JPS6063484A - Radioactivity measuring method - Google Patents
Radioactivity measuring methodInfo
- Publication number
- JPS6063484A JPS6063484A JP8582983A JP8582983A JPS6063484A JP S6063484 A JPS6063484 A JP S6063484A JP 8582983 A JP8582983 A JP 8582983A JP 8582983 A JP8582983 A JP 8582983A JP S6063484 A JPS6063484 A JP S6063484A
- Authority
- JP
- Japan
- Prior art keywords
- radioactivity
- well
- press
- active carbon
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T7/00—Details of radiation-measuring instruments
- G01T7/02—Collecting means for receiving or storing samples to be investigated and possibly directly transporting the samples to the measuring arrangement; particularly for investigating radioactive fluids
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、放射能測定方法に係り、竹に微量の放射能を
測定するに好適な放射能測定方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a radioactivity measurement method, and more particularly to a radioactivity measurement method suitable for measuring trace amounts of radioactivity in bamboo.
現在の原子力発電所に設置されているヨウ素除去用フィ
ルターには、活性炭が用いられている。Activated carbon is used in the iodine removal filters installed in current nuclear power plants.
この活性炭(KI添着のBC−727)は、1年に1回
、一部分を抜き出して性能を確認すること−が義務づけ
られている。試験は、試料を一定厚さのカートリッジに
詰め、一定の段数を重ねて、放射性のヨウ素−131を
通気後、各段に吸着した放射能を測定することにより、
活性炭の吸着性能をめる方法である。通常、試験に用い
られるカートリッジは、直径4QInm、厚さ10mm
、段数10段である。この時、ヨウ素−131に対し、
検出下限1.0 X 10−”μciが客より要求され
た。It is mandatory to extract a portion of this activated carbon (KI-impregnated BC-727) once a year and check its performance. In the test, the sample is packed into a cartridge of a certain thickness, stacked in a certain number of stages, and after aeration of radioactive iodine-131, the radioactivity adsorbed in each stage is measured.
This is a method to evaluate the adsorption performance of activated carbon. Typically, the cartridge used for testing is 4QInm in diameter and 10mm thick.
, the number of stages is 10. At this time, for iodine-131,
A detection limit of 1.0 x 10-'' μci was requested by the customer.
従来の検出下限は、lXl0−’μci程度であり、−
桁高い性能を要求されたものである。最も性能がよい測
定装置として井戸型のQt半導体検出器が開発され近年
使用されてきた。現在市販されている井戸型Qt半導体
検出器は、有効体ijk 120cc、井戸の直径14
.7φInm、深さ50m m、。The conventional lower limit of detection is about lXl0-'μci, -
This required extremely high performance. A well-type Qt semiconductor detector has been developed as a measuring device with the best performance and has been used in recent years. The well type Qt semiconductor detector currently on the market has an effective body ijk of 120 cc and a well diameter of 14
.. 7φInm, depth 50mm.
容積7ccであり、試料を井戸の中に入れた時の計数効
率は、25%である。現在の技術では、これ以上大きな
Qtの単結晶の作成が困難で、これ以上の井戸型Gt半
専体検出器は市販されていない。また、Gt半専体検出
器の特性上、力;戸の径を大きくすることは、検出器と
してのGLの厚さが薄くなり、光電ピークに対する計数
効率が大幅に低下するため、マイナス要因となる。The volume is 7 cc, and the counting efficiency when a sample is placed in the well is 25%. With the current technology, it is difficult to create a single crystal with a larger Qt, and no well-type Gt semi-dedicated detector larger than this is commercially available. In addition, due to the characteristics of the Gt semi-dedicated detector, increasing the diameter of the power door is a negative factor because the thickness of the GL as a detector becomes thinner and the counting efficiency for the photoelectric peak decreases significantly. Become.
