JPS6063932A - Reactive ion beam etching device - Google Patents

Reactive ion beam etching device

Info

Publication number
JPS6063932A
JPS6063932A JP17157383A JP17157383A JPS6063932A JP S6063932 A JPS6063932 A JP S6063932A JP 17157383 A JP17157383 A JP 17157383A JP 17157383 A JP17157383 A JP 17157383A JP S6063932 A JPS6063932 A JP S6063932A
Authority
JP
Japan
Prior art keywords
cathode
ion source
source chamber
gas
reactive gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17157383A
Other languages
Japanese (ja)
Inventor
Yaichiro Watakabe
渡壁 弥一郎
Shuichi Matsuda
修一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17157383A priority Critical patent/JPS6063932A/en
Publication of JPS6063932A publication Critical patent/JPS6063932A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To contrive the prolongation of the lifetime of a cathode by a method wherein the cathode of lanthanum hexaboride which radiates thermal electrons to generate reactive gas ions is stably operated in the atmosphere of an inert gas. CONSTITUTION:For example, Ar gas is introduced inside a cathode cover 8, and the reactive gas is introduced into an ion source chamber 1. Thereafter a positive high bias voltage of several hundred V is impressed on an electron lead- out electrode 10, and a negative one of several hundred V on an accelerating electrode 5. Next, when the thermal electrons are radiated by heating the LaB6 cathode 9, the Ar gas inside the cover 8 is activated and then comes to the state of plasma of isolation into Ar ions and electrons. The reactive gas in the chamber 1 is activated by the electrons in the Ar plasma. The positive ions are led out through a window by the negative high bias voltage impressed on the electrode 5, and perform etching by irradiating the film to be etched formed on the main surface of an Si wafer 6. The cathode 9 is then protected by the inert gas, and besides the heating temperature is low.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はシリコン基板の主面上に形成さ1また金属膜
や絶縁膜を反応性イオンビームの照射によってエツチン
グする反応性イオンビームエツチング装置に関するもの
である。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a reactive ion beam etching apparatus for etching metal films and insulating films formed on the main surface of a silicon substrate by irradiation with a reactive ion beam. It is.

〔従来技術〕[Prior art]

第1図は従来の反応性イオンビームエツチング装置の一
例の主要構成要素を模式的に示す図である。
FIG. 1 is a diagram schematically showing the main components of an example of a conventional reactive ion beam etching apparatus.

図において、(1)は内部において四塩化炭A(OCI
!4)などの塩素系ガスや四フッ化炭素(OF4)など
のフッ素系ガスの反応性ガスを活性化すなわちプラズマ
状態にして反応性ガスの正のイオン(図示■)を発生さ
せるイオン源室、(2)はイオン源室(1)の側壁の一
部に設けられイオン源室(1)内に反応性ガスを導入す
るガス導入管、(3)はイオン源室(1)内に設けらね
−2500°C程度の温度に加熱されてイオン源室(1
)内に導入された反応性ガスを活性化して反応性ガスの
イオンを発生させる熱電子(図示θ′″)を放射するタ
ングステン(W)フィラメント、(4)はイオン源室(
1)のガス導入管(2)が設けられた側壁以外の側壁の
一部に設けられイオン源室(1)内Vcg生した反応性
ガスの正のイオンをイオン源室(1)の外部へ引き出す
ための網状の窓、(5)Viイオン源室(1)の外部に
窓(4)との間に間隔をおhて対向するように”設けら
れ窓(4)に対して負の高バイアス電圧が印加されてイ
オン源室(1)内に発生した反応性ガスの正のイオンを
窓(4)を通して図示矢印の方向に引き出す格子状の加
速電極、(6)は加速電極(5)との間に間隔をおいて
対向するように設けられ反応性ガスの正のイオンの照射
によってエツチングされるアルミニウム(Al)などの
金属膜や酸化シリコン(S10□]窒化シリコン(81
3N4)などの絶縁膜の被エツチング膜(図示せず)が
主面上に形成されたシリコン(Sl)ウェーハ、(7)
はB1ウェーハ(6)を支持するカセットである。なお
、カセット(7)は水または他の冷媒によって冷却され
るように構成されている。
In the figure, (1) has carbon tetrachloride A (OCI) inside.
! 4) an ion source chamber that activates a reactive gas such as a chlorine-based gas or a fluorine-based gas such as carbon tetrafluoride (OF4) to a plasma state to generate positive ions (■ in the figure) of the reactive gas; (2) is a gas introduction pipe that is installed in a part of the side wall of the ion source chamber (1) and introduces the reactive gas into the ion source chamber (1), and (3) is a gas introduction tube that is installed in the ion source chamber (1). The ion source chamber (1
) is a tungsten (W) filament that emits thermionic electrons (θ′″ in the figure) that activate the reactive gas introduced into the ion source chamber (
The positive ions of the reactive gas generated at Vcg inside the ion source chamber (1) are sent to the outside of the ion source chamber (1) by being provided on a part of the side wall other than the side wall where the gas introduction pipe (2) of 1) is installed. A net-like window (5) is provided outside the Vi ion source chamber (1) so as to face the window (4) with a gap h between the window (4) and has a negative height with respect to the window (4). A lattice-shaped accelerating electrode (6) is an accelerating electrode (5) which pulls out positive ions of a reactive gas generated in the ion source chamber (1) through a window (4) in the direction of the arrow shown when a bias voltage is applied. Metal films such as aluminum (Al), silicon oxide (S10□), silicon nitride (81
A silicon (Sl) wafer (7) on which an etched film (not shown) of an insulating film such as 3N4) is formed on the main surface.
is a cassette that supports the B1 wafer (6). Note that the cassette (7) is configured to be cooled by water or other coolant.

