JPS6061669A - Radar equipment - Google Patents

Radar equipment

Info

Publication number
JPS6061669A
JPS6061669A JP58170673A JP17067383A JPS6061669A JP S6061669 A JPS6061669 A JP S6061669A JP 58170673 A JP58170673 A JP 58170673A JP 17067383 A JP17067383 A JP 17067383A JP S6061669 A JPS6061669 A JP S6061669A
Authority
JP
Japan
Prior art keywords
target
radar
circuit
speed
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58170673A
Other languages
Japanese (ja)
Inventor
Masanobu Tsudo
津藤 正信
Akira Hisanaga
久永 彰
Yutaka Kinoshita
木之下 裕
Masaki Yasufuku
安福 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58170673A priority Critical patent/JPS6061669A/en
Publication of JPS6061669A publication Critical patent/JPS6061669A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar

Abstract

PURPOSE:To enable a highly accurate identification of a target with a small- scale equipment by using not only the radar sectional area of the target but also the absolute speed thereof as means for identifying the type of the target. CONSTITUTION:The relative speed from a Dppler filter 4 and the speed of own airplane obtained from other equipment through an interface circuit 10 are inputted into an absolute speed calculation circuit 9. The absolute speed calculated with the absolute speed calculation circuit 9, the radar sectional area calculated with a radar sectional area calculation circuit 5 and the altitude of the own airplane obtained from other equipment through the interface circuit 10 are inputted into a target identification circuit to identify the target.

Description

【発明の詳細な説明】 この発明は、レーダ装置における目標の種類識別に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to target type identification in a radar device.

パルスドプラレーダ装置を第1図に示す。図において、
(1)はアンテナ、(2)は(1)に接続された受信器
、(3)は(2)に接続されたレンジゲート、(4)は
(3)に接続されたドプラフィルタ、(5)は(3)お
よび(4)に接れた目標識別回路である。′ このようなパルスドプラレーダ装置において、無走査広
覆域のレーダ装置でも、高い目標識別精度を得るために
、従来第3図に示すものが用いられた。
A pulsed Doppler radar device is shown in FIG. In the figure,
(1) is the antenna, (2) is the receiver connected to (1), (3) is the range gate connected to (2), (4) is the Doppler filter connected to (3), (5 ) is a target identification circuit connected to (3) and (4). ' Among such pulsed Doppler radar devices, the one shown in FIG. 3 has conventionally been used in order to obtain high target identification accuracy even in non-scanning wide coverage radar devices.

第3図において、(2)〜(6)は第1図と同−捷たけ
同一機能のものである。捷だ、+21 、 (121、
(22H、(3Δと、fat 、 Qa+ 、(財)、
03)と、f41 * (14) + (24+ 、り
勇はそれぞれ全く同一のものである。
In FIG. 3, (2) to (6) have the same functions as those in FIG. It's a sword, +21, (121,
(22H, (3Δ, fat, Qa+, (goods),
03), f41 * (14) + (24+), and Riyu are completely the same.

(11)およびしl)は、和信号および差信号を受信す
る手段を有するモノパルスアンテナ、(7)およヒ02
7) LJ、(4)と04]および@41と(財)にそ
れぞれ接続された方位検出回路、(8)は(7)および
し7)に接続されたアンテナゲイン計算回路である。
(11) and 1) are monopulse antennas having means for receiving sum and difference signals; (7) and 02
7) A direction detection circuit connected to LJ, (4) and 04] and @41, respectively, and (8) an antenna gain calculation circuit connected to (7) and 7).

次に動作について説明する。第1図に示すパルスドプラ
レーダ装置において、アンテナil+で受信される信号
は、受信器(2)でHr璧のレベルまで増幅され、レン
ジゲート(3)に入力される。レンジゲート(3)は目
標までの距離Rを検出するとともGこ、受ラフイルタ(
4)では、目標の相対速度VRと、目標からの受信電力
Prが検出される。
Next, the operation will be explained. In the pulse Doppler radar device shown in FIG. 1, a signal received by the antenna il+ is amplified to a level equal to Hr by the receiver (2) and input to the range gate (3). The range gate (3) detects the distance R to the target and also detects the distance R to the target.
In 4), the relative velocity VR of the target and the received power Pr from the target are detected.

