JPS6063369A - Device for supplying solid source for evaporation in vapor growth apparatus - Google Patents

Device for supplying solid source for evaporation in vapor growth apparatus

Info

Publication number
JPS6063369A
JPS6063369A JP17128783A JP17128783A JPS6063369A JP S6063369 A JPS6063369 A JP S6063369A JP 17128783 A JP17128783 A JP 17128783A JP 17128783 A JP17128783 A JP 17128783A JP S6063369 A JPS6063369 A JP S6063369A
Authority
JP
Japan
Prior art keywords
solid source
evaporation
vaporization
solid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17128783A
Other languages
Japanese (ja)
Inventor
Akira Tabuchi
明 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17128783A priority Critical patent/JPS6063369A/en
Publication of JPS6063369A publication Critical patent/JPS6063369A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material

Abstract

PURPOSE:To expand the evaporation area of solid sources for evaporation by disposing a multi-stage shelf consisting of plural sheets of trays in a vessel for housing the solid source for evaporation and placing respectively the solid sources for evaporation on the respective trays. CONSTITUTION:A vessel 32 having an inflow port 17 and an outflow port 13 for carrier gas G is housed into a thermostatic chamber 34 which houses solid sources 15 for evaporation and evaporates the sources 15. A multi-stage shelf 33 disposed with plural sheets of trays 33a in multiple stages apart at a prescribed spacing from each other in a vertical direction is housed and disposed in said vessel 32. The solid sources 15 for evaporation are placed atop the respective trays 33a.

Description

【発明の詳細な説明】 (イ)発明の技術分野 本発明は、基板上に薄膜を形成する気相成長法(CVD
法)に関し、特に、気相成長装置における気化用固体の
を安定したガスに蒸発して気相成長室に供給するための
供給装置の(j4造に関するものである。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a method for forming a thin film on a substrate using a vapor phase growth method (CVD).
In particular, the present invention relates to a supply device (j4) for evaporating the solid for vaporization in a vapor phase growth apparatus into a stable gas and supplying the gas to a vapor phase growth chamber.

(ロ)技術の背景 例えば、IC(集積回路)の基板上に形成されるメタル
薄膜の招料として、従来よシポリシリコン(Po1y 
5ilicon)、SiとAtの合金等が多用されてき
た。しかし、最近では、これらの材料に代って、Mo 
、 W + WSi2. Ta t Taxi 、 T
inT i、S i2等の高融点メタル及びそのシリサ
イド(Siとの化合物)が注目され、例えば、LSI(
大規模集積回路)のダート電極や配線用の材料として実
用化されつつある。その理由としては、^11記Mo。
(b) Background of the technology For example, polysilicon (Polysilicon) has traditionally been used as a material for metal thin films formed on IC (integrated circuit) substrates.
5ilicon), alloys of Si and At, etc. have been frequently used. However, recently, Mo
, W + WSi2. Ta t Taxi, T
High melting point metals such as inT i and Si2 and their silicides (compounds with Si) are attracting attention, and for example, LSI (
It is being put into practical use as a material for dirt electrodes and wiring in large-scale integrated circuits. The reason is ^11 Mo.

Mo S i 2等の材料は、従来のポリシリコン等の
材料に比べて、■抵抗が低いこと(例えば、メモリなど
全形成した場合、ICの動作スピードが非常に向上され
るといった利点がある)、■融点が高いため、IC製造
工程におけるii1鳴温加温加熱工程する耐久性が高い
こと、等の利点がある。薄膜形成法としては、蒸着法、
スパッタ法、気相成長法(CVD法)などがある。この
うち、気相成長法(プラズマCVD法も含む)は薄膜形
成に除し・いわゆるステップカバレッジに優れている(
すなわち、基板上の凹凸部における段差部のi’t’;
膜を平向部の薄膜の厚さとほぼ同一厚さに形成すること
ができ、断線等の原因を防止することができる)。
Materials such as MoSi 2 have lower resistance than conventional materials such as polysilicon (for example, they have the advantage of greatly increasing the operating speed of ICs when fully formed, such as memory). , (2) Since it has a high melting point, it has advantages such as high durability in the ii1 ringing heating process in the IC manufacturing process. Thin film formation methods include vapor deposition,
Examples include sputtering method and vapor phase growth method (CVD method). Among these, the vapor phase growth method (including plasma CVD method) is superior in thin film formation and so-called step coverage (
That is, i't' of the stepped portion in the uneven portion on the substrate;
The film can be formed to have almost the same thickness as the thin film in the flat portion, and causes such as wire breakage can be prevented).

