JPS606206B2 - Mold release agent for resin molding - Google Patents

Mold release agent for resin molding

Info

Publication number
JPS606206B2
JPS606206B2 JP52143078A JP14307877A JPS606206B2 JP S606206 B2 JPS606206 B2 JP S606206B2 JP 52143078 A JP52143078 A JP 52143078A JP 14307877 A JP14307877 A JP 14307877A JP S606206 B2 JPS606206 B2 JP S606206B2
Authority
JP
Japan
Prior art keywords
mold release
release agent
resin molding
agent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52143078A
Other languages
Japanese (ja)
Other versions
JPS5474856A (en
Inventor
宏 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP52143078A priority Critical patent/JPS606206B2/en
Publication of JPS5474856A publication Critical patent/JPS5474856A/en
Publication of JPS606206B2 publication Critical patent/JPS606206B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 この発明は樹脂成型用離型剤、特に六ふつ化硫黄ガス雰
囲気の下でアークにさらされる個所に使用する樹脂成型
品に用いる離型剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold release agent for resin molding, and particularly to a mold release agent used for resin molded products used in areas exposed to arcs in a sulfur hexafluoride gas atmosphere.

この種樹脂成型に用いる雛型剤は従釆シリコン系雛型剤
が一般に使用されていた。しかし離型剤は金型内面に塗
布されて使用されるものとはいえ、そのほとんどが成型
品の表面に附着される。したがってこの成型品を六ふつ
硫黄(以TSF6という。)ガスを絶縁に使用するガス
しや断器のしや断部などに近接して設置するような場合
、アークがもつ高溢にさらされるようになる。ところが
シリコン系鰍型剤を用いた場合、これが成型品の表面に
附着していると、SF6分籍ガスとシリコンとが徴量水
分の存在下でイ乙学反応を起こし、最終生成物としてふ
っ酸が生成される。この生成物の量が多い場合は、成型
品でトラッキングを起こしたり、くり返しせん絡特性の
低下を引き起すようになる。これを解決するためには塗
布するシリコン磯型剤を極度に少なくし、経験的にトラ
ッキングを起こさせない状態を確認して使用しているが
、この作業は作業者の経験にたよらざるを得ない不便が
ある。この発明はSF6ガス雰囲気中で高温にさらされ
てもトラツキング、せ縦特性の低下をひきおこすことの
ない離型剤を提供することを目的とする。
As the molding agent used in this type of resin molding, a secondary silicone-based molding agent has generally been used. However, although the mold release agent is used by being applied to the inner surface of the mold, most of it is attached to the surface of the molded product. Therefore, if this molded product is installed in close proximity to a gas liner or disconnector where TSF6 gas is used for insulation, it may be exposed to the overflow of the arc. become. However, when a silicone-based molding agent is used, if it adheres to the surface of the molded product, a chemical reaction will occur between the SF6 gas and the silicone in the presence of residual moisture, resulting in fluorine as the final product. Acid is produced. If the amount of this product is large, it will cause tracking in the molded product and cause repeated deterioration of the flickering properties. In order to solve this problem, we minimize the amount of silicone mold agent applied and use it after confirming empirically that it does not cause tracking, but this process must rely on the experience of the operator. It's inconvenient. An object of the present invention is to provide a mold release agent that does not cause deterioration in tracking and longitudinal properties even when exposed to high temperatures in an SF6 gas atmosphere.

この発明によれば、三ふつイQ蓋化エチレンの低重合剤
を基油とし、これに有機性ゲル化剤を0.5〜10%(
重量%。以下同じ。)添加してワックス状又はグリス状
としてなる雛型剤が与えられる。三ふつ化塩化エチレン
の低重合油と、Dーソルビトールとペンズアルデヒドと
の縮合反応から譲導された有機性ゲル化剤とによる生成
物は、前記重合物の平均分子量が700未満では、15
ぴ0程度で蒸発する鏡向にある。したがって、使用する
樹脂材料の硬化温度が15ぴ0以下の場合には使用でき
るが、これより高い温度の場合は、平均分子量の大きい
ものを使用する必要がある。なお平均分子量が大きくな
る程、蒸気温度は高くなる。もっともこれが1100を
こえると、固型化するので、このままでは鱗型剤として
は不適当である。有機性ゲル化剤は、基油の沸点を上昇
させるとともに、液状の基油をグリース状乃至ワックス
状に変成する作用を呈する。
According to this invention, a base oil is a low polymerization agent of Sanfutsui Q capped ethylene, and 0.5 to 10% of an organic gelling agent is added to the base oil.
weight%. same as below. ) A template agent is provided which can be added to form a wax-like or grease-like form. When the average molecular weight of the polymer is less than 700, the product of a low polymerized oil of ethylene trifluoride chloride and an organic gelling agent obtained from the condensation reaction of D-sorbitol and penzaldehyde is 15
It is located in the mirror direction where it evaporates at about 0 pi. Therefore, it can be used if the curing temperature of the resin material used is 15 mm or less, but if the temperature is higher than this, it is necessary to use a resin material with a large average molecular weight. Note that the larger the average molecular weight, the higher the steam temperature. However, if it exceeds 1,100, it solidifies and is therefore unsuitable as a scale agent. The organic gelling agent has the effect of raising the boiling point of the base oil and converting the liquid base oil into a grease-like or wax-like state.