ドプラフィルタ(4)からの受信電力P と、レンジゲ
ート(3)からの距離Rは、レーダ断面積計算回路(6
)に入力され、次式に従って、目標のレーダ断面積σが
言1算される。
The received power P from the Doppler filter (4) and the distance R from the range gate (3) are determined by the radar cross section calculation circuit (6).
), and the target radar cross section σ is calculated according to the following equation.

σ =に−P −Ril+ ここに、 K:定数 引算されたレーダ断面積σは、目標識別回路(6)に入
力され、σの大きさにより、目標の種類が識別される。
σ = −P −Ril+ where: K: The radar cross section σ obtained by subtracting the constant is input to the target identification circuit (6), and the type of target is identified based on the magnitude of σ.

例えば、第2図に示すような後方から接近する目標を検
出する航空機搭載のレーダ装置を考えるとき、レーダ装
置の対象目標はミサイル−や航空機などが考えられる。
For example, when considering an aircraft-mounted radar device that detects a target approaching from behind as shown in FIG. 2, the target of the radar device may be a missile or an aircraft.

典型的な場合には、航空機のレーダ断面積はミサイルの
レーダ断面積の100倍程度の値を持つので、レーダ断
面積の値により目標の識別が可能である。
Typically, the radar cross section of an aircraft is about 100 times the radar cross section of a missile, so it is possible to identify a target based on the value of the radar cross section.

以上の説明は、目標の方位により、アンテナゲインが異
ならないとの仮定に基づいている。アンテナビームを走
査するレーダ装置では、常にアンテナゲインが最大の位
「で目標を捕えると考えて良いので、上記仮定が成り立
つ。しかし、無走査広覆域のレーダ装置では、目標の方
位によりアンテナゲインか太きく異なるので、方位を検
出しないと、レーダ断面積を正確に計算できない。すな
わち、(1)式におけるKが定数ではなく、方位の関数
と考えられ、fli式は(2)式に有き改められる。
The above explanation is based on the assumption that the antenna gain does not differ depending on the target direction. In a radar device that scans the antenna beam, it can be assumed that the target is always captured at the maximum antenna gain, so the above assumption holds. Since the radar cross section differs greatly, the radar cross section cannot be calculated accurately unless the azimuth is detected.In other words, K in equation (1) is considered to be a function of the azimuth rather than a constant, and the fli equation is similar to the equation (2). can be changed.

ここに、 K′:定数 θAZ ’水平面内の方位 θBL ’垂直面内の方位 G(θ、7.θIIL) ’θAZ、θ8.の方位にお
けるアンテナゲイン したがって、無走査広覆域のレーダ装置では、図1の構
成で(1)式に従ってレーダ断面積の計算を行えば、レ
ーダ断面積σが正しく計算されず、目標の識別精度が大
きく劣化する0そのため、目標の方位を検出し、(21
式に従ってレーダ断面積を計算し、目標の識別を行う必
吸かある。そのための装置行として、例えば第3図に示
すパルスドプラレーダ装置が考えられる。
Here, K': Constant θAZ 'Axis in the horizontal plane θBL' Azimuth in the vertical plane G(θ, 7.θIIL) 'θAZ, θ8. Therefore, in a non-scanning, wide-coverage radar system, if the radar cross section is calculated according to equation (1) with the configuration shown in Figure 1, the radar cross section σ will not be calculated correctly, and the target identification accuracy will be poor. Therefore, the direction of the target is detected and (21
It is necessary to calculate the radar cross section according to the formula and identify the target. As a device for this purpose, for example, a pulsed Doppler radar device shown in FIG. 3 can be considered.