このような井戸型Gt半導体検出器と、井戸型N、I(
T4)検出器とのアンチコインシデンスをとり、十分な
しゃへいをし、4000チヤンネルの波高分析計を使用
し、200000秒計測した結果、バンクグランドは1
チャンネル当り180カウントとなった。ヨウg131
のピークチャンネルは、GL半導体検出器の半IIk幅
が2.3kLVであることから、11チヤンネルが必快
である。Such a well-type Gt semiconductor detector and well-type N, I (
T4) As a result of measuring for 200,000 seconds using a 4,000-channel wave height analyzer after taking anti-coincidence with the detector and providing sufficient shielding, the bank ground was 1.
The count was 180 per channel. You g131
Since the half IIk width of the GL semiconductor detector is 2.3 kLV, 11 channels are necessary for the peak channels.
計数効率t−25%とすると検出下限は、lX10−7
μciとなり、7CCの試料を使用すると目標を達成で
きる。If the counting efficiency is t-25%, the detection limit is lX10-7
μci, and the target can be achieved by using a 7CC sample.
しかし現在使用されているカートリッジは、直径4Qm
m、厚さ10rnm、容積12ccのものが主であり、
全量測定するためには、2回に分ける必吸がある。2回
に分けるとバンクグランドも2倍となるため、目標とす
る検出下限を達成するためには、計測時間は各々4倍、
合it 8倍、1600000秒必要となる。ヨウ素−
131の半減期は700000秒であり、その2倍以上
謂測する必要があることになり、現実的に不可能である
。However, the cartridge currently in use has a diameter of 4Qm.
m, thickness 10rnm, volume 12cc,
In order to measure the entire amount, it is necessary to inhale twice. If the measurement time is divided into two times, the bank ground will also be doubled, so in order to achieve the target lower limit of detection, the measurement time must be quadrupled,
The total time is 8 times and 1,600,000 seconds are required. Iodine-
The half-life of 131 is 700,000 seconds, and it would be necessary to measure twice that amount, which is practically impossible.
このような理由により、従来活性炭の性能試験で1.0
X10−7μciの検出下限は達成されていない。For these reasons, conventional activated carbon performance tests have shown that 1.0
A detection limit of X10-7 μci was not achieved.
本発明の目的は、以上のような問題点を改良し簡単な方
法により、効率よく、放射能を測定できる放射能測定方
法を提供することにある。An object of the present invention is to provide a method for measuring radioactivity that can improve the above-mentioned problems and efficiently measure radioactivity using a simple method.
本発明は、ヨウ素の吸着材として通常使用さノ1゜てい
る活性炭や、銀アルミナ等が、プレス等で減容できるこ
とに着目し、効率↓〈放射能を測定できるようにしたも
のである。The present invention focuses on the fact that activated carbon, silver alumina, etc., which are normally used as adsorbents for iodine, can be reduced in volume by pressing, etc., and has made it possible to measure efficiency ↓<<radioactivity.
以下本発明を用いた放射能測定方法の一実施例を図面を
用いて説明する。本方法は、KIlli≦着活性炭(B
C−727)に付着した放射能全測定する方法の一例で
ある。第1図において、1は測定用試料のK I添着炭
、2はプレス用心棒、3はプVス用壓わく、4はプレス
本体、5はプレス下わく、6はプVス1111g勤装置
を示す。第2図において、1はプレスが完了した測定用
試料のK I添着炭、7は井戸型Qt半導体検主器、8
は液体窒素容器、9はアンチコインシデンス用井戸型N
、I(Tt)検出器、10は鉛?鉄、蛸板等を用いたし
ゃへい体11は多重波高分析計、12はデータ処理用ミ
ニコンを示す。An embodiment of the radioactivity measuring method using the present invention will be described below with reference to the drawings. In this method, KIlli≦adherent activated carbon (B
This is an example of a method for measuring the total amount of radioactivity attached to C-727). In Figure 1, 1 is the K I-impregnated carbon of the sample for measurement, 2 is the press bodyguard, 3 is the press frame, 4 is the press body, 5 is the press lower frame, and 6 is the press V press 1111g working device. show. In Fig. 2, 1 is the K I-impregnated carbon of the measurement sample that has been pressed, 7 is a well-type Qt semiconductor tester, and 8
9 is a liquid nitrogen container, and 9 is a well type N for anti-coincidence.