この従来例の装置では、イオン源室(1)内から加速電
極(5)によって引き出された反応性ガスの正のイオン
をSiウェーハ(6)の主面上に形成された被エツチン
グ膜(図示せず)に照射して被エツチング膜のエツチン
グを行う。このエツチングは、反応性イオンビームエツ
チング(RよりB)と呼ばれているものであって、エツ
チング速度および選択比の大きい化学反応によるプラズ
マエツチングと異方性エツチングが可能で微細加工の容
易な物理的除去によるイオンミーリングとを組合わせた
もので、通常のプラズマエツチングまたは反応性イオン
エツチング(R工Ic)では不可能であったアルミニウ
ム(Al)・シリコン(Sl)・銅(Ou)合金などの
A1合金のエツチングを可能にした。例えば、反応性ガ
スとして塩素系ガスを使用すると、’ AI!・Sl・
Ou金合金AA’元素は揮発性のAl01xに転化し、
81元素は揮発性の5inl!、に転化して揮発し、O
u元素は不揮定性のCurlに転化するがこのOu O
12は塩素系ガスのイオンによってスノくツタリング除
去される。これによって、Al −Si・Ou金合金ど
のA1合金のlpm以下の微細パターンを容易に形成す
ることができる。
In this conventional apparatus, positive ions of a reactive gas extracted from an ion source chamber (1) by an accelerating electrode (5) are applied to a film to be etched (Fig. (not shown) to irradiate the film to be etched. This etching is called reactive ion beam etching (R over B), which enables plasma etching and anisotropic etching through chemical reactions with high etching speed and high selectivity, and is a physical method that facilitates microfabrication. It is a combination of ion milling by target removal, and it can process aluminum (Al), silicon (Sl), copper (Ou) alloys, etc., which is impossible with normal plasma etching or reactive ion etching (R process Ic). Etching of A1 alloy is now possible. For example, if chlorine-based gas is used as a reactive gas, 'AI!・Sl・
The Ou gold alloy AA' element is converted to volatile Al01x,
81 elements are volatile 5inl! , and evaporate into O
The u element is converted to nonvolatile Curl, but this Ou O
No. 12 is removed by sloping by chlorine-based gas ions. As a result, fine patterns of lpm or less of A1 alloy such as Al-Si.Ou gold alloy can be easily formed.

