JPS6063500A - Rapid neutron therapy variable collimator - Google Patents

Rapid neutron therapy variable collimator

Info

Publication number
JPS6063500A
JPS6063500A JP58171257A JP17125783A JPS6063500A JP S6063500 A JPS6063500 A JP S6063500A JP 58171257 A JP58171257 A JP 58171257A JP 17125783 A JP17125783 A JP 17125783A JP S6063500 A JPS6063500 A JP S6063500A
Authority
JP
Japan
Prior art keywords
irradiation
radiation source
collimator
fast neutron
volume radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58171257A
Other languages
Japanese (ja)
Inventor
豊田 英二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP58171257A priority Critical patent/JPS6063500A/en
Publication of JPS6063500A publication Critical patent/JPS6063500A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、速中性子線による照射治療において照射野
の絞り込みによる線量低下の防止と半影部の発生を少な
くした速中性子線治療用可変コリメータに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable collimator for fast neutron beam therapy that prevents dose reduction by narrowing down the irradiation field and reduces the occurrence of penumbra in fast neutron beam irradiation therapy.

周知のとおり、速中性子線は物質に対する透過力が大き
いので、これを治療用に使用するには、コリメータによ
り遮蔽する部分を厚くするとともに、照射面における照
射部分がヒストグラム状の形状となるように可変コリメ
ークを使用していた。
As is well known, fast neutron beams have a large penetrating power through substances, so in order to use them for treatment, it is necessary to thicken the part shielded by a collimator and to make the irradiated part on the irradiation surface have a histogram-like shape. Variable collimation was used.

第1図(al 、(b) t (c)は従来の平行板積
層型コリメータの形状と照射部の形状を示す斜視図、 
IT−I線による断面図、■−…線による断面図である
Figures 1 (al, b) and t (c) are perspective views showing the shape of a conventional parallel plate laminated collimator and the shape of the irradiation part;
They are a sectional view taken along the IT-I line and a sectional view taken along the ■-... line.

これらの図において、】は速中性子線の線源、2ハ平行
板積層型のコリメータ、3はフリメータ板で、所定の遮
蔽厚さlを有しており、このコリメータ板3を所定枚数
積層してコリメータ2を形成している。 4は前記コリ
メータ板3により形成され、速中性子線が通過する照射
空間部、5は前記連中性子線が照射される面となる照射
面、6はヒストグラム状の形状を有する照射野、7は完
全照射部、8は遮蔽部、9は半影部である。
In these figures, ] is a fast neutron beam source, a 2-parallel plate laminated collimator, 3 is a flimator plate having a predetermined shielding thickness l, and a predetermined number of collimator plates 3 are laminated. A collimator 2 is formed. 4 is an irradiation space formed by the collimator plate 3 and through which the fast neutron beam passes; 5 is an irradiation surface to which the continuous neutron beam is irradiated; 6 is an irradiation field having a histogram-like shape; 7 is a complete 8 is a shielding part, and 9 is a penumbra part.

このように、平板積層型のコリメータ2は線源1と照射
面5との間に配設されており、線源1がらの速中性子線
によりヒストグラム状の形状を有する照射野6が得られ
る。
In this way, the plate laminated collimator 2 is disposed between the radiation source 1 and the irradiation surface 5, and the fast neutron beam from the radiation source 1 provides an irradiation field 6 having a histogram-like shape.