このため、CVD法は、今後パターンが一層微1t(1
1化される場合でも前記の長所が生かされ、まず捷す多
用さ′I′Lる傾向にある。
For this reason, in the future, the CVD method will have a finer pattern of 1t (1t).
Even when it is integrated, the above-mentioned advantages are taken advantage of, and there is a tendency for it to be used frequently.

今′までは、金属薄膜は、蒸メ′1法、スパック−法で
主に形成されて来た。しかし集111i:’f回路の<
14精度が向上し、パターンが微細化す力、ば、ステッ
プ力パンッソの悪い蒸着法、スパッター法では、1す1
線の可能性が大きくなり、これからの高集積ICの製造
では、CVD法が注目されて来ている。
Until now, metal thin films have been mainly formed by the steam method and the spackle method. However, collection 111i: 'f circuit <
14 The ability to improve precision and make patterns finer, step force
The CVD method is attracting attention in the future production of highly integrated ICs.

CVD法は、膜を形成する物質の素になる物質の気体を
熱、プラズマ、光などによって分解2反応させ、分解2
反応による生成物が基板上に伺着することで膜が出来る
。冒融点メタルについては、融点が高い1ζめに、蒸着
法が困難である。その/ζめ、例えば、Moについては
、MOの化合物であるMo CZ sを材料としたCV
D法に上る膜形成が成功し、注目されたということがあ
った。:)−!シ、M。
The CVD method uses heat, plasma, light, etc. to decompose the gas of the substance that forms the material that forms the film.
A film is formed when the reaction products land on the substrate. Regarding metals with high melting points, the vapor deposition method is difficult for 1ζ metals, which have a high melting point. For example, for Mo, CV made from Mo CZ s, which is a compound of MO.
There was a time when a film formation that surpassed that of the D method was successful and attracted attention. :)-! Shi, M.

の化合物Mo CZ sがCVD法の材料になシ得るの
であp (MoCAsならば、MOそのものよシも、は
るかに低温で昇華により気体になう、分解させて、基板
上にMo f付けることが出来る)、MOそのものはC
VD法の材料にならない(Moそのものが組材になるの
は、蒸着法、スパッター法で、6る)。
The compound MoCZs can be used as a material for the CVD method (MoCAs, even MO itself, becomes a gas by sublimation at a much lower temperature, decomposes, and attaches MoF to the substrate. ), the MO itself is C
It cannot be used as a material for the VD method (Mo itself can be used as a composite material by vapor deposition or sputtering methods).

従って、CVD法においては、通常は、1νio r 
W。
Therefore, in the CVD method, usually 1νio r
W.

等の化合物であるMoCz5. WCl5 、 Tac
t5゜T iCl 4等の融点の低い材料が気化用固体
源として使用される。これらの固体源は室温(常温)で
は固体であるため、その蒸気(気体)を気相成長室内へ
安定して供給することが、気体ソース(気体温)、液体
ソース(液体諒)の場合に比べて回船である。従って、
CVD法における気化用固体源の供給装置としては、固
体源を安定したガスに蒸発(昇華)させて気相成長室内
へ送出し得る構造のものであることが望+1.れている
MoCz5. WCl5, Tac
A low melting point material such as t5°T iCl 4 is used as a solid source for vaporization. Since these solid sources are solid at room temperature, it is important to stably supply the vapor (gas) into the vapor phase growth chamber in the case of gas sources (gas temperature) and liquid sources (liquid temperature). It's a waste of time in comparison. Therefore,
As a supply device for a solid source for vaporization in the CVD method, it is desirable that the solid source be of a structure that can evaporate (sublime) the solid source into a stable gas and send it into the vapor phase growth chamber. It is.

(ハ)従来技術と問題点 第1図は従来の気相成長装置における気化用固体源の供
給装置を説明するための図である。同図において、府号
lOは気相成長装置全体を示し、11は気化用固体源の
供給装置を示す。供給装置11は、恒温槽23の中に収
められたボ゛ンペ(容器)12と、該ポンベ12に形成
されたキャリアーガスG+ (例えば、水素(H2)、
アルコ゛ン(Ar)。
(c) Prior Art and Problems FIG. 1 is a diagram for explaining a supply device for a solid source for vaporization in a conventional vapor phase growth apparatus. In the figure, the prefix 10 indicates the entire vapor phase growth apparatus, and 11 indicates a supply device for a solid source for vaporization. The supply device 11 includes a bomb (container) 12 housed in a constant temperature bath 23 and a carrier gas G+ (for example, hydrogen (H2),
Alcon (Ar).