第1図と異なる動作たけについて説明する。The operations different from those in FIG. 1 will be explained.

モノパルスアンテナ(11)で受信される和信号と差信
号は、各々の受信系に入力される。ドプラフィルタ(4
)からの和信号受信電力と、ドプラフィルタ(14)か
らの差イd号受仙寛力は、方位検出回路(7)に入力さ
れ、両者を比較することにより、水平面内の方位UAZ
か検出される。
The sum signal and difference signal received by the monopulse antenna (11) are input to each receiving system. Doppler filter (4
) and the difference d signal reception power from the Doppler filter (14) are input to the azimuth detection circuit (7), and by comparing the two, the azimuth UAZ in the horizontal plane is determined.
detected.

垂直面内の方位θ8Lも、水平面内の方位θA2と全く
同様にして検出される。
The orientation θ8L in the vertical plane is also detected in exactly the same way as the orientation θA2 in the horizontal plane.

水平面内の方位θ9.と垂直面内の方位θ8..は、ア
ンテナゲイン計算回路(8)に入力され、目標の方位の
アンテナゲインG(θAZ、θ。L)が出力される。
Azimuth θ9 in the horizontal plane. and the orientation in the vertical plane θ8. .. is input to the antenna gain calculation circuit (8), and the antenna gain G (θAZ, θ.L) in the target direction is output.

レーダ断面積計訃−回IM(5iには、レンジゲート(
3)からは目標1での距離Rが、ドプラフィルタ(4)
からは受信電力Prが、アンテナゲイン計算回路(8)
からは“ノ′ンテナゲインG (//A2 θ、)か入
力され、従来の無走査広覆域レーダ装置は以上のように
構成されているので、目標の識別精度を向上させるため
には、4系統の受信系を必要とし、装置の規模が大きく
なる欠点があった。
Radar cross section meter (5i has a range gate (
From 3), the distance R at target 1 is determined by the Doppler filter (4)
The received power Pr is calculated from the antenna gain calculation circuit (8).
Since the conventional non-scanning wide coverage radar device is configured as described above, in order to improve the target identification accuracy, the This method requires a separate receiving system, which has the disadvantage of increasing the size of the device.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、目標の種類識別の手段として、目
標のレーダ断面積だけでなく、目標の絶対速度をあわせ
て用いることにより、無走査広覆域レーダ装置において
、装置規模がち捷り大きくならずに、高精度な目標識別
がT5J能となるパルスドプラレーダ装置を提供するこ
とを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by using not only the radar cross section of the target but also the absolute velocity of the target as a means of identifying the type of target, it is possible to An object of the present invention is to provide a pulsed Doppler radar device capable of highly accurate target identification with T5J capability without increasing the scale of the scanning wide coverage radar device.

以下、この発明の一実施例を図について説明する。第4
図において、f1i〜(6)は従来のパルスドプラレー
ダ装置と同一または同一機能のものである。
An embodiment of the present invention will be described below with reference to the drawings. Fourth
In the figure, f1i to (6) are the same as or have the same function as a conventional pulsed Doppler radar device.

(10)は他装置(航法機器)に接続されたインターフ
ェース回路、(9)は(4)および(1[1jに接続さ
れた絶対速度引算回路である。
(10) is an interface circuit connected to other equipment (navigation equipment), and (9) is an absolute speed subtraction circuit connected to (4) and (1[1j).

第4図の発明において、従来技術と異なる動作?トナ 
′f+ 話b Fill f 7、−ドプラフィルタ(
4)からの相対速度■、と、他装置(航法機器)からイ
ンターフェース回路(101を通して得られる母機速度
■ψが、絶対速度計算回路(9)に入力される。
In the invention shown in Fig. 4, is the operation different from that of the prior art? Tona
'f+ Talk b Fill f 7, - Doppler filter (
4), and the mother aircraft speed ■ψ obtained from another device (navigation equipment) through the interface circuit (101) are input to the absolute speed calculation circuit (9).