, I(Tt) detector, 10 is lead? A shield body 11 made of iron, octopus plate, etc. is a multiple wave height analyzer, and 12 is a data processing minicomputer.
放射能を付N式せた試料の活性炭は、40ダンスで圧縮
し、減容させ、7の井戸型Qt半導体検出器の井戸の中
に入れ扁い計数効率で計測する。The activated carbon sample with radioactivity is compressed in 40 steps to reduce its volume, placed in the well of a 7-well type Qt semiconductor detector, and measured with low counting efficiency.
丁なわち第1図において、放射能を付着させた活性炭は
、カートリッジより取り比し、バインダーとしてK C
フロック等を10%程度添加し、3のプレス型わくの中
に入れる。その後プレス本体を作動させ2のブ/ス心棒
によって適当な力、約100 kg/ crn2程度を
加え減容する。その時の結果を表1に示す。最初14c
cあった試料の活性炭(lよ、第1回のプレスで7cc
へ減容する。この状態で3の型わくより取り出し、7の
井戸型gt半辱体検出器で測定することも可能であるが
、圧かい強度が約5kg/cm”と非常に弱い。試ネ・
1企GA半導体検出器に取り付ける段階ペク、取り外す
段階で破損し、検出器を汚染させる恐れがあるため、一
度プVス型わくの外に取り出し、再び入れて2回目のプ
レスを行う。2回目のプレスを終了すると体積は、6,
5CCとなり、圧かい強度も2glcg/cm2となり
、ポリ袋等で汚染防止して、井戸型C1半導体検出器の
井戸の中で計測が可能となる。1回目のプレスでは、粒
状の活性炭が破壊粉状化されるのみであるため、バイン
ダーが均等に分布されずに圧かい強度が得られないもの
でるる。2回目のプレスにおいては、活性炭が粉状化さ
れており、バインダーも均等に分布さnているので高い
圧かい強度が得られる。圧縮減容が終了した試料は、汚
染防止のため、ポリ袋等でつつんだ後、10のじやへい
体の中に設置された7の井戸型Gt半導体検出器の井戸
の中に設置され、計測される。In other words, in Figure 1, activated carbon to which radioactivity is attached is removed from the cartridge, and K C is used as a binder.
Add about 10% of flock, etc., and place it in the press mold frame in step 3. After that, the press body is operated and an appropriate force of about 100 kg/crn2 is applied using the 2nd bush/spindle to reduce the volume. The results are shown in Table 1. First 14c
Activated carbon from the sample (L, 7cc in the first press)
Reduce the volume to In this state, it is possible to take it out of the mold frame 3 and measure it with the well type GT half-humiliated body detector shown in 7, but the pressure strength is very weak at about 5 kg/cm.
1. Because there is a risk of damage during the installation and removal stages of the GA semiconductor detector and contamination of the detector, the product is removed from the press V-shaped frame and put back in for a second press. After the second press, the volume is 6,
5CC, the pressure strength is 2glcg/cm2, and it is possible to measure inside the well of a well-type C1 semiconductor detector by preventing contamination with a plastic bag or the like. In the first press, the granular activated carbon is only broken and powdered, so the binder is not evenly distributed and no pressing strength can be obtained. In the second press, the activated carbon is pulverized and the binder is evenly distributed, resulting in high pressing strength. After the compressed volume was reduced, the sample was wrapped in a plastic bag to prevent contamination, and then placed in the well of a 7-well type Gt semiconductor detector installed in a 10-hole container. , measured.
井戸型Gt半導体検出器のエネルギ分解能が半値幅で2
.3ktV、井戸型N、I(T/)検出器とのアンチコ
インシデンスをとり、波高分析計4000チヤンネルで
最大エネルギ2000 k L V。The energy resolution of the well-type Gt semiconductor detector is 2 in half width.
.. 3 ktV, anti-coincidence with well type N, I (T/) detector, maximum energy 2000 kL V with 4000 channels of pulse height analyzer.