ヘリュウム(He)等の力ス)の751c入ボーl−1
3及び流出ボー)14と、+Iぐンペ12内にJ区納さ
ゾした気化用固体源(例えば、MoC45の粉末粒子状
結晶体)と、?ンペ12の内部製置を所定温度(例えば
、yroct5の場合は90℃〜200℃程度)に高め
て保つための恒温槽23とから抱゛成されている。
Ball l-1 containing 751c of force such as helium (He)
3 and outflow) 14, and a solid source for vaporization (e.g., a powder granular crystal of MoC45) stored in the +I pump 12. It is comprised of a constant temperature bath 23 for raising and maintaining the internal temperature of the pump 12 at a predetermined temperature (for example, about 90 DEG C. to 200 DEG C. in the case of yroct5).

そして、符号166づ:キャリアーガスGlの通路、1
7は通路16の途中に連通して形成された′r1)釈J
fスG2のM’i人ボート、18は気相成長室(化学反
C色室)、19は気相成長室18円の反応ガスを排気す
ると共に該室18内の圧力’c jft定の真空圧に保
つための排気ポート、20は気相成長室18内に配置さ
れた複数枚のウェーッ・(複数のICチップを含みに9
膜が形成される基板)、21はウェーハ20のホルダー
、22Uウエーハ2 Of3:所定温度に加熱するため
のヒータをそれぞれ示す。第1図において、ボンベ12
内の気化用固体#15を、例えばMo Ct sとする
と、Mo CZsは、前述したように、90℃〜200
℃程度に加熱されると少しづつ昇華してMo CAsの
ガス(蒸気〕が発生する。
And code 166: Carrier gas Gl passage, 1
7 is a passage 16 formed in communication with the middle of the passage 16.
M'i boat of fsu G2, 18 is a vapor phase growth chamber (chemical anti-C color chamber), 19 is a vapor phase growth chamber for exhausting the reaction gas of 18 yen, and maintaining the pressure 'c jft constant in the chamber 18. An exhaust port 20 for maintaining vacuum pressure is connected to a plurality of wafers (including a plurality of IC chips) arranged in the vapor phase growth chamber 18.
(substrate on which a film is formed), 21 is a holder for the wafer 20, and 22U wafer 2Of3: a heater for heating to a predetermined temperature. In Figure 1, cylinder 12
If the solid for vaporization #15 is MoCts, as mentioned above, MoCZs is
When heated to about 0.degree. C., it sublimates little by little and generates Mo CAs gas (steam).

このMo C1sのガスはキャリアーガスGr (この
場合H2とする)によって、このキャリアーガスG1と
共に流゛出ボー)14から通路16を経由し、途中゛で
希釈ガスG’2 (この場合H2とするつと合流して気
相成長室(化学反応室)1817’iに送シ込まれる。
This Mo C1s gas flows out together with the carrier gas G1 by the carrier gas Gr (in this case, referred to as H2) from the passage 16 through the passage 14, and along the way, it is diluted with a diluent gas G'2 (in this case, referred to as H2). The two are combined and sent to a vapor growth chamber (chemical reaction chamber) 1817'i.

そして、気相成長室18内で、MoCt5のガスは分解
、還元、置換などの化学反応が起きてに1 。
Then, in the vapor phase growth chamber 18, the MoCt5 gas undergoes chemical reactions such as decomposition, reduction, and substitution.