ところで、従来の平行板積層型のコリメータ2では照射
面5に対し、第1図(b) 、 (c)に示すように線
源1からの速中性子線が照射空間部4を通過する完全照
射部7と、コリメータ板3の遮蔽厚さlにより遮蔽され
る遮蔽部8と、遮蔽厚さlよりも小さい半影部9が生ず
ることになる。 この半影部9は図からもわかるように
遮蔽厚さlを大きくするほど、また、照射空間部4の幅
W、、W2が広くなるほど大きくなる欠点があった。
By the way, in the conventional parallel plate laminated collimator 2, the irradiation surface 5 is completely irradiated with the fast neutron beam from the radiation source 1 passing through the irradiation space 4, as shown in FIGS. 1(b) and 1(c). 7, a shielding part 8 which is shielded by the shielding thickness l of the collimator plate 3, and a penumbra part 9 which is smaller than the shielding thickness l. As can be seen from the figure, this penumbra 9 has the disadvantage that it becomes larger as the shielding thickness l becomes larger and as the width W, W2 of the irradiation space 4 becomes wider.

上記の欠点を解消するため、先に錐体分割型コリメータ
が提案された。
In order to overcome the above-mentioned drawbacks, a cone-segmented collimator was previously proposed.

第2図(a) 、 (b) 、 (c)は従来の錐体分
割型フリメータの形状と照射部の形状を示す斜視図、■
−I線による断面図、■−■腺による断面図である。 
これらの図において、第1図と同一符号は同一部分を示
し、11は錐体分割型のコリメータ、12はコリメータ
板、13は照射空間部、14はヒストグラム状のル状を
有する照射野、Sは前記線源1を含む仮想の軸である。
Figures 2 (a), (b), and (c) are perspective views showing the shape of a conventional cone-divided frimeter and the shape of the irradiation part;
-A cross-sectional view taken along the I line, and a cross-sectional view taken along the ■-■ gland.
In these figures, the same reference numerals as in FIG. 1 indicate the same parts, 11 is a cone-divided collimator, 12 is a collimator plate, 13 is an irradiation space, 14 is an irradiation field having a histogram-like shape, S is a virtual axis including the radiation source 1.

このように、コリメータ板12は、第2図(c)に示す
とおり、線源1を中心とする半径n、 、R2の円弧と
照射面5を分割する放射状線分からなる断面を、線源1
を含む仮想の軸S−8の周囲に回転させることにより生
じるリングの一部分を積層したものである。 したがっ
て、コリメータ11の内面は線源工を頂点とする多面角
錐体に合致し、第2図(a)のようなヒストグラム状の
形状を有する照射野14を得るものである。 したがっ
て、第2図の場合のコリメータは、第1図のような半影
部9を生じないので、理想的なフリメータであるといえ
る。
In this way, as shown in FIG. 2(c), the collimator plate 12 crosses a cross section consisting of an arc of radius n, , R2 centering on the radiation source 1 and a radial line segment dividing the irradiation surface 5 from the radiation source 1.
This is a stack of parts of rings produced by rotating around an imaginary axis S-8 containing . Therefore, the inner surface of the collimator 11 conforms to a polyhedral pyramid having the radiation source as its apex, thereby obtaining an irradiation field 14 having a histogram-like shape as shown in FIG. 2(a). Therefore, the collimator in the case of FIG. 2 can be said to be an ideal flimator because it does not produce the penumbra 9 as in FIG. 1.

しかしながら、実際の線源は点線源でなく、空間的であ
る広がりをもつ体積線源であるので、次のような2つの
欠点が生ずることになる。
However, since the actual radiation source is not a point radiation source but a volume radiation source with a certain spatial extent, the following two drawbacks arise.

第1は、体積線源であるが故に、半影部の発生を避ける
ことができないことである。 この半影部の発生は第1
図の平行板積層型のコリメーク2に比べて小さいので、
ある程度は許容せざるを得ない。 第2の欠点は、コリ
メータ板12の開度を絞ったとき、照射線量が減少する
ことである。
First, since it is a volume radiation source, it is impossible to avoid the occurrence of a penumbra. The occurrence of this penumbra is the first
It is smaller than the parallel plate laminated type collimator 2 shown in the figure, so
I have to accept it to some extent. The second drawback is that when the opening degree of the collimator plate 12 is narrowed down, the irradiation dose decreases.

