悪いとともに、結晶変態に伴ってその構造が不安定化す
る。
Furthermore, MnB1 has poor magnetic domain stability when the coercive force is low, and its structure becomes unstable due to crystal transformation.

このような記録媒体の特性から、従来は白黒2値化した
画像しか良好に記録・再生できず、しかもその場合でも
解像度はあまり高くな(かつ不安定であった。
Due to these characteristics of recording media, conventionally only black and white binary images can be recorded and reproduced well, and even in that case the resolution was not very high (and unstable).

また書込時の光源として高出力のものが必要となること
から、小形で扱いやすく安価な半導体レーザが使用でき
ないという点も非常に不利である。
Furthermore, since a high-output light source is required for writing, it is extremely disadvantageous that small, easy-to-handle, and inexpensive semiconductor lasers cannot be used.

また、11区の安定性を高くするために、記録装置にお
ける周辺磁気回路が大規模になるといった問題もある。
Another problem is that in order to increase the stability of the 11th section, the peripheral magnetic circuit in the recording device becomes large-scale.

この発明は前述した従来の問題点に鑑みなされたもので
あり、その目的は、高解像力が安定して得られ、連続階
調の再現性に優れ、半導体レーザなどによる比較的低出
力のコヒーレント光で書込みが行なえる磁気ホログラム
記録方法を提供することにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to stably obtain high resolution, have excellent continuous gradation reproducibility, and use relatively low-power coherent light emitted from semiconductor lasers etc. An object of the present invention is to provide a magnetic hologram recording method that allows writing.

この目的を達成するために、本発明者らは様々な磁性材
料を用いてホログラム記録実験を行なったところ、非晶
質TbFe(テルビウム・鉄)薄膜を用いた磁気ホログ
ラム記録方法が良好な結果を示すことを知得した。
To achieve this objective, the present inventors conducted hologram recording experiments using various magnetic materials, and found that a magnetic hologram recording method using an amorphous TbFe (terbium iron) thin film yielded good results. I learned how to show.

以下、この発明の実施例を図面に基づいて詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は、この発明に係る磁気ホログラム記録方法で用
いられる記録媒体の断面構造を示している。これはガラ
ス基板1の表面に樹脂薄膜2.非晶質TbFe薄膜3.
Si Ox (xは1膜2程度)薄膜4を順に積層形成
したもので、記録媒体としての主体は、非晶質TbFe
薄膜3の磁性薄膜である。
FIG. 1 shows the cross-sectional structure of a recording medium used in the magnetic hologram recording method according to the present invention. This is a thin resin film 2 on the surface of a glass substrate 1. Amorphous TbFe thin film 3.
SiOx (x is approximately 1 film 2) thin films 4 are laminated in order, and the main body of the recording medium is amorphous TbFe.
The thin film 3 is a magnetic thin film.

樹脂薄膜2は、PMMA、塩化酢酸ビニル、PVAなど
の樹脂を1〜10μI11程度の厚さでスピナ塗装して
形成したものである。この樹脂薄膜2は必ずしも必要な
いが、TbFe1l膜3の感光度を2〜10倍程度向上
させるという効果をもたらす。
The resin thin film 2 is formed by spin coating a resin such as PMMA, vinyl acetate chloride, or PVA to a thickness of about 1 to 10 μI11. Although this resin thin film 2 is not necessarily necessary, it has the effect of improving the photosensitivity of the TbFe1l film 3 by about 2 to 10 times.

非晶質Tb Fe薄膜3は、2電子銃間時蒸着法による
蒸着あるいはスパッタリングによって厚さ100〜10
00人程度に形成されている。実験データによれば、T
bFe1膜3の厚みは画像の記録し易さや再生像のコン
トラストに大きく影響し、特にファラデー効果を利用し
て再生する場合、良好な厚さは100〜350人の範囲
であり、さらに望ましくは250〜330人の範囲であ
る。
The amorphous Tb Fe thin film 3 is formed to a thickness of 100 to 100 nm by vapor deposition using a two-electron gun time evaporation method or by sputtering.
It is made up of about 00 people. According to experimental data, T
The thickness of the bFe1 film 3 greatly affects the ease of recording images and the contrast of reproduced images, and particularly when reproducing using the Faraday effect, a good thickness is in the range of 100 to 350, more preferably 250. The number ranges from ~330 people.

5− また、SiOx薄膜4はTb Fe ’Jlj膜3のコ
ーティング層である。
5- Also, the SiOx thin film 4 is a coating layer of the TbFe'Jlj film 3.