第2図に示すような、後方をら接近する目標を検出する
航空機搭載のレーダ装置を考えるとき、後方から接近す
る目標の絶対速度■□は次式で与えられる。
When considering an aircraft-mounted radar device that detects a target approaching from the rear as shown in FIG. 2, the absolute speed of the target approaching from the rear is given by the following equation.

A RA/。 (3) 絶対速度言1算回路(9)で、(3)式により計算され
た絶対速欧■、と、レーダ断面ffl!(II回路(も
1で計算されたレーダ断面積σと、他装置(航法機器)
からインターフェース回路(lO)を通して得られる母
機高j隻は、目標識別回路(6)に入力され、次にかす
方法で、目8責の識別を行う。
ARA/. (3) In the absolute speed calculation circuit (9), the absolute speed Europe■ calculated by equation (3) and the radar cross section ffl! (II circuit (also the radar cross section σ calculated in 1 and other equipment (navigation equipment)
The mother aircraft height obtained through the interface circuit (lO) is input to the target identification circuit (6), and then the target identification circuit (6) is used to identify the targets.

例えは、ミサイルと航空機の識別を行うとする。For example, assume that missiles and aircraft are to be identified.

レーダ断面積については、前述したように、一般的に航
空機の方がミサイルよりも太きい。絶対連敗については
、最大飛行速度は航空機の方が小さく、最大飛行速度は
ミ+/イルの方が太きし)。典型的な場合には、ミサイ
ルと航空機、のレーダ断面積と絶対速度は、第5図に示
す範囲に存在する。
As mentioned above, the radar cross section of an aircraft is generally larger than that of a missile. Regarding the absolute losing streak, the maximum flight speed is lower for aircraft, and the maximum flight speed for Mi+/Ile is higher). Typically, the radar cross-sections and absolute velocities of missiles and aircraft lie in the ranges shown in FIG.

例えば図中に示した識別境界で、ミサイルと航空機の識
別を行うならは、レーダ断面積と絶対速度の2つの情報
を用いているので、1/−ダ断面積たけによる識別より
も識別精度が良い。さらに、高度により、ミサイルと飛
行機の飛行可能速度範囲は変化するので、インターフェ
ース回路(lO)から入力される母機高贋に対応して、
絶対速度の識別境界値を変化させることにより、高精度
の目標識別が可能となる。
For example, when identifying missiles and aircraft using the identification boundary shown in the figure, two pieces of information are used: the radar cross section and the absolute speed, so the identification accuracy is higher than the identification based on the 1/-da cross section. good. Furthermore, since the flight speed range of missiles and airplanes changes depending on the altitude, in response to the mother aircraft counterfeit input from the interface circuit (IO),
By changing the identification boundary value of absolute velocity, highly accurate target identification becomes possible.

上記実施例では、母様冒UKごとに絶対速度の識別境界
値を変化させたが、各i1Uにおける平均的な飛行可能
速度範囲から識別境界値苔設定し2、母機高就を用いな
いことも可能である。たたし、この場合には、識別紹耽
が・やや悪くなる。
In the above example, the identification boundary value of the absolute speed was changed for each mother flight, but it is also possible to set the identification boundary value from the average flight possible speed range for each i1U2 and not use the mother aircraft height. It is possible. However, in this case, the identification performance becomes somewhat worse.

また、上記実施例では、後方から陥近する目標を検出す
るレーダ装置を考えて、絶対速度を(3)式で計算した
が、前方から接近する目標を検出するレーダ装置を考え
る場合には、(3)式のかわりに次式で絶対速度の計算
を行えば、全く、同じ発明の効果が得られる。
Furthermore, in the above embodiment, the absolute velocity was calculated using equation (3) considering a radar device that detects a target approaching from behind, but when considering a radar device that detects a target approaching from the front, If the absolute velocity is calculated using the following equation instead of equation (3), exactly the same effect of the invention can be obtained.