したがって、精密な照射治療を行う場合には、照射重量
の不均一性が治療の不確実さにつながる大きい問題点と
なる。 これを第3図により照射線量が低下する状態を
説明する。
Therefore, when performing precise irradiation treatment, non-uniformity of irradiation weight becomes a major problem leading to uncertainty in treatment. The state in which the irradiation dose decreases will be explained with reference to FIG.

第3図において、21は半径γを有する空間的な広がり
をもった薄い円板状の体積m源(以F単に線源という)
で、その細筒2図と同一符号は同一部分を示す。 照射
幅2Xのフリメータ11の開度は、線源21の中心0と
照射幅2Xの両端の点A、Bを拮んだ角度θになる。 
一方、照射野14の中心O“からm源21を見通せる範
囲は一源21の幅CDの中のBFの範囲であり、線源2
1のCE、DFの部分からの速中性子線はコリメータ板
12を通過するので減衰効果を受けることになる。 中
心01以外の照射野14上の任意の点−についても同様
の説明が成り立つ。
In Fig. 3, 21 is a thin disc-shaped volume m source (hereinafter simply referred to as a radiation source) with a spatial extent and a radius γ.
The same reference numerals as in Figure 2 of the thin tube indicate the same parts. The opening degree of the frimeter 11 with an irradiation width of 2X is an angle θ between the center 0 of the radiation source 21 and points A and B at both ends of the irradiation width 2X.
On the other hand, the range where the m source 21 can be seen from the center O" of the irradiation field 14 is the range BF within the width CD of the source 21, and
Since the fast neutron beams from the CE and DF portions of 1 pass through the collimator plate 12, they are subject to an attenuation effect. The same explanation holds true for any point on the irradiation field 14 other than the center 01.

この発明は、上記の欠点を除去するためになされたもの
で、照射野の絞り込みによる照射線量の低下と半影部の
発生を実用上支障のない範囲に収める速中性子線治療用
可変コリメータを提供するものである。 以下、この発
明について説明する。
This invention was made to eliminate the above-mentioned drawbacks, and provides a variable collimator for fast neutron beam therapy that reduces the irradiation dose by narrowing down the irradiation field and keeps the occurrence of penumbra within a range that does not cause any practical problems. It is something to do. This invention will be explained below.

第4図は、この発明の一実施例を示す説明図である。 
この図において、31はこの発明に使用される錐体分割
型のコリメータ、32はコリメータ板、33は照射空間
部、34は照射面である。
FIG. 4 is an explanatory diagram showing an embodiment of the present invention.
In this figure, 31 is a cone-divided collimator used in the present invention, 32 is a collimator plate, 33 is an irradiation space, and 34 is an irradiation surface.

コリメータ板32は円弧と、この円弧の半径の原点から
放射される放射線分からなる断面を回転することにより
生じるリングの一部分からなるコリメータ板を積層して
なり、前記錐体の頂点は照射部34の中心O1から最大
照射端(Xmax )の点G。
The collimator plate 32 is made of a laminated collimator plate consisting of a circular arc and a part of a ring generated by rotating a cross section consisting of the radiation emitted from the origin of the radius of this circular arc, and the apex of the cone is located at the irradiation part 34. Point G from the center O1 to the maximum irradiation end (Xmax).

0と線源2工の最外端の点C7aを結んだ延長線と、照
射面34の中心01と線源21の中心点0とを結んだ中
心軸の延長線との交点■よりも少なくとも線源21と反
対側の離れた位置に設定する。
0 and the outermost point C7a of the radiation source 2, and the extension line of the central axis connecting the center 01 of the irradiation surface 34 and the center point 0 of the radiation source 21. It is set at a remote position on the opposite side to the radiation source 21.