非晶質TbFe薄膜3は、その結晶構造によって記録密
度が制限されるということがないため、高解像力が安定
して得られる。
Since the recording density of the amorphous TbFe thin film 3 is not limited by its crystal structure, high resolution can be stably obtained.

またキューリ一点が約120℃と低いため、比較的低温
での書込みが可能で、書込時の光源は比較的小出力のも
ので良い。そのため小形の半導体レーザを光源として使
用し、充分に良好な書込みが行なえる。
Furthermore, since the single Curie point is as low as about 120° C., writing can be performed at relatively low temperatures, and the light source used for writing can be of relatively low output. Therefore, a small semiconductor laser can be used as a light source to perform sufficiently good writing.

また、非晶質Tb Fe薄膜3の磁区は保磁力の低い領
域においても非常に安定しているので、書込みの際に必
要な周辺磁気回路の構成も簡単で良い。これらのことは
1次に説明する情報の書込みおよび再生実験によって確
かめられた。
Furthermore, since the magnetic domain of the amorphous Tb Fe thin film 3 is very stable even in a region of low coercive force, the configuration of the peripheral magnetic circuit required for writing can be simple. These facts were confirmed by the information writing and reproduction experiments described below.

第2図は、第1図に示した記録媒体1oに対する情報記
録装置系を示している。
FIG. 2 shows an information recording apparatus system for the recording medium 1o shown in FIG.

同図において、Qスイッチド・ルビーレーザ21からは
尖頭パワーo、emw・パルス幅30nSのパルス状で
、ビーム幅0.1〜数sn+のコヒーレ6− ントな光ビームが出力される。
In the figure, a Q-switched ruby laser 21 outputs a pulsed coherent light beam with a peak power of o and emw and a pulse width of 30 nS and a beam width of 0.1 to several sn+.

この光ビームのビーム幅がレンズ系22によっである程
度広げられ、ビームスプリッタ23で2系統に分岐され
る。
The beam width of this light beam is widened to some extent by a lens system 22, and is split into two systems by a beam splitter 23.

分岐された一方の光ビームはミラー系271.25を経
て前述の記録媒体10の表面に参照光として照射される
One of the branched light beams passes through a mirror system 271.25 and is irradiated onto the surface of the recording medium 10 as a reference light.

分岐されたもう一方の光ビームはレンズ・ミラー系26
,27.28を経て被写体29に照射される。
The other branched light beam is sent to the lens/mirror system 26
, 27 and 28, the object 29 is irradiated with the light.

この例の被写体29は35mmX35111mの大きさ
の平面に記録すべき文字などの2次元パターンが描かれ
ている。
In this example, the object 29 has a two-dimensional pattern such as characters to be recorded on a plane measuring 35 mm x 35,111 m.

この被写体29を透過した光ビームがレンズ系30を経
て物体光となり、記録媒体1oの表面に達する。
The light beam that has passed through the object 29 passes through the lens system 30, becomes object light, and reaches the surface of the recording medium 1o.

前述の参照光とこの物体光が干渉することによって生じ
た被写体29の画像情報を含んだ光パターンが、記録媒
体10のTb Fe薄膜3に光熱磁気効果によって記録
される。
A light pattern containing image information of the object 29 generated by the interference between the reference light and the object light is recorded on the Tb Fe thin film 3 of the recording medium 10 by the photothermal magnetic effect.

つまり烏(知られているように、Tb Fe薄膜3はイ
ニシャル処理として、外部から与えられた強い磁界で膜
面に垂直に一方向に磁化されており、また情報記録時に
は、初期磁化方向と逆方向に弱いバイアス磁界が印加さ
れている。ただし、このバイアス磁界は光強度が十分に
大きいときは印加しなくても良い。光強度が小さいとき
は有効となる。
In other words, as is known, the TbFe thin film 3 is initially magnetized in one direction perpendicular to the film surface by a strong magnetic field applied from the outside, and when recording information, it is magnetized in the opposite direction to the initial magnetization direction. A weak bias magnetic field is applied in the direction.However, this bias magnetic field does not need to be applied when the light intensity is sufficiently large.It is effective when the light intensity is small.

その状態で表面に光が当たると、その光による熱でその
部分の磁化方向が反転する。
When light hits the surface in this state, the heat from the light reverses the magnetization direction of that part.