すなわち1チヤンネル当゛す0.5に、!Vとして、放
射能を含まない活性炭を用いて測定した結果次のどとく
なった。200000 秒計測でヨウ素−131゜3も
51c L V周辺で1チャンネル当り、平均180カ
ウントである。井戸1g1JGt半心体検出器の井戸の
中に試料を入れた時の割数効率は、25チ。In other words, 0.5 per channel! As V, the following results were obtained using activated carbon, which does not contain radioactivity. When measured for 200,000 seconds, the average count of iodine-131°3 was 180 per channel around 51c LV. Well 1g 1JGt When a sample is placed in the well of a half-centred body detector, the divisor efficiency is 25chi.
C,−60の1332ktVのr、19における半値幅
2.3 k tVのGt検出器ヲ/14イテ36 s
k tVノγ線を放出するヨウ素131を測定した時ピ
ークとして必要なのは11チヤンネルとなるから、この
時の検出下限は、次のととくなる。C, -60 1332 ktV r, half width 2.3 k tV Gt detector at 19/14 ite 36 s
When measuring iodine-131, which emits ktV gamma rays, 11 channels are required as a peak, so the lower limit of detection at this time is as follows.
N=NcXe
ここに
N:放射能を含まない試料を計画した時の目的とする核
独の光電ビークに相当する工不ルキVこおける全計数値
(カウント)Nc;放射能紮宮まない試料を20000
0秒割画した呵の目的と1−る核朽lの光電ビークに相
当するエネルギにおける1チャンネル当りの計数値(カ
ウント/チャンネル)JFl s 。N=NcXe where N: Total count value (count) in the engineering V corresponding to the target photoelectric peak of nuclear Germany when planning a sample that does not contain radioactivity. Nc: Sample that does not contain radioactivity. 20000
The count value per channel (counts/channel) JFl s at the energy corresponding to the photoelectric peak of the target and the nuclear decay l divided by 0 seconds.
C:ヨウ素−131のγ線が分布するであろうチャンネ
ル数 =11
これよりN=180X11=1980カウントとなる。C: Number of channels in which the gamma rays of iodine-131 will be distributed = 11 From this, N = 180 x 11 = 1980 counts.
への標準偏差をσとすると
σ=7i’r−44.s
3σを検出下限とすると
L=3 0=133.5
この時の検出−ト限放射能は
一=A’3.7X10’Xε・I
ここに
A:放射能 (μci)
T:計測時間(秒) 200000秒
ε:ヨウ素−131のγ線の放出率(−)0.82
β:井戸型Qt半導体検出器の計数効率(−)0.25
A=8.8 X 10””μciとなり目標の1.0X
10−8μC1を達成できる。Let σ be the standard deviation of σ=7i'r−44. If s 3σ is the lower limit of detection, L = 3 0 = 133.5 The detection limit radioactivity at this time is 1 = A'3.7X10'Xε・I where A: Radioactivity (μci) T: Measurement time ( seconds) 200,000 seconds ε: Iodine-131 gamma ray emission rate (-) 0.82 β: Counting efficiency of well-type Qt semiconductor detector (-) 0.25 A = 8.8 x 10""μci, target 1.0X
10-8 μC1 can be achieved.
もしこの計Ij′lllを行う時、井戸IMGt検出器
の井戸の中に一度で入り切らずに2回に別けて測定した
時の検出下限は、次のごとくなる。If this total Ij'llll is measured, the detection lower limit will be as follows if the measurement is carried out twice without entering the well of the well IMGt detector at once.