■A=■8−■A/6(4) ここに、 ■A:目標の絶対速度 vR:’相対速度 VA、6 、母機速度 以上のように、この発明によれば、目標の種類識別の手
段として、目標のレーダ断面積だけでなく、目標の絶対
速度をあわせて用いる構成としたので、無走を広覆域レ
ーダ装置において、装置規模が4)19大きくならずに
、高精度な目標識別が可能と7.1′る効果がある。
■A = ■8 - ■A/6 (4) Where, ■A: Absolute speed of target vR: 'Relative speed VA, 6 As above, according to the present invention, the type of target can be identified. As a method, we have adopted a configuration that uses not only the radar cross-sectional area of the target but also the absolute velocity of the target, so that it is possible to achieve high-precision targets without increasing the scale of the device in a wide-coverage radar system. 7.1' It has the effect of making identification possible.

【図面の簡単な説明】[Brief explanation of drawings]

451図は従来のパルストシラレーダ装飯のブロック図
、第2図は後方から接近する目標を検出する航空様俗i
戊し−ダ装散の説明図、283図は、従来の、無走査広
覆城でも高精ハし目標識別の可能なパルスドブル−ダ装
はのブロック図、第4図は、この発明の一実施例による
無走畳広汐域でも高精度目標識別の可能なパルスドプラ
レーダ装置のブロック図、第5図は、第4図の目標識別
方法を示す概念図である。 図において、(1)はアンテナ、(Ill 、 (21
1はモノパルスアンテナ、(21、Q2i 、 (2凱
(32)は受信器、[31、(+3) 。 (23) 、 (331はレンジゲー) 、+4+ 、
 Q4) 、 +24) 、 +34)はドプラフィル
タ、(5)はレーダ断面積計算回路、(6)は目標識別
回路、+7) 、 (27+は方位検出回路、(8)は
アンテナゲイン計算回路、(9)は絶対速度計算回路、
(io)はインターフェース回路である。 なお、各図中同一符号は同−捷たけ相当部分を示すもの
とする。 代理人 大岩増雄 第1図 第2図 第3図
Fig. 451 is a block diagram of a conventional pulse radar radar installation, and Fig. 2 shows an aviation mode for detecting targets approaching from behind.
Fig. 283 is a block diagram of a conventional pulsed burder equipment that can identify targets with high precision even in non-scanning and wide coverage areas, and Fig. 4 is an explanatory diagram of the burr removal equipment according to the present invention. FIG. 5 is a block diagram of a pulsed Doppler radar device capable of high-accuracy target identification even in a non-driving wide area, and FIG. 5 is a conceptual diagram showing the target identification method of FIG. 4. In the figure, (1) is the antenna, (Ill, (21
1 is a monopulse antenna, (21, Q2i, (2 Kai (32) is a receiver, [31, (+3). (23), (331 is a range game), +4+,
Q4), +24), +34) are Doppler filters, (5) are radar cross section calculation circuits, (6) are target identification circuits, +7), (27+ are direction detection circuits, (8) are antenna gain calculation circuits, ( 9) is an absolute speed calculation circuit,
(io) is an interface circuit. Note that the same reference numerals in each figure indicate the same parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] アンテナで受信した信号により目標までの距離を検出す
る回路と、目標と自己の相対速度を検出する回路と、こ
れらの回路でめた相対速度と距離からレーダ断面積を計
算する回路と、上記相対速度と自己の速度から目標の絶
対速度を計算する゛回路と、上記レーダ断面積と絶対速
度と自己の筒度から目標の種類識別を行う回路とを備え
たレーダ装置。
A circuit that detects the distance to the target based on the signal received by the antenna, a circuit that detects the relative speed between the target and itself, a circuit that calculates the radar cross section from the relative speed and distance determined by these circuits, and the above-mentioned relative speed. A radar device comprising: a circuit that calculates the absolute speed of a target from its speed and its own speed; and a circuit that identifies the type of target from the radar cross-sectional area, absolute speed, and its own cylindrical degree.
JP58170673A 1983-09-14 1983-09-14 Radar equipment Pending JPS6061669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58170673A JPS6061669A (en) 1983-09-14 1983-09-14 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58170673A JPS6061669A (en) 1983-09-14 1983-09-14 Radar equipment