すなわちこれを基油に添加加熱すると、基油がゲル状に
なって物性変化を起こし、これによって沸点が上昇する
ようになる。なおこの添加量が0.5%未満であると、
離型剤としての楓度が得られない。すなわち基油に部分
的に液状部分が残存したりするようになり、又充分な沸
点上昇は望めない。又10%をこえると沸点は充分上昇
するが。必要以上に固化してしまって離型剤としては利
用できない。つまり金型内面に塗布できる鋼度とはなり
得ないのである。なお必要があれば鱗型性能を向上させ
る意味で、耐ガス性能をもつ無機質粉末たとえば窒化ほ
う素(BN)粉末を添加するとよい。これは熱的に約1
00000まで安定な化合物であり、又SF6ガス中に
おいてもシリコン離型剤のようなふつ酸を生成するよう
なことがなく、優れた電気特性を保持している。これを
添加する場合は0.05〜5%が適当で、0.05%未
満では雛型性能の向上のためには不足であり、5%をこ
えると、基油が必要以上の稲度となってしまい、離型剤
として利用できなくなる。基油の増調を図る場合にはQ
ーアルミナ(Q−N203)微粉末を必要により使用す
るとよい。
That is, when this is added to base oil and heated, the base oil becomes gel-like and its physical properties change, thereby raising its boiling point. Note that if this addition amount is less than 0.5%,
The degree of mapleness required as a mold release agent cannot be obtained. In other words, a liquid portion partially remains in the base oil, and a sufficient increase in boiling point cannot be expected. Moreover, if it exceeds 10%, the boiling point will rise sufficiently. It solidifies more than necessary and cannot be used as a mold release agent. In other words, the steel cannot be coated on the inner surface of the mold. If necessary, an inorganic powder having gas resistance, such as boron nitride (BN) powder, may be added to improve the scale-like performance. This is thermally approximately 1
It is a stable compound up to 0.00000, and does not generate hydrogen acid like silicone mold release agents even in SF6 gas, and maintains excellent electrical properties. When adding this, 0.05 to 5% is appropriate; less than 0.05% is insufficient to improve template performance, and if it exceeds 5%, the base oil will cause more rice than necessary. This makes it impossible to use it as a mold release agent. Q when trying to increase the amount of base oil
- Fine powder of alumina (Q-N203) may be used if necessary.

QーァルミナはSF6ガスに対しては窒化ほう素よりも
安定である。Qーアルミナとしては、平均粒度3山以下
特に1仏附近が好適で、3Aをこえると、成型品の表面
に微細な凹凸ができて商品価値を損なう恐れがある。添
加量としては窒化ほう素の場合と同じように0.05〜
5%が適当である。これら各添加剤の不純物は極力少な
いことが望ましいが、止むを得ない場合でもSi021
%以下、Na200.2%以下に管理することが、SP
6ガス雰囲気で使用して何ら支障のないようにするため
には必要なことである。次にこの発明の実施例について
説明する。
Q-Alumina is more stable to SF6 gas than boron nitride. For Q-alumina, it is preferable to have an average particle size of 3A or less, especially around 1A, and if it exceeds 3A, fine irregularities may form on the surface of the molded product, which may impair commercial value. The amount added is 0.05~ as in the case of boron nitride.
5% is appropriate. It is desirable that the impurities in each of these additives be as low as possible, but even if it is unavoidable, Si021
% or less and Na200.2% or less.
This is necessary in order to use the product in a 6 gas atmosphere without causing any problems. Next, embodiments of this invention will be described.