しかしながら、この従来例の一装置では、Wフィラメン
ト(3)が、イオン源室(1)内の反応性ガスの雰囲中
で高温に加熱されるので、反応性ガスと反応してWフィ
ラメント(3)の寿命が約20時間程度の短いものとな
り、実用上問題があった。
However, in this conventional device, the W filament (3) is heated to a high temperature in an atmosphere of reactive gas in the ion source chamber (1), so the W filament (3) reacts with the reactive gas and the W filament ( The lifespan of 3) was short, about 20 hours, which was a practical problem.

〔発明の概要〕[Summary of the invention]

この発明は、上述の問題点を除去する目的でなされたも
ので、Wフィラメントの仕事関数より74%さい仕事関
数を有しWフィラメントより低温度で反しち性ガスを活
性化して反応性ガスのイオンを発生さ帥るための熱電子
を放射する六ホウ化ランクン(LaB6)カソードを不
活性ガスの雰囲気中で安定に動作させるようにすること
によって、 La Beカソードの寿命がWフィラメン
トの寿命より長くなるようにして実用上問題のない反応
性イオンビームエツチング装置を提供するものである。
This invention was made for the purpose of eliminating the above-mentioned problems, and has a work function 74% lower than that of the W filament, and activates the reactive gas at a lower temperature than that of the W filament. By making the Rankan hexaboride (LaB6) cathode, which emits thermionic electrons to generate ions, operate stably in an inert gas atmosphere, the lifespan of the LaBe cathode is longer than that of the W filament. The object of the present invention is to provide a reactive ion beam etching apparatus which has a long length and is free from practical problems.

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明の一実施例の反応性イオンビームエツ
チング装置の主要構成要素を模式的に示す図である。
FIG. 2 is a diagram schematically showing the main components of a reactive ion beam etching apparatus according to an embodiment of the present invention.

図において、第1図に示した従来例の符号と同一符号は
同等部分を示す。(8)はイオン源室(1)のガス導入
管(2)および窓(4)が設けられた側壁以外の側壁の
一部分にこの部分を一方の端部が貫通するように設けら
れこの端部の中心部にイオン源室(1)内に開口する開
孔(8a)が形成され内部に後述のLa Beカソード
が収容されるカソードカッぐ−1(9)ハカソードカバ
ー(8)内に設けられWの仕事関数より小さい仕事関数
を有し1500℃程度の温度に加熱されて熱電子を放射
する直熱形のLa Beカソード、θ0はイオン源室(
1)内にカソードカッ< −(8)の開孔(8a)が形
成されている端部との間に間隔をおいて対向するように
設けられカソードカバー(8)に対して数百Vの正の高
バイアス電圧が印加されてカソードカッ(−(8)内か
らイオン源室(1)内へ電子を引き出すための電子引き
中し電極である。彦お、カソードカッ(−(8)内には
、Ar 、Heなどの不活性ガスが導入されてLa B
sカソード(9)を保護するように構成されてbる。
In the figure, the same reference numerals as those in the conventional example shown in FIG. 1 indicate equivalent parts. (8) is provided in a part of the side wall of the ion source chamber (1) other than the side wall where the gas introduction pipe (2) and the window (4) are provided, with one end passing through this part. An aperture (8a) opening into the ion source chamber (1) is formed in the center of the cathode cup-1 (9) in which a La Be cathode, which will be described later, is accommodated. A directly heated La Be cathode has a work function smaller than that of W and emits thermoelectrons when heated to a temperature of about 1500°C. θ0 is the ion source chamber (
1) A positive voltage of several hundred V with respect to the cathode cover (8) is provided so as to face the cathode cover (8) at a distance from the end in which the opening (8a) of the cathode cover (8) is formed. This is an electron drawing electrode that draws electrons from the cathode cup (-(8)) into the ion source chamber (1) by applying a high bias voltage of . Inert gas such as Ar and He is introduced and LaB
It is configured to protect the cathode (9).

この実施例の構成は、カソードカバー(8) *LaB
aLaB6カソードよび電子引き出し電極θυ以外は第
1図に示した従来例の構成と同様である。
The configuration of this example is as follows: cathode cover (8) *LaB
The structure is the same as that of the conventional example shown in FIG. 1 except for the aLaB6 cathode and the electron extraction electrode θυ.

次に、この実施例の作用について説明する。Next, the operation of this embodiment will be explained.

