JPS6062247A - Slave station answer transmitter receiver of distribution line carrier control system - Google Patents

Slave station answer transmitter receiver of distribution line carrier control system

Info

Publication number
JPS6062247A
JPS6062247A JP16829183A JP16829183A JPS6062247A JP S6062247 A JPS6062247 A JP S6062247A JP 16829183 A JP16829183 A JP 16829183A JP 16829183 A JP16829183 A JP 16829183A JP S6062247 A JPS6062247 A JP S6062247A
Authority
JP
Japan
Prior art keywords
signal
slave station
frequency
distribution line
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16829183A
Other languages
Japanese (ja)
Inventor
Koichi Kubota
久保田 宏一
Yukihiro Nagamura
永村 幸博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENKI SEIZO KK
Original Assignee
KYUSHU DENKI SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENKI SEIZO KK filed Critical KYUSHU DENKI SEIZO KK
Priority to JP16829183A priority Critical patent/JPS6062247A/en
Publication of JPS6062247A publication Critical patent/JPS6062247A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To perform stable transmission while reducing variation in signal current transmission ratio equivalently by transmitting an answer signal from the answer transmitter of a slave station to be controlled to the receiver of a control station by utilizing frequency components which are properly distant from each other. CONSTITUTION:The answer signal is received through a current transformer 7 and an auxiliary transformer 10 coupled with a high voltage circuit 9 and inputted to a current voltage converter. The output of a transformer 11 is inputted to an LC filter 12 having a passing frequency f1 and an LC filter 13 having a passing frequency f2. The outputs of the filters 12 and 13 are amplified 14 and 15 and filtered through mechanical filters 16 and 17 having passing frequencies f1 and f2. Their outputs are amplified 18 and 19 and detected 20 and 21. The output waveforms of the detectors 20 and 21 are summed and amplified 22 to obtain an equivalently large answer signal by summing the components of frequencies f1 and f2.

Description

【発明の詳細な説明】 本発明は配電線搬送制御システムにおける子局回答送受
信装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a slave station response transmitting/receiving device in a distribution line carrier control system.

第1図は配電線輩送制御システムの一般的な概念図であ
る。制御局(発変電所)の配電指令卓1から被制御子局
2へ高圧自動式開閉器3を制御するための制御指令(例
えば被制御子局のアドレス、制御の種類等からなる)を
出すと、その制御指令は信号注入装置(リッノルコント
ロール)4によシ、高圧配電線(母線)5K、制御指令
をコード化した指令信号が注入される。この指令信号は
柱上変圧器6を経て被制御子82へ伝送される。被制御
子局2は、受信した指令信号の指令内容を解読して、自
局が呼び出されたか、制御指令は投入か開放か等を判断
して、自局が呼び出されている場合には制御指令を実行
して、回答信号を送信する。との回答信号は電流変成器
7を経て回答信号受信装置8に入力される。回答信号受
信波(、thy sでは回答信号の周波数のみを升別し
、配電指令卓Iへ送出する。
FIG. 1 is a general conceptual diagram of a distribution line transmission control system. A control command (for example, consisting of the address of the controlled slave station, type of control, etc.) for controlling the high voltage automatic switch 3 is issued from the power distribution command console 1 of the control station (power generation/substation) to the controlled slave station 2. Then, the control command is injected into the signal injection device (Rinnor control) 4, a high voltage distribution line (bus bar) 5K, and a command signal in which the control command is encoded. This command signal is transmitted to the controlled element 82 via the pole transformer 6. The controlled slave station 2 decodes the command contents of the received command signal, determines whether its own station has been called, whether the control command is input or released, etc., and if its own station has been called, controls it. Executes commands and sends response signals. The response signal is inputted to the response signal receiving device 8 via the current transformer 7. The response signal reception wave (, thys) separates only the frequency of the response signal and sends it to the power distribution control console I.