この熱磁気効果によって、TbFe薄膜3に照射された
光パターンがこの表面の垂直磁化状態の2次元パターン
として記録される。
Due to this thermomagnetic effect, the light pattern irradiated onto the TbFe thin film 3 is recorded as a two-dimensional pattern of perpendicular magnetization on this surface.

前記のように記録された画像情報を再生するには、第3
図(A)に示すファラデー効果を利用する方法と、同図
(B)に示すカー効果を利用する方法が良く知られてい
る。
To reproduce the image information recorded as described above, the third
A method using the Faraday effect shown in Figure (A) and a method using the Kerr effect shown in Figure (B) are well known.

同図(A)の再生方法では、30mW程度で連続発振す
るレーザ31からのコヒーレントな光ビームを偏光子3
2を介して上記記録媒体10に略々記録時の参照光入射
角度と同じ角度で照射する。
In the reproduction method shown in FIG.
2, the reference beam is irradiated onto the recording medium 10 at approximately the same angle as the incident angle of the reference beam during recording.

このとき記録媒体10を透過する光は、TbFe薄膜3
の磁化状態に応じて偏光面が回転する。
At this time, the light transmitted through the recording medium 10 is transmitted through the TbFe thin film 3.
The plane of polarization rotates depending on the magnetization state.

この透過光を検光子33を介してレンズ系3/Iで受け
、CODなどの2次元撮像素子35の撮像面に結像する
This transmitted light is received by the lens system 3/I via the analyzer 33, and is imaged on the imaging surface of a two-dimensional imaging device 35 such as a COD.

これにより、TbFe薄膜3の磁化状態の2次元パター
ンに対応した光パターン、すなわち光学画像が撮像素子
35の撮像面に再生され、この画像情報が撮像素子35
によって電気信号に変換される。なお、検光子33は必
ずしも必要ではないが、再生時のゴースト像除去等画質
を向上させる意味で介在させた方が良い。
As a result, a light pattern corresponding to the two-dimensional pattern of the magnetization state of the TbFe thin film 3, that is, an optical image, is reproduced on the imaging surface of the image sensor 35, and this image information is transferred to the image sensor 35.
is converted into an electrical signal by Although the analyzer 33 is not necessarily required, it is preferable to include it in order to improve image quality such as removing ghost images during reproduction.

第3図(B)の再生方法は、前述した第3図(A)の再
生方法と同様に光源31から偏光子32を経たコヒーレ
ントな光ビームを記録媒体10のTbF13iJ膜3面
に照射した後、これから生ずる反射光を検光子33およ
びレンズ系34で受け、m像素子35の撮像面に光学画
像を結像する。
The reproduction method shown in FIG. 3(B) is similar to the reproduction method shown in FIG. , the reflected light generated from this is received by the analyzer 33 and the lens system 34, and an optical image is formed on the imaging surface of the m-image element 35.

ところで、この発明の磁気ホログラム記録方法9− によれば、情報記録時の最適条件について従来のホログ
ラム記録と比べると次のような相違がある。
By the way, according to the magnetic hologram recording method 9- of the present invention, there are the following differences in optimal conditions during information recording compared to conventional hologram recording.

つまり、従来のホログラム記録の場合、参照光の強度を
物体光より強くしており、その方が解像度などの面で良
好な結果が得られる。
In other words, in the case of conventional hologram recording, the intensity of the reference beam is made stronger than that of the object beam, and better results can be obtained in terms of resolution and the like.

しかしこの発明の記録方法では、これとは逆に、物体光
の強度を参照光より強くした方が良好な記録・再生結果
が得られることが実験により確かめられた。
However, in the recording method of the present invention, it has been experimentally confirmed that, on the contrary, better recording and reproduction results can be obtained by making the intensity of the object light stronger than that of the reference light.

この発明の記録方法の場合、参照光の強度を1とすると
、白黒2値化された画像を記録する場合には、良好な記
録・再生特性が得られるのは物体光の強度を1.2〜1
5の範囲にしたときであり、望ましくは2〜10の範囲
であり、さらに望ましくは4〜7の範囲である。
In the case of the recording method of the present invention, if the intensity of the reference light is 1, when recording a black and white binary image, good recording/reproduction characteristics can be obtained when the intensity of the object light is 1.2. ~1
5, preferably 2 to 10, more preferably 4 to 7.

また、連続階調を有する画像(Qray Tone p
attern)を良好に記録・再生するには、記録時の
物体光の強度を1.1〜10の範囲にしたときであり、
望ましくは1.2〜3の範囲である。
In addition, images with continuous tone (Qray Tone p
In order to record and reproduce data well (attern), the intensity of the object light during recording should be in the range of 1.1 to 10.
It is preferably in the range of 1.2 to 3.