寸ず、カソードカバー(8)内へ例えばArガスを導入
し、イオン源室(1)内へ反応性ガスを導入したのちに
、電子引き出し電極(Idにカソードカバー(8) i
c対して数百■の正の高バイアス電圧を印加するととも
に加速電極(5)に対して数百■の負の高バイアス電圧
を印加する。次いで、La Bsカソード(9)を15
00°C程度の温度に加熱して熱電子を放射させると、
この熱電子によってカソードカバー(8)内のArガス
が活性化さftてArイオンと電子とに分離されたプラ
ズマ状態になる。−このArのプラズマの密度は、電子
引き出し電極00とカソードカバー(8)との間に印加
された高バイアス電圧によって増大し、電子引き出し電
極α0とカソードカバー(8)との間の電圧は数10V
K低下し、これらの電子引き出し電極00とカソードカ
バー(8)との間にArのプラズマが保持される。この
ように、電子引き出し電極θ0とカソードカバー (8
)との間に保持されたArのプラズマ中の電子によって
イオン源室(1)内の反一応性ガスが活性化される。そ
して、第1図に示した従来例と同様に、この活性化され
た反応性ガスの正のイオンが加速電極(5)に印加され
た負の高バイアス電圧によって窓(3)を通して図示矢
印の方向に引き出されてS1ウエーハ(6)の主面上に
形成さrtた破エツチング膜(図示せず)を照射し、被
エツチング膜のエツチングを行う。従って、被エツチン
グ膜がAI!φ81・Ou金合金どのA1合金膜である
場合でも、このA1合金膜のエツチングを容易に行うこ
とができる。
Immediately, for example, Ar gas is introduced into the cathode cover (8) and a reactive gas is introduced into the ion source chamber (1), and then the cathode cover (8) is connected to the electron extraction electrode (Id).
A high positive bias voltage of several hundred μ is applied to the accelerating electrode (5), and a high negative bias voltage of several hundred μ is applied to the accelerating electrode (5). Then, the La Bs cathode (9) was
When heated to a temperature of about 00°C and emitted thermoelectrons,
The Ar gas in the cathode cover (8) is activated by these thermoelectrons and becomes a plasma state in which Ar ions and electrons are separated. - The density of this Ar plasma is increased by the high bias voltage applied between the electron extraction electrode 00 and the cathode cover (8), and the voltage between the electron extraction electrode α0 and the cathode cover (8) is increased by several 10V
K decreases, and Ar plasma is maintained between these electron extraction electrodes 00 and the cathode cover (8). In this way, the electron extraction electrode θ0 and the cathode cover (8
) The reactive gas in the ion source chamber (1) is activated by electrons in the Ar plasma held between the ion source chamber (1) and the ion source chamber (1). Similar to the conventional example shown in FIG. 1, the positive ions of the activated reactive gas are passed through the window (3) by the negative high bias voltage applied to the accelerating electrode (5), as indicated by the arrow in the figure. A broken etching film (not shown) formed on the main surface of the S1 wafer (6) by being pulled out in the same direction is irradiated, and the film to be etched is etched. Therefore, the film to be etched is AI! Etching of this A1 alloy film can be easily performed no matter which A1 alloy film is used, such as the φ81.Ou gold alloy.