このような配電線搬送制御システムにおいて、受信点(
変電所等)の受信信号電流と信号注入点(子局)の送信
信号電流の比で表わされる信号電流伝送比は、配電線の
状態や信号周波数により大きく変動する。例えば、第2
図1l−iある配電線路における線路亘長と信号電流伝
送比の関係全2つの異なる周波数f1.f2につき測定
した一例を示し、第3図は特定場所における周波数fI
、f2の信号電流伝送比の時刻変化の一例を示すもので
ある。
In such a distribution line transport control system, the receiving point (
The signal current transmission ratio, expressed as the ratio of the received signal current at a substation, etc.) to the transmitted signal current at a signal injection point (slave station), varies greatly depending on the condition of the distribution line and the signal frequency. For example, the second
Figure 1l-i Relationship between line span length and signal current transmission ratio in a distribution line at two different frequencies f1. An example of measurement for f2 is shown in Figure 3, which shows the frequency fI at a specific location.
, f2 shows an example of a time change in the signal current transmission ratio.

第2図から明らかなように線路亘長即ち配電線路のイン
ピーダンスによって信号電流伝送比が大幅に変化し、ま
た第3図に示すように時刻の変化に従って配電線路の負
荷の変化によって信号電流伝送比が変化する。さらに、
このよう配電線の状態たけでなく、用いる信号周波数に
よっても信号電流伝送比が変化していることがわかる。
As is clear from Figure 2, the signal current transmission ratio changes significantly depending on the line span length, that is, the impedance of the distribution line, and as shown in Figure 3, the signal current transmission ratio changes as the load on the distribution line changes with time. changes. moreover,
It can be seen that the signal current transmission ratio changes not only depending on the condition of the power distribution line but also depending on the signal frequency used.

従来の配電線搬送制御システムにおいては、1つの搬送
周波数により信号の伝送を行なっていたが、上記のよう
に配電線の状態によって信号電流伝送比が大幅に変動す
るため、信号電流伝送比が十分でない場合が生じ、伝送
誤りによりシステムの信頼性が低下するという欠点があ
った。
In conventional distribution line carrier control systems, signals are transmitted using a single carrier frequency, but as mentioned above, the signal current transmission ratio fluctuates significantly depending on the condition of the distribution line, so it is difficult to maintain a sufficient signal current transmission ratio. However, there are cases in which the system is not reliable, and there is a drawback that the reliability of the system is lowered due to transmission errors.

本発明はこのような従来の欠点を除去した子局回答送受
信装置を提供することを目的とする。
An object of the present invention is to provide a slave station response transmitting/receiving device that eliminates such conventional drawbacks.

本発明はこの目的を達成するために、第2図および第3
図に示すように、適当に離れている2つの周波数f+ 
、:bによる信号電流伝送比は一方が低くなったときは
他方が高くなるというように互に補完的な関係にあるこ
とに着目し、この関係を利用するものである。
In order to achieve this object, the present invention is directed to FIGS.
As shown in the figure, two frequencies f+
, :b are complementary to each other, such that when one becomes low, the other becomes high, and this relationship is utilized.

即ち、本願発明は、配電線搬送制御システムにおいて、
被制御子局回答送信装置tを2個の周波数の信号電流を
それぞれ同一の・ぐルスコードに従って断続したものを
同時に発信するように栴成し、発変電所等の制御局の受
信装置を、配電線路に結合した電流変成器の二次側で受
信した信号より検波復調された・ぞルスコードのアナロ
グ加算もしくは論理和により子局回答を有意検出するよ
う構成したことを特徴とするものである。
That is, the present invention provides a distribution line transportation control system that includes:
The controlled slave station response transmitter t is configured to simultaneously transmit signal currents of two frequencies intermittently according to the same signal code, and the receiving device of the control station of the power generation/substation etc. The system is characterized in that a slave station response is significantly detected by analog addition or logical sum of the signals detected and demodulated from the signal received on the secondary side of the current transformer coupled to the line.

以下図面を用いて本発明の原理および実施例を詳細に説
明する。
The principles and embodiments of the present invention will be explained in detail below with reference to the drawings.