このように参照光と物体光の強度を調整するこ10− とにより、コントラストが良く解像力の高い良好な画像
の記録・再生が行なえる。この発明の実施例により得ら
れた解像度は0.35μmであり、これはルビーレーザ
の半波長に近い極めて高い値である。
By adjusting the intensities of the reference light and the object light in this way (10-), it is possible to record and reproduce good images with good contrast and high resolution. The resolution obtained by the embodiment of the present invention is 0.35 μm, which is an extremely high value close to the half wavelength of a ruby laser.

以上詳細に説明したように、この発明に係る磁気ホログ
ラム記録方法によれば、情報の記録が容易であり、しか
も安定した高い解像力を実現することができる。
As described above in detail, according to the magnetic hologram recording method according to the present invention, information can be easily recorded and stable high resolution can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の磁気ホログラム記録方法に用いられ
る記録媒体の構造例を示す断面図、第2図は同記録媒体
に対する情報の書込系の一例を示す系統図、第2図(A
)(B)はそれぞれ同記録媒体から画像情報を再生する
装置系の系統図である。 1・・・ガラス基板 2・・・樹脂薄膜 3・・・非晶質Tt+Fe@膜 4・・・3iQx薄膜 10・・・記録媒体 特許出願人 日本楽器製造株式会社 手続ネ甫正書 (方式) 昭和59年2月2日 1、事件の表示 特願昭58−173732@ 2、発明の名称 磁気ホログラム記録方法 3、補正をする者 事例との関係 特許出願人 住 所 静岡県浜松市中沢町10番1号名 称 (40
7)日本楽器Ill造株式会社代表者 川 上 浩 4、代理人〒101 住 所 東京都千代田区内神田1丁目15番16号6、
補正の対象 図面の簡単な説明の欄7、補正の内容 明細書第11頁第14行目の「第2図」を「第3図」と
訂正する。 2−
FIG. 1 is a cross-sectional view showing an example of the structure of a recording medium used in the magnetic hologram recording method of the present invention, FIG. 2 is a system diagram showing an example of an information writing system for the same recording medium, and FIG.
) and (B) are system diagrams of apparatus systems that reproduce image information from the same recording medium. 1...Glass substrate 2...Resin thin film 3...Amorphous Tt+Fe@ film 4...3iQx thin film 10...Recording medium patent applicant Nippon Gakki Manufacturing Co., Ltd. Procedural formalities (Method) February 2, 1980 1. Case indication patent application No. 173732 @ 2. Name of the invention Magnetic hologram recording method 3. Relationship with the case of the person making the amendment Patent applicant address 10 Nakazawa-cho, Hamamatsu City, Shizuoka Prefecture Number 1 Name (40
7) Nippon Gakki Illzou Co., Ltd. Representative Hiroshi Kawakami 4, Agent 101 Address 1-15-16-6 Uchikanda, Chiyoda-ku, Tokyo
Target of amendment In column 7 of the brief description of the drawings, "Fig. 2" on page 11, line 14 of the description of the contents of the amendment is corrected to "Fig. 3." 2-

Claims (4)

【特許請求の範囲】[Claims] (1)適宜な基板表面に非晶質Tb Fe薄膜からなる
熱磁気効果を有する磁性薄膜を形成し、ホログラム情報
をこの磁性薄膜の磁化状態の2次元パターンとして記録
することを特徴とする磁気ホログラム記録方法。
(1) A magnetic hologram characterized in that a magnetic thin film having a thermomagnetic effect made of an amorphous Tb Fe thin film is formed on the surface of an appropriate substrate, and hologram information is recorded as a two-dimensional pattern of the magnetization state of this magnetic thin film. Recording method.
(2)前記非晶質Tb Fe薄膜の厚みが100〜35
0人であることを特徴とする特許請求の範囲第1項に記
載の磁気ホログラム記録方法。
(2) The thickness of the amorphous Tb Fe thin film is 100 to 35
2. The magnetic hologram recording method according to claim 1, wherein the number of recording persons is 0.
(3)上記基板はガラスであり、これと前記非晶質Tb
Fe1l膜との間に合成樹脂薄膜層が形成されているこ
とを特徴とする特許請求の範囲第1項に記載の磁気ホロ
グラム記録方法。
(3) The substrate is glass, and the amorphous Tb
2. The magnetic hologram recording method according to claim 1, wherein a synthetic resin thin film layer is formed between the Fe1I film and the Fe1I film.
(4)前記非晶質下bl”e薄膜の表面がSi 02で
コーティングされていることを特徴とする特許請求の範
囲第1項に記載の磁気ホログラム記録方法。
(4) The magnetic hologram recording method according to claim 1, wherein the surface of the amorphous lower bl''e thin film is coated with Si 02.
JP17373283A 1983-09-20 1983-09-20 Recording method of magnetic hologram Pending JPS6064376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17373283A JPS6064376A (en) 1983-09-20 1983-09-20 Recording method of magnetic hologram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17373283A JPS6064376A (en) 1983-09-20 1983-09-20 Recording method of magnetic hologram