この実施例の装置では、LaB6カソード(9)かカソ
ードカバー(8)内へ4y入されるAr、Heなとの不
活性ガスによってイオン源室(1)内の反応性ガスと接
触しないように保護されているので、La Bsカソー
ド(9)が反応性ガスと反応することなく長時間安定に
動作することができる。しかも、 LaB6カソード(
9)の加熱温度がWフィラメントの加熱温度より低いの
で、LaB、カソードの寿命がWフィラメントの寿命よ
り長くなり、実用上の問題点をなくすることができる。
In the apparatus of this embodiment, inert gas such as Ar or He is introduced into the LaB6 cathode (9) or the cathode cover (8) to prevent it from coming into contact with the reactive gas in the ion source chamber (1). Since it is protected, the La Bs cathode (9) can operate stably for a long time without reacting with reactive gases. Moreover, LaB6 cathode (
Since the heating temperature in 9) is lower than the heating temperature of the W filament, the life of the LaB cathode is longer than that of the W filament, and practical problems can be eliminated.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、この発明の反応性イオンビーム
エツチング装置では、イオン源室の側壁の一部にこの部
分を一方の端部が貫通するように設けられイオン源室内
に開口する開孔を有し内部へ不活性ガスを導入可能なよ
うに構成されたカソードカバーと、このカソードカバー
内に収容されこのカソードカバー内に導入される不活性
ガスを活性化する熱電子を放射する六ホウ化ランタンカ
ソードと、イオン源室内にカソードカバーの開孔が形成
されている端部との間に間隔をおいて対向するように設
けられカソードカバー内に活性化された不活性ガスの電
子をイオン源室内へ引き出してイオン源室内に導入され
た反応性ガスを活性化する電子引き出し電極とを有し、
イオン源室内に+□lnハ)11+tで□1!1訃?、
□jも−−11□□の外部へ導出φ加速し被エツチング
膜に照射してエツチングを行うようにしたので、六ホウ
化うンタンカソードがカソードカバー内へ導入される不
活性ガスによってイオン源室内の反応性ガスと接触しな
いように保護されて込るから、六ホウ化ランタンカソー
ドが反応性ガスと反応することなく長時間安定に動作す
ることができる。しかも、六ホウ化ランタンカソードの
加熱温度がタングステンフィラメントの加熱温度より低
いので、六ホウ化ランタンカソードの寿命がタングステ
ンフィラメントの寿命より長くなり、実用上の問題点を
なくすことができる。
As explained above, in the reactive ion beam etching apparatus of the present invention, an opening is provided in a part of the side wall of the ion source chamber so that one end passes through this part and opens into the ion source chamber. A cathode cover configured to allow introduction of an inert gas into the cathode cover, and a hexaboride compound housed in the cathode cover and emitting thermoelectrons to activate the inert gas introduced into the cathode cover. The lanthanum cathode and the end of the cathode cover where the aperture is formed in the ion source chamber are provided to face each other with a gap between them, and the electrons of the inert gas activated in the cathode cover are used as an ion source. It has an electron extraction electrode that activates the reactive gas introduced into the ion source chamber by drawing it into the chamber,
+□lnc) 11+t in the ion source chamber □1!1 death? ,
□j is also brought out to the outside of 11□□ to perform etching by accelerating φ and irradiating the film to be etched, so that the ion source is Since it is protected from contact with reactive gases in the room, the lanthanum hexaboride cathode can operate stably for a long time without reacting with reactive gases. Moreover, since the heating temperature of the lanthanum hexaboride cathode is lower than that of the tungsten filament, the life of the lanthanum hexaboride cathode is longer than that of the tungsten filament, and practical problems can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の反応性イオンビームエツチング装置の一
例の主要構成要素を模式的に示す図、第2図はこの発明
の一実施例の反応性イオンビームエツチング装置の主要
構成要素を模式的に示す図である。 図において、(1)はイオン源室、(4)は窓、(5)
は加Q(eは電子引き出し電極である。 なお、図中同一符号はそれぞれ同一または相当部分を示
す。 代理人 大岩増雄 第1図 第2図
FIG. 1 is a diagram schematically showing the main components of an example of a conventional reactive ion beam etching device, and FIG. 2 is a diagram schematically showing the main components of a reactive ion beam etching device according to an embodiment of the present invention. FIG. In the figure, (1) is the ion source chamber, (4) is the window, and (5)
is the addition Q (e is the electron extraction electrode. In addition, the same symbols in the figures indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)反応性ガスが導入され内部において発生した上記
反応性ガスのイオンを外部へ導出する窓を有するイオン
源室、このイオン源室の側壁の一部を一方の端部が貫通
するように設けられこの端部に上記イオン源室内に開口
する開孔を有し内部へ不活性ガスを導入可能なように構
成されたカソードカバー、このカソードカバー内に収容
されこのカソードカバー内に導入される不活性ガスを活
性化する熱電子を放射する六ホウ化ランタンカソード、
上記イオン源室内に上記カソードカバーの上記開孔が形
成されている端部との間に間隔をおいて対向するように
設けられ上記カソードカバー内において活性化された不
活性ガスの電子を上記開孔を通して上記イオン源室内へ
引き出して上記イオン源室内に導入された反応性ガスを
活性化する電子引き出し電極、および上記イオン源室の
上記窓を通して上記イオン源室の外部へ導出された上記
反応性ガスのイオンを加速する加速電極を備え、加速さ
れた上記反応性ガスのイオンを照射して被エツチング膜
のエツチングを行うようにしたことを特徴とする反応性
イオンビームエツチング装置。
(1) An ion source chamber having a window into which a reactive gas is introduced and which guides the ions of the reactive gas generated inside to the outside, with one end penetrating a part of the side wall of the ion source chamber. a cathode cover provided with an opening opening into the ion source chamber at its end and configured to allow introduction of an inert gas therein; a cathode cover housed within the cathode cover; lanthanum hexaboride cathode, which emits thermionic electrons that activate the inert gas;
The cathode cover is provided in the ion source chamber so as to be opposed to the end of the cathode cover with a gap formed therein, and the electrons of the inert gas activated in the cathode cover are transferred to the opening. an electron extraction electrode that is drawn into the ion source chamber through a hole to activate the reactive gas introduced into the ion source chamber; and an electron extraction electrode that is drawn out into the ion source chamber through the hole and activates the reactive gas introduced into the ion source chamber; 1. A reactive ion beam etching apparatus comprising an accelerating electrode for accelerating gas ions, and etching a film to be etched by irradiating the accelerated ions of the reactive gas.
JP17157383A 1983-09-17 1983-09-17 Reactive ion beam etching device Pending JPS6063932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17157383A JPS6063932A (en) 1983-09-17 1983-09-17 Reactive ion beam etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17157383A JPS6063932A (en) 1983-09-17 1983-09-17 Reactive ion beam etching device