配電線搬送制御システムは第1図の概念図によって示さ
れるが、本発明においては被制御子局2における回答送
信部が回答信号に2周波成分を含ませる点に特徴がある
。そのため、被制御子局2の回答送信部は、限流用抵抗
で制限された商用電流波形を第4図に示すように適当な
間隔でオン、オフすることにより、回答信号として2周
波成分を含捷せるように構成される。第4図は商用周波
数60 Hzの電流波形に442−5 Hzの電気角1
80゜の間隔でオフ、オフを繰シ返えした結果得られた
波形の例で、この波形の周波数分析を行なった結果は第
5図に示されている。第5図から判るように、442.
5 Hz の周波数成分は全くなく、これより60 H
z低い382.5Hzと、60 Hz高い502.5 
Hzの2周波が出力している。この2周波を回答用信号
周波数として利用する。
The distribution line carrier control system is shown in the conceptual diagram of FIG. 1, and the present invention is characterized in that the response transmitter in the controlled slave station 2 includes two frequency components in the response signal. Therefore, the answer transmitter of the controlled slave station 2 includes two frequency components as an answer signal by turning on and off the commercial current waveform limited by the current limiting resistor at appropriate intervals as shown in FIG. Constructed so that it can be cut. Figure 4 shows a current waveform with a commercial frequency of 60 Hz and an electrical angle of 442-5 Hz.
FIG. 5 shows an example of a waveform obtained as a result of repeating off and on cycles at intervals of 80 degrees, and the results of frequency analysis of this waveform are shown in FIG. As can be seen from FIG. 5, 442.
There is no frequency component of 5 Hz at all, and from this 60 H
z lower 382.5Hz and 60Hz higher 502.5
Two frequencies of Hz are output. These two frequencies are used as response signal frequencies.

第6図は第4図に示すような波形を得るための回路の一
例を示すもので、柱上変圧器Trの低圧側はダイオード
Dl % D2 、D3 、D4からなるプリツノ回路
の一対の端子に接続され、同ブリツノ回路の他の一対の
端子間に限流用抵抗RとトランジスタQとからなる直列
回路が接続され、そのトランジスタQのベースににはダ
イオードD5が接続されている。またそのペースには4
42.5 Hzの周波数の信号が印加され、前記直列回
路の電流IDヲオン、オフ制御する。この6図の回路の
交流側に流れる電流IAの波形は第4図のようになる。
FIG. 6 shows an example of a circuit for obtaining the waveform shown in FIG. A series circuit consisting of a current-limiting resistor R and a transistor Q is connected between the other pair of terminals of the same circuit, and a diode D5 is connected to the base of the transistor Q. Also, the pace is 4
A signal with a frequency of 42.5 Hz is applied to control the on/off of the current ID in the series circuit. The waveform of the current IA flowing on the AC side of the circuit shown in FIG. 6 is as shown in FIG.

第7図は第4図に示すよう外波形を得るだめの回路の他
の例を示すもので、第6図の限流用抵抗Rおよびトラン
ジスタQからなる直列回路に代えて、限流用抵抗RI%
補助抵抗R2、転流用コンデンサC1主サイリスタSC
R,および補助ザイリスタ5CR2からなる回路を用い
た構成のものである。主サイリスタSCR、の制御電極
には第8図に示すトリガ・ぐルスP、が印加され、補助
ザイリスタ5CR2の制御電極にはトリガノeルスP1
 とは442.5Hz の電気角1800に相当する間
隔顯1れたトリが・ぐルスP2が印加されることにより
、′電流■□の波形は第4図に示すようなものとなる。
FIG. 7 shows another example of a circuit for obtaining an external waveform as shown in FIG. 4, in which a current-limiting resistor RI%
Auxiliary resistor R2, commutation capacitor C1 main thyristor SC
This configuration uses a circuit consisting of R and an auxiliary Zyrister 5CR2. A trigger pulse P shown in FIG. 8 is applied to the control electrode of the main thyristor SCR, and a trigger pulse P1 is applied to the control electrode of the auxiliary thyristor 5CR2.
By applying the signal P2 at an interval corresponding to 1800 electrical angles of 442.5 Hz, the waveform of the current ■□ becomes as shown in FIG.