Publications (1)

Publication Number Publication Date
JPS6061669A true JPS6061669A (en) 1985-04-09

Family

ID=15909255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58170673A Pending JPS6061669A (en) 1983-09-14 1983-09-14 Radar equipment

Country Status (1)

Country Link
JP (1) JPS6061669A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207681A (en) * 1988-02-15 1989-08-21 Nec Corp Real-time estimating device for reflection cross section
JPH05196726A (en) * 1991-08-08 1993-08-06 Raytheon Co Method and apparatus for controlling sensitivity and speed
US5247307A (en) * 1990-11-09 1993-09-21 Thomson-Csf Process for the recognition of an aerial target from its radar echo
US6999024B2 (en) 2002-12-10 2006-02-14 Denso Corporation Method and apparatus for discriminating a target objective, and related program
EP2485063A1 (en) * 2011-02-04 2012-08-08 Honeywell International, Inc. Passive bird-strike avoidance systems and methods

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01207681A (en) * 1988-02-15 1989-08-21 Nec Corp Real-time estimating device for reflection cross section
US5247307A (en) * 1990-11-09 1993-09-21 Thomson-Csf Process for the recognition of an aerial target from its radar echo
JPH05196726A (en) * 1991-08-08 1993-08-06 Raytheon Co Method and apparatus for controlling sensitivity and speed
US6999024B2 (en) 2002-12-10 2006-02-14 Denso Corporation Method and apparatus for discriminating a target objective, and related program
JP2007248480A (en) * 2002-12-10 2007-09-27 Denso Corp Target discriminating device and program
JP4665948B2 (en) * 2002-12-10 2011-04-06 株式会社デンソー Object labeling device, program
EP2485063A1 (en) * 2011-02-04 2012-08-08 Honeywell International, Inc. Passive bird-strike avoidance systems and methods
US8704700B2 (en) 2011-02-04 2014-04-22 Honeywell International Inc. Passive bird-strike avoidance systems and methods

Similar Documents

Publication Publication Date Title
US3735399A (en) Method for improving the target position vector accuracy of an amti radar
JP4683918B2 (en) Method and apparatus for filter center determination
US4438439A (en) Self-survey means
US5072224A (en) Monopulse processing systems
US4594676A (en) Aircraft groundspeed measurement system and technique
JP2011149962A (en) Method and apparatus for determining interferometric angle to target in body coordinate
US3706989A (en) Digital motion compensation system for radar platforms
US4559537A (en) Method of tracking target in presence of clutter
US3177484A (en) Position indicating system
US20030210171A1 (en) Methods and apparatus for accurate phase detection
JP2005525563A (en) Method and apparatus for conversion of radar echo data
JP2005525558A (en) Method and apparatus for minimum computational phase demodulation
JP2007500856A (en) Method and apparatus for weighting radar return data
JP2005525562A (en) Method and apparatus for solving radar distance ambiguous
US3795909A (en) Terrain-following radar system
JPS6061669A (en) Radar equipment
US3939476A (en) Passive ranging tail warning device
US3114147A (en) Aircraft collision warning system
JP2005525557A (en) Method and apparatus for determining a target position in airframe coordinates
US3721977A (en) Image beam lock-on detector
US5109230A (en) Method for aircraft velocity error detection with a Doppler radar
Goetz et al. Airborne pulse-doppler radar
US3713144A (en) Phase signature radar
RU2669357C1 (en) Time-frequency coded radio-pulse signal monopulse interogator receiver
US3068468A (en) Method and apparatus for determining misdistance when shooting at moving aerial targets