目安として照射部34の最大照射端G、()])と最小
照射端A (B)のけぼ%の点G’、(H’)と線源2
1の点C0の延長上で中心軸o、o’の延長上との交点
■1の近傍をフリメータ板32を形成している錐体の頂
点とする。
As a guide, the maximum irradiation end G, ()]) of the irradiation section 34 and the minimum irradiation end A (B), the points G', (H') of the kebo%, and the radiation source 2
The vicinity of the intersection (1) of the extension of the point C0 of 1 with the extension of the central axes o and o' is defined as the apex of the cone forming the frimeter plate 32.

このように、線源21が半径γの円板状の形をしている
とすると、ある大きさの照射面34における半影部の最
も小さいコリメータ板32の配置は、照射端の点、例え
ばG、(F()と線源21の外端C0とを結んだ線上と
の交点■にほぼ一致することが計算の結果明らかになっ
ている。 このことは、照射端]Hが変わるとコリメー
タ板32の頂点■がその都度変わることになるが、実際
のフリメータ板32では幾何学的形状をその都度変える
ことは不可能である。 このため、例えば、コリメータ
板32の頂点を第4図の11の位置に設定すると、照射
空間33が大きい場合は半影部が少ないが照射空間33
を小さくすると半影部が増加し、照射空間33が線源2
1とほぼ同じ大きさでは、第1図の平行板積層型のコリ
メータ3の方がむしろ半影部が小さくなる。 そして、
照射野を絞ると、照射線量が低下する理由も増加した半
影部の重なりのためである。 しかし、コリメータ板3
2の原点、すなわちコリメータ板32の回転中心を上記
のような位置工1に決めることにより実用上支障のない
性能のコリメータ板32が実現可能になる。 上記の位
置■1は、治療条件により最適値は若干具なるが、前述
したように最大照射野0’G(0’H)と最小照射野(
j A (0’B)の中間であるG1(Hつの点を基準
にして設定しておけば、1j(l G1野が拡がっても
狭くなっても半影部が極端に大きくなることはない。 
上記説明は薄い円板状の体積線源について行ったが、線
源の厚みによる二次的な影響を考慮に入れても」二記説
明が成立つことは容易に理解できる。
As described above, assuming that the radiation source 21 has a disk-like shape with a radius γ, the arrangement of the collimator plate 32 with the smallest penumbra on the irradiation surface 34 of a certain size is at the point at the irradiation end, for example. As a result of calculations, it has become clear that G, (F()) almost coincides with the intersection point ■ on the line connecting the outer end C0 of the radiation source 21. This means that if the irradiation end H changes, the collimator The apex ■ of the collimator plate 32 will change each time, but it is impossible to change the geometrical shape of the actual flimator plate 32 each time.For this reason, for example, the apex of the collimator plate 32 can be changed as shown in FIG. When set to position 11, if the irradiation space 33 is large, the penumbra will be small, but if the irradiation space 33 is large, the penumbra will be small.
When the value is made smaller, the penumbra increases and the irradiation space 33 becomes closer to the radiation source 2.
1, the parallel plate laminated collimator 3 shown in FIG. 1 has a smaller penumbra. and,
The reason why the irradiation dose decreases when the irradiation field is narrowed is due to the increased overlap of the penumbra. However, collimator plate 3
By determining the origin 2, that is, the rotation center of the collimator plate 32 at the position 1 as described above, it becomes possible to realize a collimator plate 32 with a performance that does not pose any practical problems. The optimal value for the above position 1 will vary slightly depending on the treatment conditions, but as mentioned above, the maximum irradiation field 0'G (0'H) and the minimum irradiation field (
If it is set based on the G1(H point, which is between 0'B), 1j(l) The penumbra will not become extremely large even if the G1 area expands or narrows. .
Although the above explanation was made regarding a thin disc-shaped volume radiation source, it is easy to understand that the second explanation holds true even if the secondary effects due to the thickness of the radiation source are taken into consideration.