三ふつ化塩化エチレン低重合油としてダイキン工業株式
会社製のター、ィフロィル(商品名)を、又有機性ゲル
化剤として新日本理化株式会社(大阪市)製のゲルオー
ルD(商品名)を、又窒化ほう泰微粉末として電気化学
工業株式会社(東京都)製のデソカボロナィトライド(
商品名)をそれぞれ使用し、各混合比を変えて数種の離
型剤を製作した。これらの特性を示せば次の表となる。
この表において、Aは三ふつ化塩化エチレン低重合油を
、Bは有機性ゲル化剤を、Cは窒化ほう素微粉末を略し
て示してある。又温度は、安定状態で使用可能な最高温
度を表わす。なおこれら混合物はいずれも有機性ゲル化
剤が溶解する程度(たとえば140℃、約3世分)に加
熱してから冷却して得たものである。上記の結果から、
まず使用可能の最高温度は、ニふっ化塩化エチレン低重
合油の平均分子量のみによって定まり、平均分子量が大
きい程、最高温度が高かくなり、又楓度は有機性ゲル化
剤によって影響され、その添加量が少ない場合は糠度の
小さいグリス状に、又多くなれば鋼度の大きいワックス
状となる。
Tar, Fifloyl (trade name) manufactured by Daikin Industries, Ltd. was used as trifluorochloroethylene low polymerized oil, and Gelol D (trade name) manufactured by Shin Nippon Rika Co., Ltd. (Osaka City) was used as an organic gelling agent. In addition, desoca boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd. (Tokyo)) was used as a nitrided boron fine powder.
Several types of mold release agents were produced using each of the following product names and varying the mixing ratio. These characteristics are shown in the following table.
In this table, A stands for low polymerized ethylene trifluoride chloride oil, B stands for organic gelling agent, and C stands for fine boron nitride powder. Moreover, the temperature represents the maximum temperature that can be used in a stable state. All of these mixtures were obtained by heating to an extent that the organic gelling agent was dissolved (for example, 140° C., approximately 300° C.) and then cooling. From the above results,
First, the maximum usable temperature is determined only by the average molecular weight of the difluorochloroethylene low-polymerized oil; the larger the average molecular weight, the higher the maximum temperature, and the degree of mapleness is affected by the organic gelling agent. When the amount added is small, it becomes like a grease with a low branity, and when it is added, it becomes like a wax with a high degree of steel.

したがって樹脂材料の硬化温度が高いものについては平
均分子量の大きい三ふつ化塩化エチレン低重合油を用い
、又金型が複雑な形状をしているような場合、三ふつ化
エチレン低重合油の添加量の少ないもの、すなわちグリ
ス状のものを使用すればよい。試料番号7のように室化
ほう素微粉末を混入した場合は雛型性能の向上が期待で
きる。この種粉末はもともと離型剤の添加物として利用
されているものであるが、これはSF6ガスに対して化
学的に安定であるため、これが添加されても電気特性の
劣化は何ら起らない。次に前記各試料につき、ェポキシ
樹脂の成型に用いたところ、軽く力を入れるだけで注型
物をとり出すことができた。これはシリコン型離型剤を
用いた場合と同程度である。得られた成型品を、しや断
部を持った試験容器にセットし、SF6ガス雰囲気の下
で、ァーク電流3雛A、電圧狐V、ァーク時間2サイク
ル、試験回数5回、試験時間間隔2〜4分、SF6ガス
圧(ゲージ圧)3k9′c海(15℃)で劣化させた。
そしてこの試料をSF6ガス中でくり返し15回交流せ
ん絡させた。その結果いずれの試料もせん絡電圧の低下
は起きず、又トラッキングも生じなかった。ちなみにシ
リコン離型剤を用いて行なった実験では、せん絡15回
後では初期値の80%に低下した。なおこの実験ではシ
リコン層を非常に薄くしたのでせん絡値の低下が少なか
ったのであり、これを更に厚く塗布しておいたならばせ
ん絡値はこれよりも更に低下し、トラッキング破壊を引
きおこすことは容易に推察できる。以上詳述したように
、この発明によればSF6ガスに対して電気的、化学的
に安定した樹脂成型の製作に好適な離型剤が求められる
効果がある。
Therefore, if the curing temperature of the resin material is high, trifluorochloride low polymerized oil with a large average molecular weight should be used, and if the mold has a complicated shape, trifluoroethylene low polymerized oil should be added. What is necessary is to use a small amount, that is, a grease-like material. When fine boron chloride powder is mixed as in sample number 7, improvement in template performance can be expected. This kind of powder was originally used as an additive for mold release agents, but since it is chemically stable against SF6 gas, no deterioration of electrical properties occurs even when it is added. . Next, when each of the above samples was used for molding epoxy resin, the cast material could be taken out with just a slight force. This is comparable to the case where a silicone mold release agent is used. The obtained molded product was set in a test container with a slit section, and under an SF6 gas atmosphere, arc current was 3 A, voltage was V, arc time was 2 cycles, number of tests was 5 times, and test time interval. It was aged for 2-4 minutes at SF6 gas pressure (gauge pressure) 3k9'c sea (15°C).
This sample was then repeatedly subjected to alternating current entanglement in SF6 gas 15 times. As a result, no drop in flashover voltage occurred in any of the samples, and no tracking occurred. Incidentally, in an experiment conducted using a silicone mold release agent, the resistance decreased to 80% of the initial value after 15 times of tangling. In this experiment, the silicon layer was made very thin, so the drop in the flashback value was small; if it were applied even thicker, the flashback value would drop even further, causing tracking damage. can be easily inferred. As detailed above, the present invention has the effect of requiring a mold release agent suitable for manufacturing resin moldings that is electrically and chemically stable against SF6 gas.