の薄膜がウェーハ20上に形成され、他の反応ガスは排
気ポート19から排気される。そして通常は、気相成長
装置1001日の使用時間が終了すると恒温槽23のス
イッチが切られ、中のボンベ12に対する加熱が中止芒
れ、その翌日の使用時まで内部直置が常温に下降される
。従って、ボンベ12内の気化用固体源は、毎日その温
度の上昇と下降がくり返えさtbる。この結果、この従
来例の場合は、図示のように、気化用固体源J5をボン
ベ12内に単純に入れて堆積しであるだけなので、気化
用固体源15の堆積高さが大きく、このためMo CZ
 sの粉末粒子の結晶粒が成長して大きくなり易い。こ
のためMo C/−sの単位重量当りの表面積が減少し
、捷だ、蒸発(昇華)表面が気化用固体源15の上面1
5aのみであるため、Mo C7sの蒸発量(昇華世〕
が当初よシだんだん減少変化するという好捷しくない現
象が生ずる。この結果、この従来例はMo C7sのガ
ス全気相成長室18に常に効率良く供給で@ないという
問題がある。このことは、Mo Ct 5のガスの供給
量が不足して薄膜形成を効率良く行なうことができない
JJ、5合があるということを意味している。
A thin film of is formed on the wafer 20, and other reactant gases are exhausted through the exhaust port 19. Normally, when the usage time of the vapor phase growth apparatus 1001 ends, the constant temperature chamber 23 is turned off, heating of the cylinder 12 inside is stopped, and the internal temperature is lowered to room temperature until the next day's use. Ru. Therefore, the temperature of the solid source for vaporization in the cylinder 12 is repeatedly increased and decreased every day. As a result, in the case of this conventional example, the solid source J5 for vaporization is simply put into the cylinder 12 and deposited as shown in the figure, so the height of the piled up solid source 15 for vaporization is large. Mo CZ
The crystal grains of the powder particles of s tend to grow and become larger. Therefore, the surface area per unit weight of Mo C/-s decreases, and the evaporation (sublimation) surface becomes the upper surface 1 of the solid source 15 for vaporization.
Since it is only 5a, the amount of evaporation of MoC7s (sublimation stage)
An undesirable phenomenon occurs in which the initial value gradually decreases and changes. As a result, this conventional example has a problem in that the Mo 2 C7s gas cannot always be efficiently supplied to the full vapor phase growth chamber 18. This means that there are cases of JJ and 5 cases where the supply amount of Mo Ct 5 gas is insufficient and thin film formation cannot be performed efficiently.

に)発明の目的 本発明の目的は、上記従来技術の問題点にタコみ、気化
用固体源(の供給装置の構造を改モ、シ、同一容積のボ
ンベにおいて気化用固体源の蒸発(昇華)面積の拡大化
を図9、常に気化用固体源のガスを不足なく効率的に気
相成長室(化学反応室)内に供給し得る気相成長装置に
おける気化用固体源の供給装置を供給することにある。
The purpose of the present invention is to address the above-mentioned problems of the prior art, to improve the structure of the supply device for the solid source for vaporization, and to improve the evaporation (sublimation) of the solid source for vaporization in a cylinder with the same volume. ) Expansion of area (Figure 9) Supplying a supply device for a solid source for vaporization in a vapor phase growth apparatus that can constantly and efficiently supply the solid source gas for vaporization into the vapor phase growth chamber (chemical reaction chamber). It's about doing.

(ホ)発明の構成 そして、この目的を達成するために、本発明に依れば、
気化用固体源を収納し、該同体源を蒸発せしめる恒温槽
内に1キヤリアーガスの流入ポートと流出ポートをイj
°する容器を収納し、該容器内に、複数枚の棚板を上下
方向にB「定間隔をもって多段状に配置固定して形成さ
れた多段棚を収容配置し、前記各棚板上面に気化用固体
源をそれぞれ載置したことを特徴とする気相成長装置に
おける気化用固体源の供給装置が提供される。
(E) Structure of the invention In order to achieve this object, according to the present invention,
A carrier gas inflow port and outflow port are installed in a constant temperature chamber that houses a solid source for vaporization and evaporates the solid source.
A multi-tiered shelf formed by arranging and fixing a plurality of shelf boards vertically at regular intervals in a multi-tiered manner is housed in the container, and a vaporizer is placed on the upper surface of each of the shelf boards. Provided is a supply device for a solid source for vaporization in a vapor phase growth apparatus, characterized in that a solid source for vaporization is mounted on each solid source for vaporization.