Publications (1)

Publication Number Publication Date
JPS6064376A true JPS6064376A (en) 1985-04-12

Family

ID=15966106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17373283A Pending JPS6064376A (en) 1983-09-20 1983-09-20 Recording method of magnetic hologram

Country Status (1)

Country Link
JP (1) JPS6064376A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731446B2 (en) 2000-02-03 2004-05-04 Matsushita Electric Industrial Co., Ltd. Method for forming a magnetic pattern in a magnetic recording medium, method for producing a magnetic recording medium, magnetic pattern forming device, magnetic recording medium and magnetic recording device
US6781779B2 (en) 2000-05-16 2004-08-24 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, its production method and magnetic recording apparatus
US6816330B2 (en) 2000-12-22 2004-11-09 Matsushita Electric Industrial Co., Ltd. Method for forming a magnetic pattern in a magnetic recording medium, magnetic recording medium magnetic recording device and photomask
US6950261B2 (en) 2001-01-24 2005-09-27 Matsushita Electric Industrial Co., Ltd. Magnetic pattern forming method, magnetic pattern forming apparatus, magnetic disk, and magnetic recording apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731446B2 (en) 2000-02-03 2004-05-04 Matsushita Electric Industrial Co., Ltd. Method for forming a magnetic pattern in a magnetic recording medium, method for producing a magnetic recording medium, magnetic pattern forming device, magnetic recording medium and magnetic recording device
US6781779B2 (en) 2000-05-16 2004-08-24 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium, its production method and magnetic recording apparatus
US6816330B2 (en) 2000-12-22 2004-11-09 Matsushita Electric Industrial Co., Ltd. Method for forming a magnetic pattern in a magnetic recording medium, magnetic recording medium magnetic recording device and photomask
US6950261B2 (en) 2001-01-24 2005-09-27 Matsushita Electric Industrial Co., Ltd. Magnetic pattern forming method, magnetic pattern forming apparatus, magnetic disk, and magnetic recording apparatus

Similar Documents

Publication Publication Date Title
US4612587A (en) Thermomagnetic recording and reproducing system
US5208799A (en) Magneto-optic recording method and magneto-optic recording/reproducing apparatus
JPS60236137A (en) Simultaneously erasing-recording type photomagnetic recording system and recording device and medium used for this system
JPS6048806B2 (en) Thermomagnetic recording method
JP3786426B2 (en) Magneto-optical recording medium and reproducing method thereof
JPS6064376A (en) Recording method of magnetic hologram
US5965285A (en) Magneto-optical recording medium and reproducing method for the same
EP0740297B1 (en) Magneto-optical method and apparatus for recording/reproducing data
JPS5857646A (en) Vertical magnetic recording and reproducing method
JPH09198731A (en) Magneto-optical recording medium
US3625583A (en) Erasable hologram
US5574703A (en) Magneto-optical method and apparatus for recording/reproducing data
JPS5816276B2 (en) Hikarijikikikirokuhoushiki
JPS5841450A (en) Vertical magnetic recording medium
JPH0614416B2 (en) Magneto-optical recording / reproducing method
KR940007797A (en) Overwriteable optical recording medium and recording method thereof
JPS5819753A (en) Vertical magnetic recording medium and reproducing method of vertical magnetizing signal using said recording medium
JPH0231356A (en) Information recording and reproducing device
JPS5923016B2 (en) optical recording medium
JPS60125903A (en) Thermomagneto-optical recording system
KR0137444B1 (en) Magneto optical recording medium and manufacturing method
JP2607476B2 (en) Magneto-optical recording method
JP2945049B2 (en) Magneto-optical recording medium
JP2714085B2 (en) Information recording method
JPS62219203A (en) Optical modulation overwriting system for photomagnetic recording device