Claims (1)

【特許請求の範囲】 1 三ふつ化塩化エチレン低重合油を基油とし、これに
D−ソルビトールとベンズアルデヒドとの縮合反応から
誘導された有機性ゲル化剤を0.5〜10重量%添加し
てグリス状又はワツクス状としてなる樹脂成型用離型剤
。 2 三ふつ化塩化エチレン低重合油は、平均分子が70
0〜1100である特許請求の範囲第1項記載の樹脂成
型用離型剤。 3 窒化ほう素微粉末を0.05〜5重量%添加してな
る特許請求の範囲第1項記載の樹脂成型用離型剤。 4 α−アルミナ微粉末を0.05〜5重量%添加して
なる特許請求の範囲第1項記載の樹脂成型用離型剤。
[Scope of Claims] 1 Trifluorochloroethylene low polymerized oil is used as a base oil, and 0.5 to 10% by weight of an organic gelling agent derived from a condensation reaction of D-sorbitol and benzaldehyde is added thereto. A mold release agent for resin molding that forms a grease-like or wax-like form. 2 Trifluorochloroethylene low polymerized oil has an average molecular weight of 70
The mold release agent for resin molding according to claim 1, which has a molecular weight of 0 to 1100. 3. The mold release agent for resin molding according to claim 1, which contains 0.05 to 5% by weight of boron nitride fine powder. 4. The mold release agent for resin molding according to claim 1, which contains 0.05 to 5% by weight of α-alumina fine powder.
JP52143078A 1977-11-28 1977-11-28 Mold release agent for resin molding Expired JPS606206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52143078A JPS606206B2 (en) 1977-11-28 1977-11-28 Mold release agent for resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52143078A JPS606206B2 (en) 1977-11-28 1977-11-28 Mold release agent for resin molding

Publications (2)

Publication Number Publication Date
JPS5474856A JPS5474856A (en) 1979-06-15
JPS606206B2 true JPS606206B2 (en) 1985-02-16

Family

ID=15330391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52143078A Expired JPS606206B2 (en) 1977-11-28 1977-11-28 Mold release agent for resin molding

Country Status (1)

Country Link
JP (1) JPS606206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1271409B (en) * 1993-09-13 1997-05-28 Dow Corning COMPOSITIONS USED AS FATS BASED ON FLUORINATED POLYMER OILS AND HEXAGONAL BORON NITRIDE

Also Published As

Publication number Publication date
JPS5474856A (en) 1979-06-15

Similar Documents

Publication Publication Date Title
US2460795A (en) Method for making rubbery polymeric organo-siloxane compositions
US2888424A (en) Curable polyethylene composition comprising a peroxide containing tertiary carbon atoms, and a filler, and process of curing same
US2588393A (en) Organosiloxane coating composition
JPH0314873A (en) Thermally conductive organo- siloxane compounds
Zuidema et al. A short history of rubber cables
GB1592979A (en) Shaped articles of cross-linked fluorocarbon polymers
CA1121668A (en) Method of improving high voltage insulating devices
USRE29697E (en) Low temperature solventless silicone resins
US4656050A (en) Method of producing electronic components utilizing cured vinyl and/or acetylene terminated copolymers
US2523999A (en) Polyester-amide compositions and insulated conductors prepared therefrom
US3923731A (en) Pressureless curing of filled ethylene containing polymeric compositions
JPS606206B2 (en) Mold release agent for resin molding
US3933772A (en) Dielectric polyolefin compositions
JPS61136551A (en) Curable organopolysiloxane composition
EP0509515B1 (en) Curable organopolysiloxane gel composition
JPS62154410A (en) Heat conductive insulating sheet
US2389379A (en) Electrical insulation
US3209249A (en) Method of indicating thermal stability of bulk polymers
US3546014A (en) Method for making thin wall insulated wire
Xiang et al. Relaxation behavior and time-temperature superposition (TTS) profiles of thermally aged styrene-butadiene rubber (SBR)
Bhadra et al. Mechanical, dynamic mechanical, morphological, thermal behavior and processability of polyaniline and ethylene 1‐octene based semi‐conducting composites
KR20180110382A (en) Heat-dissipation sheet with improved insulating property
Ning et al. Ethylamine and ammonia as catalysts in the in‐situ precipitation of silica in silicone networks
JPS6017426B2 (en) Thermal conductive electrically insulating composition
US2423761A (en) Coating composition comprising polybutene, an organic solvent and an amine acetate wetting agent