以上説明したようにこの発明は、錐体分割型コリメータ
の原点を体積線源から照射される照射部の最大照射端と
、体積線源の最外端とを結んだ延長線と、照射部と体積
線源との中心軸の延長線との交点よりも少なくとも体積
線源と反対側の離れた位置に設定したので、コリメータ
を絞ったときの半影部が少なく、かつ、照射線量が減少
することが少ない照射部が得られるため、精密な照射治
療を行うことができる利点を有する。
As explained above, the present invention provides an extension line connecting the origin of the cone-split collimator to the maximum irradiation end of the irradiation part irradiated from the volume radiation source and the outermost end of the volume radiation source, and the irradiation part. Since it is set at a position at least on the opposite side of the volume radiation source and away from the intersection of the volume radiation source with the extension of the central axis, the penumbra is small when the collimator is narrowed down, and the irradiation dose is reduced. This method has the advantage that precise irradiation treatment can be performed because an irradiated area with less radiation can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、(b) 、 (c)は従来の平行板積
層型コリメータの形状と照射部の形状を示す斜視図、I
−I線による断面図、n−u線による断面図。 第2図(a) 、 (b) 、 (c)は従来の錐体分
割型コリメータの形状と照射部の形状を示す斜視図、■
−■線による断面図、 IV−IV線による断面図、第
3図は第2図の錐体分割型コリメータを使用した場合に
照射線量が低下する状態を示す説明図、第4図はこの発
明の一実施例を示す説明図である。 図中、5は照射面、21は体積線源、31はコリメータ
、32はコリメータ板、33は照射空間部、34は照射
面である。 89798 8979B (b)(の 第3図 第4図
Figures 1 (a), (b), and (c) are perspective views showing the shape of a conventional parallel plate laminated collimator and the shape of the irradiation part;
- A cross-sectional view taken along the I line and a cross-sectional view taken along the nu line. Figures 2 (a), (b), and (c) are perspective views showing the shape of a conventional cone-split collimator and the shape of the irradiation part;
A cross-sectional view taken along the line -■, a cross-sectional view taken along the line IV-IV, FIG. 3 is an explanatory diagram showing the state in which the irradiation dose decreases when the cone-split collimator of FIG. 2 is used, and FIG. 4 is an illustration of the present invention. FIG. 2 is an explanatory diagram showing an example. In the figure, 5 is an irradiation surface, 21 is a volume radiation source, 31 is a collimator, 32 is a collimator plate, 33 is an irradiation space, and 34 is an irradiation surface. 89798 8979B (b) (Figure 3, Figure 4)

Claims (1)

【特許請求の範囲】[Claims] 原点を中心とする異なる半径の2つの円弧と、照射面を
分割する2本の放射線分で囲まれる断面を前記原点を含
む軸の周りに回転することにより生じるリングの一部分
からなるコリメータ板を積層し、体積線源からの速中性
子線をコリメートする錐体分割型可変コリメータにおい
て、前記原点を、前記体積線源から照射される照射部の
最大照射端と1前記体積線源の最外端とを結んだ延長線
と、前記照射部と前記体積線源との中心軸の延長線との
交点よりも少なくとも前記体積線源と反対側の離れた位
置に設定したことを特徴とする速中性子線治療用可変コ
リメータ。
Laminated collimator plates consisting of two circular arcs with different radii centered on the origin and a part of a ring created by rotating a cross section surrounded by two radial segments that divide the irradiation surface around an axis that includes the origin. In a cone-divided variable collimator that collimates fast neutron beams from a volume radiation source, the origin is located at the maximum irradiation end of the irradiation part irradiated from the volume radiation source and at the outermost end of the volume radiation source. A fast neutron beam, characterized in that the fast neutron beam is set at a position at least on the opposite side of the volume radiation source and away from the intersection of an extension line connecting the irradiation section and an extension line of the central axis of the irradiation part and the volume radiation source. Variable collimator for treatment.
JP58171257A 1983-09-19 1983-09-19 Rapid neutron therapy variable collimator Pending JPS6063500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58171257A JPS6063500A (en) 1983-09-19 1983-09-19 Rapid neutron therapy variable collimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171257A JPS6063500A (en) 1983-09-19 1983-09-19 Rapid neutron therapy variable collimator