この第7図の回路は第6図の回路に比べて製品の信頼性
および生産コストの面で有利であり、実用的である。
The circuit shown in FIG. 7 is more practical than the circuit shown in FIG. 6 in terms of product reliability and production cost.

2個の周波数の選定は雑音成分により影f≧を受けるこ
との少ないようにしなければならない。第9図は高圧配
電線電流の周波数成分分析結果のI例を示す。図から明
らかなように、雑音成分は商用周波数(60Hz)の高
調波成分が多く、その中でも比較的低次の奇数次高調波
成分が太きい。従ってこの雑音成分を考えると比較的高
い周波数を選定した方がよいが、一方周波数が大きくな
れば信号電流伝送比は一般に小さくなり、また信号電流
伝送比のバラツキも大きくなり好ましくない。
The two frequencies must be selected so that they are less affected by noise components f≧. FIG. 9 shows an example of frequency component analysis results of high voltage distribution line current. As is clear from the figure, the noise component includes many harmonic components of the commercial frequency (60 Hz), and among these, relatively low-order odd harmonic components are large. Therefore, considering this noise component, it is better to select a relatively high frequency, but on the other hand, as the frequency increases, the signal current transmission ratio generally decreases, and the variation in the signal current transmission ratio also increases, which is not preferable.

従って回答信号周波数にはある幅が最適周波数として存
在し、その選定基準として奇数次高調波と偶数次高調波
間を3分割し、偶数次高調波谷りに周波数が60 Hz
の場合、その百は20 Hzであり、偶数次高調波±2
0Hz附近が回答信号周波数として最も望ましい。
Therefore, a certain range exists as the optimal frequency for the response signal frequency, and as a selection criterion, the range between the odd harmonics and the even harmonics is divided into three, and the frequency at the trough of the even harmonics is 60 Hz.
In the case of , the hundred is 20 Hz, and even harmonics ±2
The most desirable answer signal frequency is around 0 Hz.

具体的には 等があるが、市販のメカニカルフィルタを回答受信装置
に使用するため、これに近い周波数のメカニカルフィル
タを選□定する。例えば、周波数f1として380Hz
Xf2として500Hzの附近を選定する場合には周波
数11を382.5 Hz、周波数J’2 k502.
5 Hzを選定する。
Specifically, since a commercially available mechanical filter is used in the response receiving device, a mechanical filter with a frequency close to this is selected. For example, 380Hz as frequency f1
When selecting a frequency near 500 Hz as Xf2, frequency 11 should be 382.5 Hz, frequency J'2 k502.
Select 5 Hz.

子局回答信号は上記のような2つの搬送周波数f1とf
2をそれぞれ同一のデイノタル直列符乞に従い断続して
送信される。即ち、デイノタル符−号のパマーク″時に
f+、f2を送り、″ス波−ス″′時にfl、f2を送
らないようにして、デイノタル直列符号を送信する。
The slave station response signal has two carrier frequencies f1 and f as described above.
2 are transmitted intermittently according to the same data series request. That is, the denotal serial code is transmitted by sending f+ and f2 at the "pa mark" of the denotal code, and not sending fl and f2 at the "wave mark".

第10図は本発明における回答信号受信装置の1例を示
すプロ、り図であり第11図は各部の波形を示す図であ
る。高圧回線9に結合した電流変成器7および補助電流
変成器10を経て回答化けが受信され、電流電圧変換器
11に入力される。
FIG. 10 is a diagram showing an example of a response signal receiving device according to the present invention, and FIG. 11 is a diagram showing waveforms of each part. The response signal is received via a current transformer 7 and an auxiliary current transformer 10 coupled to a high voltage line 9 and is input to a current-voltage converter 11 .