Publications (1)

Publication Number Publication Date
JPS6063932A true JPS6063932A (en) 1985-04-12

Family

ID=15925649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17157383A Pending JPS6063932A (en) 1983-09-17 1983-09-17 Reactive ion beam etching device

Country Status (1)

Country Link
JP (1) JPS6063932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395857B2 (en) 2007-12-24 2016-07-19 Tpk Holding Co., Ltd. Capacitive touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395857B2 (en) 2007-12-24 2016-07-19 Tpk Holding Co., Ltd. Capacitive touch panel

Similar Documents

Publication Publication Date Title
US5136171A (en) Charge neutralization apparatus for ion implantation system
JP5449286B2 (en) Method and apparatus for increasing secondary ion yield
EP2787522A1 (en) Electrode material with low work function and high chemical stability
US6730237B2 (en) Focused ion beam process for removal of copper
JP3350374B2 (en) Focused ion beam apparatus, processing method and semiconductor device manufacturing method
US4999320A (en) Method for suppressing ionization avalanches in a helium wafer cooling assembly
Priebe et al. Application of a novel compact Cs evaporator prototype for enhancing negative ion yields during FIB-TOF-SIMS analysis in high vacuum
US5356514A (en) Process and apparatus for etching iron-containing materials
JPS6063932A (en) Reactive ion beam etching device
JP2535564B2 (en) Plasma processing equipment
US3911311A (en) Field desorption ion source and method of fabrication
US7235796B2 (en) Method and apparatus for the generation of anionic and neutral particulate beams and a system using same
JPH05102083A (en) Method and apparatus for dry etching
JPS6063933A (en) Reactive ion beam etching device
EP0487656B1 (en) Charge neutralization apparatus for ion implantation system
JP2564572B2 (en) Plasma processing equipment
JPS6350854B2 (en)
Sinor et al. New frontiers in 21st century microchannel plate (MCP) technology: bulk conductive MCP-based image intensifiers
JP2881053B2 (en) Energy beam local processing method and apparatus
JP3324135B2 (en) Monitoring device
JPS60106134A (en) Reactive ion beam etching device
JP2835434B2 (en) Cold electron emission device
JPH0765776A (en) Ion generating method and device, and element analizing method and device using ion generating device
JPS6237382A (en) Etching method for high melting metal
JPH0626197B2 (en) Dry etching equipment