Publications (1)

Publication Number Publication Date
JPS6063500A true JPS6063500A (en) 1985-04-11

Family

ID=15919964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171257A Pending JPS6063500A (en) 1983-09-19 1983-09-19 Rapid neutron therapy variable collimator

Country Status (1)

Country Link
JP (1) JPS6063500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023176A1 (en) 2010-08-17 2012-02-23 三菱電機株式会社 Multilear collimator, particle beam therapy device and therapy planning device
US8263954B2 (en) 2010-11-16 2012-09-11 Mitsubishi Electric Corporation Bolus, bolus manufacturing method, particle beam therapy system, and treatment planning apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810714U (en) * 1971-06-21 1973-02-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810714U (en) * 1971-06-21 1973-02-06

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023176A1 (en) 2010-08-17 2012-02-23 三菱電機株式会社 Multilear collimator, particle beam therapy device and therapy planning device
US8754386B2 (en) 2010-08-17 2014-06-17 Mitsubishi Electric Corporation Multi-leaf collimator, particle beam therapy system, and treatment planning apparatus
US8890097B2 (en) 2010-08-17 2014-11-18 Mitsubishi Electric Corporation Multi-leaf collimator, particle beam therapy system, and treatment planning apparatus
EP2808058A1 (en) 2010-08-17 2014-12-03 Mitsubishi Electric Corporation Multi-leaf collimator, particle beam therapy system, and treatment planning apparatus
US9168390B2 (en) 2010-08-17 2015-10-27 Mitsubishi Electric Corporation Multi-leaf collimator, particle beam therapy system, and treatment planning apparatus
EP3031495A2 (en) 2010-08-17 2016-06-15 Mitsubishi Electric Corporation Multi-leaf collimator, particle beam therapy system, and treatment planning apparatus
US8263954B2 (en) 2010-11-16 2012-09-11 Mitsubishi Electric Corporation Bolus, bolus manufacturing method, particle beam therapy system, and treatment planning apparatus

Similar Documents

Publication Publication Date Title
US6512813B1 (en) Rotating stereotactic treatment system
EP1641534B1 (en) Multi-leaf collimator
KR920007772B1 (en) Moderator and beam port assembly for neutron radiography
US5627870A (en) Device for treating cerebral lesions by gamma radiation, and corresponding treatment apparatus
CN107485801B (en) Collimation body and treatment head
US5448611A (en) Process and apparatus for the treatment of lesions by high frequency radiation
EP0747094A2 (en) A process for converting the beam diameter of radioactive rays and radiating unit
US5144647A (en) Radiation exposure field limiting apparatus
US11504553B2 (en) Radiation therapy device and system
KR20180004170A (en) Strontium seal type source
JP2009189643A (en) Neutron beam rotary irradiation apparatus
US20210031053A1 (en) Radiation treatment head and radiation treatment device
JPS6063500A (en) Rapid neutron therapy variable collimator
EP3895760B1 (en) Neutron capture therapy system
US4327293A (en) Electron accelerator and target with collimator
JPS6333120B2 (en)
US4859852A (en) Collimator system with improved imaging sensitivity
EP0757838B1 (en) Radiation flux polarizer
WO2008148525A1 (en) Neutron radiography apparatus and method
US20220401754A1 (en) Method for constructing photon source model function of medical linear accelerator
CN212434270U (en) Novel portable gamma irradiation collimator
Svensson et al. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions
JPH03504187A (en) Converter for circular waveguide higher order mode to mirror line principal mode
Karni et al. Optimal beam-shaping assemblies for BNCT facilities
Harrison et al. A negative pion beam transport channel for radiobiology and radiation therapy at TRIUMF