(へ)発明の実施例 以下、本発明の実施例を図面に基ついて詳細に説明する
(F) Embodiments of the Invention Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第2図から第5図は本発明の詳細な説明するための図で
ある。尚、こわ、らの図において、前出の第1図と同一
部分又は相当部分には同一符号が付されている。従って
、符号13はキャリアーガスGl (水素(H2) l
アルゴン(Ar)、ヘリュウム(He)@−のガス)の
流入ボート、14はが1.出ポート、15は気化用固体
源(Mock5. WCl2 、 TaCt5゜T I
 C14等のわJ米粒子状結晶体〕、16はキャリアー
ガスGlの通路、17は通路16の途中に連通して形成
された希釈ガスG2 (H2、Ar 、Fle等のガス
)の流入ポート、18は気相成長室(化学反応室)、1
9は気相成長室18内の反応ガスを制気すると共に該室
18内の圧力をIj[定の真空圧に保つための排気ボー
ト、20は気相成長室18円に配置された複数枚のウェ
ーハ(禎敬のICチップを剖みMo等の薄膜が形成され
る基板)、21はウェーハ21のホルダー、22はウェ
ーハ20を所定温度に加熱するためヒータをそれぞれ示
し、これらの各部分は第1図の場合と同様であるため、
ここではその説明を省略する。
2 to 5 are diagrams for explaining the present invention in detail. In the figures, the same parts or corresponding parts as in FIG. 1 mentioned above are given the same reference numerals. Therefore, the code 13 is the carrier gas Gl (hydrogen (H2) l
Argon (Ar), helium (He) gas) inlet boat, 14 is 1. Output port 15 is a solid source for vaporization (Mock5. WCl2, TaCt5°T I
16 is a passage for carrier gas Gl; 17 is an inflow port for diluent gas G2 (gas such as H2, Ar, Fle, etc.) formed in communication with the passage 16; 18 is a vapor growth chamber (chemical reaction chamber), 1
9 is an exhaust boat for venting the reaction gas in the vapor growth chamber 18 and keeping the pressure in the chamber 18 at a constant vacuum pressure; 20 is a plurality of boats arranged in the vapor growth chamber 18; 21 is a holder for the wafer 21, and 22 is a heater for heating the wafer 20 to a predetermined temperature. Since it is the same as in Figure 1,
The explanation thereof will be omitted here.

SX 2図において、符号3oは気相成長装置全体を示
し、31は気化用固体源の供給装置紫示す。
In Figure SX2, the reference numeral 3o indicates the entire vapor phase growth apparatus, and the reference numeral 31 indicates a supply apparatus for a solid source for vaporization (purple).

供給装置31は、恒温槽34の中に収めらitたyl?
ンベ(容5)32と、該ボンベ32に形成されたキャリ
アーガスG1の流入ポー)13及び流出ポート14と、
該ボンベ32内に収容配置された多段棚33と、該多段
棚33の谷棚板33aの上面にそれぞれ載置された気化
用固体源15と、rWンペ32の内部温度を所定温度(
例えば、気化用固体源がMo Clsの場合は90℃〜
200℃程度)に高めて保つため恒温槽34とから構成
される。ボンベ32は、第3図に示すように、円筒体に
形成された本体32aと天蓋32bとからなる。尚、ボ
ンベ32の形状は円筒体に限定されることなく、他の形
状、例えば角筒状等任意に形成することができる。大差
32bは、第4図に示すように、下半部外周に設けたね
じ32cによって本体32aに容易に着脱可能に形成き
れ、多段棚33の出し入れが簡便化されるよう考慮され
ている。壕だ、天?、ir、 32 bはねじ32cの
代pに丁番等を用いて開閉自在に形成してもよい。天蓋
32bの上面には、キャリアーガスG!の流入ボート1
3と流出ボー)14が植設されている。これらポート1
3゜14は、第2図に示すように、管部材から形成さ 
□れ、天蓋32bfd:貫通して植設されポンベ32内
部と連通している。多段棚33は、紀5図に示すように
、複数枚の円板状棚板33aが上下方向に所定間隔で配
置され、そil、それの中心部を貫通して配設された固
定軸33bによって固定さノ1、この場合は5段構成の
多段棚に形成されている。尚、棚板33aの枚数及び各
棚板33aの相互間隔は必要に応じて任意に選定するこ
とができる。丑だ棹板33aの外径は前記ボンベ32の
本体32aの内径よシも小さく設定され、棚板33aの
外周部と本体32aの内周面との間に適宜な間隙を設け
て、キャリアーガスG+ (第2図参照〕の流通が良好
に行なわれるように考慮されている。従って、各棚板3
3aの平面形状は、必う′しも同一形状に形成する必要
はなく、キャリアーガスG1の61シ通を良好にするた
めにそれぞれ異なる形状に形成することも任意である。
The supply device 31 is housed in a constant temperature bath 34.
a cylinder 32, an inflow port 13 and an outflow port 14 for carrier gas G1 formed in the cylinder 32;
The internal temperature of the multi-tier shelf 33 accommodated in the cylinder 32, the vaporizing solid source 15 placed on the upper surface of the valley plate 33a of the multi-tier shelf 33, and the rW pump 32 is set to a predetermined temperature (
For example, when the solid source for vaporization is MoCls, the temperature is 90℃~
It is composed of a constant temperature bath 34 to maintain the temperature at a temperature of about 200°C. As shown in FIG. 3, the cylinder 32 consists of a cylindrical main body 32a and a canopy 32b. Note that the shape of the cylinder 32 is not limited to a cylindrical shape, and can be formed into any other shape, such as a rectangular cylindrical shape. As shown in FIG. 4, the large difference 32b is formed so that it can be easily attached to and detached from the main body 32a by means of a screw 32c provided on the outer periphery of the lower half, and is designed to simplify the loading and unloading of the multi-tiered shelf 33. A trench, Heaven? , ir, 32b may be formed to be openable and closable by using a hinge or the like in place of the screw 32c. On the upper surface of the canopy 32b is a carrier gas G! inflow boat 1
3 and outflow bow) 14 are planted. These ports 1
3゜14 is formed from a pipe member as shown in Fig. 2.
□Canopy 32bfd: It is planted through and communicates with the inside of the pond 32. As shown in Fig. 5, the multi-stage shelf 33 includes a plurality of disc-shaped shelf boards 33a arranged vertically at predetermined intervals, and a fixed shaft 33b extending through the center of the disc-shaped shelf boards 33a. In this case, it is formed into a multi-tier shelf with a five-tier structure. Note that the number of shelf boards 33a and the mutual spacing between each shelf board 33a can be arbitrarily selected as necessary. The outer diameter of the handle plate 33a is set smaller than the inner diameter of the main body 32a of the cylinder 32, and an appropriate gap is provided between the outer circumference of the shelf plate 33a and the inner circumferential surface of the main body 32a, so that the carrier gas G+ (see Figure 2) is designed to ensure good circulation.Therefore, each shelf board 3
The planar shapes of the portions 3a do not necessarily have to be the same, and may optionally be formed to have different shapes in order to improve the communication of the carrier gas G1.