電流電圧変換器11の出力は第1の周波数f+=382
.5 Hzを通過させるLCフィルタ12と、第2の周
波数f2=502.5 Hz f通過させるLCフィル
タ13とに入力される。第11図の波形(イ)に示すよ
うに電流電圧変換器11の出力には基本波(60H7,
)の他に高調波成分、回答信号成分、ノイズ等が含せれ
ている。L Cフィルタ12を通過した波形(ロ)は3
8.2.5 Hz の成分が最も大きいが他のノイズ成
分も含まれている。同様にLCフィルタ13を通過した
波形(ハ)は502.5 Hzの成分とノイズ成分が含
1れている。LCフィルタ12および13の出力は、そ
れぞれ増幅器14および15により増幅された後、メカ
ニカルフィルタ16および17によりP波される。メカ
ニカルフィルタ16は382.5Hz’((通過させる
特性を有し、その出力波形(へ)は:(82,5Hz 
の成分のみとなり他のノイズ成分は除去されている。同
様に、502.5 Hz にF波周波数を持つメカニカ
ルフィルタ17の出力波形(ト)は502.5 Hzの
成分のみとなっている。これらの出力波形(へ)および
(ト)は増幅器18および19で増幅された後、検波器
20および21でそれぞれ検波される。検波器20およ
び21のそれぞれの出力波形(1)および(IJ)は加
算増幅器22により加算され、従って382.5 Hz
と502.5Hzの各々の成分の加算により、等価的に
太き寿回答信号波形(2))が得られる。
The output of the current-voltage converter 11 has a first frequency f+=382
.. The signal is input to the LC filter 12 that passes 5 Hz, and the LC filter 13 that passes the second frequency f2=502.5 Hz f. As shown in the waveform (A) of FIG. 11, the output of the current-voltage converter 11 has a fundamental wave (60H7,
), it also includes harmonic components, response signal components, noise, etc. The waveform (b) that passed through the LC filter 12 is 3
The 8.2.5 Hz component is the largest, but other noise components are also included. Similarly, the waveform (c) that has passed through the LC filter 13 includes a 502.5 Hz component and a noise component. The outputs of LC filters 12 and 13 are amplified by amplifiers 14 and 15, respectively, and then converted into P waves by mechanical filters 16 and 17. The mechanical filter 16 has a characteristic of passing 382.5Hz'((), and its output waveform is: (82.5Hz
, and other noise components have been removed. Similarly, the output waveform (g) of the mechanical filter 17 having an F-wave frequency at 502.5 Hz has only a 502.5 Hz component. These output waveforms (H) and (H) are amplified by amplifiers 18 and 19, and then detected by detectors 20 and 21, respectively. The output waveforms (1) and (IJ) of the detectors 20 and 21, respectively, are summed by the summing amplifier 22, and therefore at 382.5 Hz.
By adding the respective components of

第2図あるいは第3図に示すように一方の周波数の信号
電流伝送比が低くなった場合には他の周波数の信号電流
伝送比が高くなるような互に補光的な関係の2つの周波
数を用いるので、2つの周波数信号の振幅(波高値)の
和即ち回答信号波形(ヌ)の振幅レベルは配電線路のイ
ンピーダンスや配′+Jf線路の負荷の変動に対して比
較的安定であり、システム信頼性の向上に非常に有効で
ある。
As shown in Figure 2 or Figure 3, two frequencies have a mutually complementary relationship such that when the signal current transmission ratio of one frequency becomes low, the signal current transmission ratio of the other frequency increases. is used, the sum of the amplitudes (peak values) of the two frequency signals, that is, the amplitude level of the response signal waveform (nu), is relatively stable against fluctuations in the impedance of the distribution line and the load on the distribution line +Jf line, and the system This is very effective in improving reliability.

加算増幅器22の出力はコンノ’?レーク2′、3によ
り基準電圧と比較され、この基準電圧を越える信号のみ
が一定振幅の矩形波として出力され、受信リレー24が
駆動される。このように受信リレー24が回答信号に応
じて駆動されると、そのオンオフ信号は配電指令卓1(
第1図)へ伝送される。
The output of the summing amplifier 22 is Konno'? The signal is compared with a reference voltage by the rake 2' and 3, and only the signal exceeding this reference voltage is outputted as a rectangular wave with a constant amplitude, and the reception relay 24 is driven. When the receiving relay 24 is driven according to the response signal in this way, the on/off signal is transmitted to the power distribution control console 1 (
(Fig. 1).