200000秒計測におけるH、G N=1980カウ
ント
係準愉差 σ二/i’r=44.s
3σケ検出下限とすると前述の通り8.8 X 10−
’μciとなる。2度計測するのであるから新しい検出
下限は、
F二2A=2X8.8X10−’= 1.76X10−
’μciとなる。従って目標とする検出下限I X 1
0−7μciを達成するためには、−回の測定に丸・け
る検出下限を1/2とする必要があるから、計測時間を
4倍とする必要がある。すなわち一つの試料を8000
00秒計測すると、
N=180X4X11−7920
標糸偏差σは
σ=l団二tf罰=89
3σを検出下限とすると
L=3σ=267カウント
この時の検出下限放射能は、
A=4.4 X 10−8μci
2回の試料をたし合わせると、
F :2A:8.8 X 10−’μciとなる。H, G N = 1980 count difference in 200000 second measurement σ2/i'r = 44. As mentioned above, if the lower limit of detection is s 3σ, then 8.8 × 10−
'μci. Since the measurement is performed twice, the new detection limit is F22A=2X8.8X10-'=1.76X10-
'μci. Therefore, the target lower limit of detection I
In order to achieve 0-7 μci, it is necessary to reduce the lower limit of detection to 1/2 by rounding the - measurements, and therefore it is necessary to quadruple the measurement time. In other words, one sample has 8000
When measured for 00 seconds, N = 180X4X11-7920 The standard deviation σ is σ = l group 2 tf penalty = 89 If 3σ is the detection limit, L = 3σ = 267 counts The detection minimum radioactivity at this time is A = 4.4 X 10-8μci When the two samples are added together, F:2A:8.8X10-'μci.
計?l111時間は、1回の測定に比べ4倍×2個=8
倍
従ってLXIO−7μciの検出下限を達成するに番よ
、200000秒×8倍= 1600000秒=444
時間
=18日
の計測が必要となり笑際上不可能に近い。Total? l111 time is 4 times longer than one measurement x 2 pieces = 8
Therefore, to achieve the detection limit of LXIO-7μci, 200000 seconds x 8 times = 1600000 seconds = 444
Time = 18 days of measurement would be required, which would be laughably close to impossible.
このようにプレス等による減容を行うことは、従来にな
い別の操作として1ケの試料につき約30分の時間をか
けることにより、1/8の計数時間で測定ができ、従来
検出下限以下であった試料でも検出できる場合もあるよ
うになる。Reducing the volume by pressing, etc. in this way is an unconventional operation that takes about 30 minutes for each sample, making it possible to perform measurements in 1/8 of the counting time, which is below the lower limit of conventional detection. It is now possible to detect even samples that were
本発明によれば従来6111屋が困難であったような微
量の放射能でも測定できる場合が生じる。それによって
従来不明であった放出源、(−例として弁やタンク等)
が明らかになり、その対策金することにより、低い費用
で効果的な、系列放出放射能低減化が可能となる。また
従来m++定由雌であった換気空調系(’NVAC)等
の放射能測定が【す能となり、従業員の被ばく低減化に
役立たせることができる。According to the present invention, there are cases where it is possible to measure even a trace amount of radioactivity, which was difficult to do with the conventional 6111 method. This allows release sources that were previously unknown (e.g. valves, tanks, etc.)
By clarifying this and taking countermeasures against it, it becomes possible to effectively reduce the series emitted radioactivity at low cost. In addition, radioactivity measurement in ventilation and air conditioning systems (NVAC), which has traditionally been limited to m++, has become more effective, and can be used to reduce employee exposure.
第1図は172機によって試料減容をしている断面図、
第2図は井戸型Gt半導体検出器と井戸型N、1Tt)
検出器による放射能測定装置Nを示す図である。Figure 1 is a cross-sectional view of sample volume reduction by 172 machine.
Figure 2 shows a well-type Gt semiconductor detector and a well-type N, 1Tt)
It is a diagram showing a radioactivity measuring device N using a detector.