このようにして形成した多段棚33の各棚板33’a上
面に、第2図に示すように、それぞれ気化用固体mt+
5、例えば、粉末粒子状のMo C1−5を少htつつ
載置する。すなわち、この」動台は、気化用固体源15
であるfvio Ct5の蒸発(昇華)表面が多段状に
5段階に形成され、同一容積のボンベにおいて、前出の
第1図(従来例)の場合に比べ約5倍に拡大化され、M
oCl3の蒸発量(昇華量)も約5倍に増大化される。
As shown in FIG. 2, a vaporizing solid mt+
5. For example, place a small amount of Mo C1-5 in the form of powder particles. That is, this moving table is a solid source for vaporization 15.
The evaporation (sublimation) surface of fvio Ct5, which is
The amount of evaporation (amount of sublimation) of oCl3 is also increased by about five times.

また、各棚板33a上面に載面′はれたMo Ctsの
堆積高さが前出のil図の場合に比べ非′i孔に小さい
ので、温度変化に対するM o CA 5の結晶成長の
大きさを最小限に抑えることができる。このためMoc
A50単位Mi量当シの表面積の減少を抑えることがで
き、これによシM o Ctsの蒸発量(昇華1k)の
減少化を最少限にとどめることができる。
In addition, the height of the Mo Cts deposited on the upper surface of each shelf plate 33a is smaller in the non-i hole than in the case of the above-mentioned il diagram, so the magnitude of the crystal growth of Mo CA 5 with respect to temperature changes is can be minimized. For this reason, Moc
It is possible to suppress the decrease in the surface area per A50 unit Mi amount, thereby minimizing the decrease in the amount of evaporation (sublimation 1k) of M o Cts.