以上、詳述したように、本発明は配電線搬送制御システ
ムにおいて回答信号を、2つの適当に離れた周波数成分
を利用して伝送するので、信号電流伝送比の変動が等価
的に小さくなり、安定した伝送カ実現でき、システムの
信頼性が大きく向」ニする利点が得られる。また、2つ
の周波数成分を含む信号電流は、商用周波電流を基準周
波数(前記の例においては442.5 Hz)の制御信
号で裁断するよう構成すればよいので、装置構成も比較
的簡単に実現することができる。
As described above in detail, the present invention transmits the response signal in the distribution line carrier control system using two appropriately separated frequency components, so that fluctuations in the signal current transmission ratio are equivalently reduced. This provides the advantage of achieving stable transmission power and greatly improving system reliability. In addition, since the signal current containing two frequency components can be constructed so that the commercial frequency current is cut by the control signal of the reference frequency (442.5 Hz in the above example), the device configuration can be realized relatively easily. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配電線搬送制御システムの一般的な概念図、第
2図は線路亘長と信号電流伝送比の関係の一例を示す図
、第3図は特定位置における周波数f1.f2の信号の
信号電流伝送比の時刻変化の一例を示す図、第4図は本
発明による2周波成分を含む信号伝送波形の一例を示す
図、第5図は第4図の波形を周波数分析した図、第6図
は第4図゛の波形を得るための回路の一例を示す図、第
7図は第4図の波形を得るための回路の他の例を示す図
、第8図は第7図のサイリスタの制御電極に印加する・
ぐルスのタイミング図、第9図は高圧配電線電流の周波
数成分分析結果を示す図、第10図は本発明における回
答信号受信装置の一例を示すブロック図、第11図は各
部の信号の波形図である。 1 ・配電指令卓、2・・・被制御子局、3・・・高圧
自動式開閉器、4・・・信号゛注入装置、5・・母線、
6・・柱上変圧器、7.10・・・電流変成器、8・・
・回答信号受信装置、11・・・電流電圧変換器、12
113・・・LCフィルタ、1.4 + 15 + 1
8 + 19・・増幅器、16.17・・メカニカルフ
ィルタ、2o。 特許出願人 九州電機製造株式会社 代理人 星 野 恒 司 岩 上 昇 − 第1図 第2図 を 第3図 時訓 第4図 第5図 100 2C幻 300 菊0 突O(イ)0700 
■運 900→凋波糎 第8図 J ト’ll’l゛−J1’lL又P2第11図
FIG. 1 is a general conceptual diagram of a distribution line carrier control system, FIG. 2 is a diagram showing an example of the relationship between line span length and signal current transmission ratio, and FIG. 3 is a diagram showing the frequency f1. A diagram showing an example of a time change in the signal current transmission ratio of the f2 signal, FIG. 4 is a diagram showing an example of a signal transmission waveform including two frequency components according to the present invention, and FIG. 5 is a frequency analysis of the waveform in FIG. Figure 6 is a diagram showing an example of a circuit for obtaining the waveform shown in Figure 4. Figure 7 is a diagram showing another example of a circuit for obtaining the waveform shown in Figure 4. Applying voltage to the control electrode of the thyristor in Figure 7.
Fig. 9 is a diagram showing the frequency component analysis results of the high-voltage distribution line current, Fig. 10 is a block diagram showing an example of the response signal receiving device in the present invention, and Fig. 11 is the waveform of the signals of each part. It is a diagram. 1. Power distribution control console, 2.. Controlled slave station, 3.. High voltage automatic switch, 4.. Signal injection device, 5.. Bus bar,
6...Pole transformer, 7.10...Current transformer, 8...
-Answer signal receiving device, 11...Current voltage converter, 12
113...LC filter, 1.4 + 15 + 1
8 + 19...Amplifier, 16.17...Mechanical filter, 2o. Patent Applicant Kyushu Denki Seizo Co., Ltd. Agent Hisashi Hoshino Shiiwa Noboru - Figure 1 Figure 2 Figure 3 Jiken Figure 4 Figure 5 100 2C Gen 300 Kiku 0 Tsu O (I) 0700
■Luck 900 → 凯波系 8th figure J