Claims (1)
能全測定する際に、当該吸着材の容積をプレスによって
減少させ、これを井戸型放射能検出器の井戸内に入れ、
放射能を測定することを特徴とする放射能測定方法。 2、特許請求の範囲第1項記載の放射能測定方法におい
て、プレスによって容積を減少させる時、バインダーを
添加し、破砕後、成型と2回に別けて操作することを特
徴とする放射能測定方法。 3、特許請求の範囲第1項記載の放射能測定方法におい
て、吸着材が、添着炭、銀アルミナ、銀ゼオライト、銀
シリカゲルであることを特徴とする放射能測定方法。 4、特許請求の範囲第3項記載の放射能測定方法におい
て、井戸型の放射能測定器が、井戸mGt半導体検出器
であることを特徴とする放射能測定方法。[Claims] 1. When measuring the total amount of radioactivity adsorbed on an adsorbent using a well-type radioactivity detector, the volume of the adsorbent is reduced by pressing, and this is reduced by the well-type radioactivity detector. put it in the well,
A radioactivity measurement method characterized by measuring radioactivity. 2. In the radioactivity measurement method according to claim 1, the radioactivity measurement is characterized in that when the volume is reduced by pressing, a binder is added, and the operation is carried out in two separate steps: crushing and molding. Method. 3. The method for measuring radioactivity according to claim 1, wherein the adsorbent is impregnated carbon, silver alumina, silver zeolite, or silver silica gel. 4. The radioactivity measuring method according to claim 3, wherein the well-type radioactivity measuring device is a well mGt semiconductor detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8582983A JPS6063484A (en) | 1983-05-18 | 1983-05-18 | Radioactivity measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8582983A JPS6063484A (en) | 1983-05-18 | 1983-05-18 | Radioactivity measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6063484A true JPS6063484A (en) | 1985-04-11 |
Family
ID=13869735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8582983A Pending JPS6063484A (en) | 1983-05-18 | 1983-05-18 | Radioactivity measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6063484A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995030138A1 (en) * | 1994-04-28 | 1995-11-09 | Materials Research Corporation | Device for preparing samples of powdered metals for analysis |
JP2019120664A (en) * | 2018-01-11 | 2019-07-22 | 株式会社東邦電探 | Underwater radioactivity measuring device with early alarm function by turbidity estimation, underwater radioactivity measuring system |
-
1983
- 1983-05-18 JP JP8582983A patent/JPS6063484A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995030138A1 (en) * | 1994-04-28 | 1995-11-09 | Materials Research Corporation | Device for preparing samples of powdered metals for analysis |
JP2019120664A (en) * | 2018-01-11 | 2019-07-22 | 株式会社東邦電探 | Underwater radioactivity measuring device with early alarm function by turbidity estimation, underwater radioactivity measuring system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5206174A (en) | Method of photon spectral analysis | |
DE2329105C2 (en) | Method for measuring the concentration of water and a specific constituent in a material | |
US3988615A (en) | Method for radioactivity monitoring | |
US4092541A (en) | Method for determining the activity concentration in waste gases for specific nuclides | |
JPS6063484A (en) | Radioactivity measuring method | |
Csongor et al. | Low-level counting facility for 14C dating | |
Mannhart et al. | Absolute calibration of well-type NaI-detector to an accuracy of 0.3-0.1% | |
Auble et al. | Beta and gamma spectroscopic studies of 9.7 d 125Sn | |
Hansen | Measurement of the beta-ray spectra of 90Sr-90Y | |
Ward et al. | Accurate lifetimes for the 4+ and 6+ rotational states in 156Gd | |
US4568828A (en) | Rapid determination of linearity in a dose calibrator | |
Umbarger et al. | Measurement of transuranic solid wastes at the 10 nCi/g activity level | |
Malmskog | Gamma transitions in the decay of V52 | |
Morel et al. | Emission probabilities of L X-, K X-and γ-rays in the 10–130 keV range following the decay of 239Pu | |
Lin et al. | Gamma ray emission intensities of 226 Ra in equilibrium with its daughter products | |
US2831122A (en) | Radiation sources | |
El-Khatib et al. | 14 MeV Neutron Activation Analysis of some Ores | |
EP0412194A1 (en) | Method for measuring radioactive nuclides | |
JP2970847B2 (en) | Transuranium elemental analysis method in radioactive waste | |
Cercasov | Method for simultaneous determination of Al and Si in atmospheric aerosols by 14 MeV neutron activation analysis | |
Ebert et al. | Measurements of E 4 matrix elements in 152 Sm and 154 Sm | |
Cochran et al. | Radioactive Decay of Se 83 | |
Hochel et al. | Background reduction and noise discrimination in the proportional counting of tritium using pulse-shape analysis | |
US3805070A (en) | Determination of radon in air | |
Anachkova et al. | Calibrating and testing tissue equivalent proportional counters with 37 Ar |