(ト)発明の効果 以上、詳雑に説明したように、本発明に依る気相成長装
置における気化用固体源の供給装置lXは、気化用固体
源を収納する容器内に、複数枚の棚板から成る多段棚を
収容配置し、前記各棚板上面にそJしそれ気化用固体c
j、を載面することによシ、同一容積の容器において気
化用固体源の蒸発面積をきわめて拡大化することができ
ると共に気化用固体源の温度変化による結晶成長を最少
限に抑制することかでき、これによ多気化用固体源の蒸
発h1:を増大化することができると共に当初の蒸発量
に対しての蒸発量の減少化を抑制することができ、この
ため気相成長室(化学反四室)に安定してガス紮供給で
きるといった効果大なるものがあ一す、薄膜形成工程に
おける作業性の向」二及び狗膜の品質向上に寄与するも
のである0
(G) Effects of the Invention As described above in detail, the supply device IX for a solid source for vaporization in a vapor phase growth apparatus according to the present invention has a plurality of shelves in a container for storing a solid source for vaporization. A multi-tiered shelf consisting of plates is arranged, and a solid c for vaporization is placed on the upper surface of each of the shelves.
By mounting on the surface of the solid source for vaporization, the evaporation area of the solid source for vaporization can be greatly expanded in a container of the same volume, and crystal growth due to temperature changes in the solid source for vaporization can be suppressed to a minimum. As a result, it is possible to increase the evaporation h1: of the solid source for multi-vaporization, and it is also possible to suppress the decrease in the amount of evaporation compared to the initial amount of evaporation. It has great effects such as being able to stably supply gas to the four-sided membrane (1), and contributes to improving workability in the thin film forming process (2) and improving the quality of the film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の気相成長装置fffにおりる気化j旧δ
体源の供給装置の説明図、第2図は本−5)1門の気相
成長装置における気化用固体シ)61の供給装置I’i
の説明図、第3図は第2図のボンベ32の単体斜視図、
第4図は第3図の天蓋32bの単体律j面図、第5図は
第2図の多段棚33の単体力、1視図てんる。 13・・・キャリアーガス(G+)の流入ボート、14
・・・キャリアーガス(G1 )のυIL出ポート、1
5−・・気化用固体源(MoCl5. WCl5. T
aCt5゜TICt4等の粉末粒子状結晶体)、17・
・・イ1′i釈ガス(G2 )の流入ポート、18・・
・気相成長nK (化学反応基)、20・・・複数枚の
ウェーッ・(虚数のICチップを含み、Mo等の薄膜が
形成される基板)、30・・・本発明に係る気相成長装
置i、31・・・本発明の気相成長装置における気化用
固体源の供給装置、32・・・ボンベ(気化用固体源の
収納容器)、33・・・多段棚、33a・・・棚板、3
4・・・恒温槽、Gl・・・キャリアーガス(水素(H
2) 、アルゴン(Ar) 。 ヘリュウム(He)等のガス)、G2・・・希釈ガス(
H2,Ar、He等のガス)。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西 卸 和 之 弁理士 内 1)幸 男 弁理士 山 口 昭 之 第3図 第 5図 第4図 j/c
Figure 1 shows the vaporization j old δ in a conventional vapor phase growth apparatus fff.
Figure 2 is an explanatory diagram of the supply device for the solid source, and Figure 2 is the supply device I'i for the solid source for vaporization in the vapor phase growth device with one gate.
3 is a perspective view of the cylinder 32 shown in FIG. 2,
FIG. 4 is a simple J-plane view of the canopy 32b in FIG. 3, and FIG. 5 is a single view of the multi-tiered shelf 33 in FIG. 2. 13...Carrier gas (G+) inflow boat, 14
... υIL output port of carrier gas (G1), 1
5-... solid source for vaporization (MoCl5.WCl5.T
aCt5゜TICt4 etc.), 17.
...A1'i Inflow port for dilution gas (G2), 18...
・Vapor phase growth nK (chemically reactive group), 20...Multiple substrates (including an imaginary IC chip and on which a thin film of Mo or the like is formed), 30...Vapor phase growth according to the present invention Apparatus i, 31... Supply device for a solid source for vaporization in the vapor phase growth apparatus of the present invention, 32... Cylinder (storage container for a solid source for vaporization), 33... Multi-tier shelf, 33a... Shelf Board, 3
4... Constant temperature chamber, Gl... Carrier gas (hydrogen (H
2), argon (Ar). gas such as helium (He), G2... dilution gas (
gases such as H2, Ar, He, etc.). Patent applicant: Fujitsu Limited Patent agent Akira Aoki Patent attorney Kazuyuki Nishi Patent attorney 1) Yukio Patent attorney Akira Yamaguchi Figure 3 Figure 5 Figure 4 j/c

Claims (1)

【特許請求の範囲】[Claims] 1、気化用固体源を収納し、該固体源全蒸発せしめる恒
温梠内に、キャリアーガスの流入ボートと流出ボートを
有する容器を収納し、該容器内に、複数枚の棚板全上下
方向に所定間隔をもって多段状に配置固定して形成され
た多段棚を収容配置し、前記各棚板上面に気化用固体源
をそれぞれ載置したことを特徴とする気相成長装置にお
ける気化用固体源の供給装置。
1. A container having a carrier gas inflow boat and an outflow boat is housed in a constant-temperature cage that houses a solid source for vaporization and completely evaporates the solid source. A solid source for vaporization in a vapor phase growth apparatus, characterized in that multi-tiered shelves formed by arranging and fixing in multiple stages at predetermined intervals are housed, and a solid source for vaporization is placed on the upper surface of each shelf board, respectively. Feeding device.
JP17128783A 1983-09-19 1983-09-19 Device for supplying solid source for evaporation in vapor growth apparatus Pending JPS6063369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17128783A JPS6063369A (en) 1983-09-19 1983-09-19 Device for supplying solid source for evaporation in vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17128783A JPS6063369A (en) 1983-09-19 1983-09-19 Device for supplying solid source for evaporation in vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS6063369A true JPS6063369A (en) 1985-04-11