Claims (1)

【特許請求の範囲】[Claims] 配’K WJJ搬送制御システムにおいて、周波数の異
なる2個の搬送周波をそれぞれ同一の時系列的に編成し
た直列符号に従って断続した回答信号を発信する子局回
答送信装置と、子局回答送信装置から配電線路を介して
伝送された回答信号を受信し、回答信号に含まれる2個
の搬送周波数成分をそれぞれ抽出して整流検波した後、
各周波数成分の検波波形を加舞ニして、子局回答を有意
検出する回答信号受信装置とを備えた子局回答送受信装
置。
In the WJJ carrier control system, there is a slave station response transmitter that transmits intermittent response signals according to serial codes in which two carrier frequencies with different frequencies are organized in the same time series, and a slave station response transmitter. After receiving the answer signal transmitted via the power distribution line, extracting and rectifying the two carrier frequency components included in the answer signal,
A slave station response transmitting/receiving device comprising: a response signal receiving device that significantly detects a slave station response by modifying the detected waveform of each frequency component.
JP16829183A 1983-09-14 1983-09-14 Slave station answer transmitter receiver of distribution line carrier control system Pending JPS6062247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16829183A JPS6062247A (en) 1983-09-14 1983-09-14 Slave station answer transmitter receiver of distribution line carrier control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16829183A JPS6062247A (en) 1983-09-14 1983-09-14 Slave station answer transmitter receiver of distribution line carrier control system

Publications (1)

Publication Number Publication Date
JPS6062247A true JPS6062247A (en) 1985-04-10

Family

ID=15865288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16829183A Pending JPS6062247A (en) 1983-09-14 1983-09-14 Slave station answer transmitter receiver of distribution line carrier control system

Country Status (1)

Country Link
JP (1) JPS6062247A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151508A (en) * 1976-06-12 1977-12-16 Tokyo Electric Power Co Inc:The Multidrop signal transmission system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151508A (en) * 1976-06-12 1977-12-16 Tokyo Electric Power Co Inc:The Multidrop signal transmission system

Similar Documents

Publication Publication Date Title
US6377163B1 (en) Power line communication circuit
JPH02108331A (en) Carrier signal transmission/reception method
CN101930031A (en) Multi-point simultaneous-measurement digital grounding resistance tester
NO169927B (en) ELECTRICAL CABLE DEVICE
US4301499A (en) Inverter circuit with current equalization
US3829788A (en) Electric power amplification at low frequencies
US4609839A (en) Noise inverter circuit for a power line communication system
US20020135492A1 (en) Ultrasonic control and monitoring bus and method
JPS6062247A (en) Slave station answer transmitter receiver of distribution line carrier control system
US4689605A (en) Powering device for transmitters and receivers of a signal transmission system
JPS60237857A (en) Power source circuit
US4031528A (en) Transmitting over power lines
US3761622A (en) Amplitude modulated telemetering system
CN213426165U (en) Power bus communication module of logging-while-drilling instrument
JPS5915545B2 (en) How to power the terminal
JPS6465921A (en) Waveform shaping circuit
SU1737481A1 (en) Signal reception and transmission system over wires of three-phase line
US1465961A (en) Wireless signaling system
SU672693A1 (en) Device for protective disconnection in ac network
SU698142A1 (en) System for transmitting commands through power transmission lines
SU1274054A1 (en) Device for differential protection of transformer
SU561990A1 (en) Device for transmitting and receiving signals
SU660076A1 (en) Telemechanical signal converting device
SU917249A1 (en) Device for protecting ac mains from earthing
SU1755379A1 (en) System of signal transmitting by three-phase power line wires