Family

ID=15920514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17128783A Pending JPS6063369A (en) 1983-09-19 1983-09-19 Device for supplying solid source for evaporation in vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS6063369A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958510A (en) * 1996-01-08 1999-09-28 Applied Materials, Inc. Method and apparatus for forming a thin polymer layer on an integrated circuit structure
US6086952A (en) * 1998-06-15 2000-07-11 Applied Materials, Inc. Chemical vapor deposition of a copolymer of p-xylylene and a multivinyl silicon/oxygen comonomer
US6107184A (en) * 1998-12-09 2000-08-22 Applied Materials, Inc. Nano-porous copolymer films having low dielectric constants
JP2016084526A (en) * 2014-10-28 2016-05-19 東京エレクトロン株式会社 Raw material gas supply apparatus, raw material gas supply method, and film deposition apparatus
CN111286720A (en) * 2018-12-10 2020-06-16 北京北方华创微电子装备有限公司 Source bottle and semiconductor equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958510A (en) * 1996-01-08 1999-09-28 Applied Materials, Inc. Method and apparatus for forming a thin polymer layer on an integrated circuit structure
US6086952A (en) * 1998-06-15 2000-07-11 Applied Materials, Inc. Chemical vapor deposition of a copolymer of p-xylylene and a multivinyl silicon/oxygen comonomer
US6107184A (en) * 1998-12-09 2000-08-22 Applied Materials, Inc. Nano-porous copolymer films having low dielectric constants
JP2016084526A (en) * 2014-10-28 2016-05-19 東京エレクトロン株式会社 Raw material gas supply apparatus, raw material gas supply method, and film deposition apparatus
CN111286720A (en) * 2018-12-10 2020-06-16 北京北方华创微电子装备有限公司 Source bottle and semiconductor equipment

Similar Documents

Publication Publication Date Title
US7638002B2 (en) Multi-tray film precursor evaporation system and thin film deposition system incorporating same
JP5566100B2 (en) Method and apparatus for suppressing particle contamination in a film forming system
US7484315B2 (en) Replaceable precursor tray for use in a multi-tray solid precursor delivery system
US6085689A (en) Apparatus to increase gas residence time in a reactor
US7846256B2 (en) Ampule tray for and method of precursor surface area
US7396766B2 (en) Low-temperature chemical vapor deposition of low-resistivity ruthenium layers
US20060185597A1 (en) Film precursor evaporation system and method of using
US20060086319A1 (en) Processing gas supply mechanism, film forming apparatus and method, and computer storage medium storing program for controlling same
US7132128B2 (en) Method and system for depositing material on a substrate using a solid precursor
US7708835B2 (en) Film precursor tray for use in a film precursor evaporation system and method of using
US20060219168A1 (en) Solid precursor vaporization system for use in chemical vapor deposition
US7488512B2 (en) Method for preparing solid precursor tray for use in solid precursor evaporation system
JP2008258595A (en) Substrate processing apparatus
WO2006036865A2 (en) Deposition of ruthenium metal layers in a thermal chemical vapor deposition process
US20070234962A1 (en) System for introducing a precursor gas to a vapor deposition system
KR101207593B1 (en) Cvd film-forming apparatus
US8568555B2 (en) Method and apparatus for reducing substrate temperature variability
WO2011033918A1 (en) Film forming device, film forming method and storage medium
JPS6063369A (en) Device for supplying solid source for evaporation in vapor growth apparatus
US7858522B2 (en) Method for reducing carbon monoxide poisoning in a thin film deposition system
US20060222769A1 (en) Method for saturating a carrier gas with precursor vapor
WO2010103880A1 (en) METHOD FOR FORMING Cu FILM, AND STORAGE MEDIUM
US20070231489A1 (en) Method for introducing a precursor gas to a vapor deposition system
KR20200108782A (en) Film forming apparatus and film forming method
JP2011151294A (en) Method of manufacturing semiconductor device