JPS6061664A - Nearby electric field measuring apparatus - Google Patents

Nearby electric field measuring apparatus

Info

Publication number
JPS6061664A
JPS6061664A JP16923083A JP16923083A JPS6061664A JP S6061664 A JPS6061664 A JP S6061664A JP 16923083 A JP16923083 A JP 16923083A JP 16923083 A JP16923083 A JP 16923083A JP S6061664 A JPS6061664 A JP S6061664A
Authority
JP
Japan
Prior art keywords
probe
probes
antenna
electric field
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16923083A
Other languages
Japanese (ja)
Other versions
JPH0616058B2 (en
Inventor
Hisao Iwasaki
久雄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16923083A priority Critical patent/JPH0616058B2/en
Publication of JPS6061664A publication Critical patent/JPS6061664A/en
Publication of JPH0616058B2 publication Critical patent/JPH0616058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To improve the accuracy of directivity obtained with a less measuring time by using a plurality of probes for measuring electric fields near an antenna to be measured to acquire a plurality of nearby electric fields with one scanning. CONSTITUTION:While a power is supplied to an antenna 21 to be measured with a transmitter 20, a probe 22 is moved with a probe driver 29 and a probe position detector 30 detects the position of the probe 22 to sends information to a computer 27. When the position of the probe coincides with that of a sample, the computer 27 uses a microswitch 24 to connect one of output signals of guidewave probes (not illustrated) to a receiver 26 while having other output signals subjected to non-reflection termination 43 to store data into a data storage unit 28. Then, another probe signal is fetched while other probe signals are subjected to the non-reflection termination. This operation is repeated three times to obtain three nearby electric field data with one scanning and a remote field directivity of the antenna being measured is determined for each of data to perform an averaging operation.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、アンテナの近傍で、電磁界を測定する近傍電
界測定装置に係り、特に、プローブの走査方式に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a near-field electric field measuring device that measures an electromagnetic field in the vicinity of an antenna, and particularly relates to a probe scanning method.

[発明の技術的背景とその問題点] 従来の平面走査近傍電界測定装置は、第1図に示すよう
開被測定アンテナ1、被測定アンテナ1に給電する送信
機2、被測定アンテナの電界を測定するプローブ3、こ
のプローブを駆動する装置4、受信機5と測定データを
蓄積処理する装置6から成り立っている。
[Technical background of the invention and its problems] As shown in FIG. 1, a conventional plane scanning near-field electric field measurement device consists of an open antenna under test 1, a transmitter 2 feeding power to the antenna under test 1, and an electric field of the antenna under test. It consists of a measuring probe 3, a device 4 for driving this probe, a receiver 5, and a device 6 for accumulating and processing measurement data.

近傍電界測定においては、特性の異なる2つのプローブ
を用いて1個のプローブのみで、2次元平面上の各測定
点における近傍電界の振幅と位相を測定し、次に、この
測定を別特性を有するプローブで行なう。
In near-field measurement, two probes with different characteristics are used to measure the amplitude and phase of the near-field at each measurement point on a two-dimensional plane using only one probe, and then this measurement is performed using different characteristics. This is done using a probe that has a

一般には、被測定アンテナ1に対して、X偏波のみを測
定するプローブ3で、2次元平面上を走査し、各測定点
の振幅と位相を、測定し次に、と記プローブ3を900
回転させて、2次元平面上を走査し、X偏波のみを測定
し、各測定点の振幅と位相を測定する。
Generally, a probe 3 that measures only the X polarization is scanned on a two-dimensional plane with respect to the antenna 1 to be measured, and the amplitude and phase of each measurement point are measured.
It is rotated to scan a two-dimensional plane, measuring only the X polarized wave, and measuring the amplitude and phase at each measurement point.

このXとX偏波で、測定した値を基にして、処 、埋装
置6でフーリエ変換等の計算処理を行ない、被測定アン
テナ1の遠方界放射パターンや利得等をめる。
Based on the measured values of the X and X polarizations, the processing device 6 performs calculations such as Fourier transform to determine the far-field radiation pattern, gain, etc. of the antenna 1 to be measured.

平面走査近傍電界測定で、被測定アンテナの遠方界特性
をめるためには、指向性の異なる2個のプローブか、同
一プローブを9度回転させて、直交した偏波で測定する
必要があるので、2回。
In order to determine the far-field characteristics of the antenna under test in plane scanning near-field measurements, it is necessary to use two probes with different directivity, or to rotate the same probe by 9 degrees and measure with orthogonal polarization. So, twice.

同一走査面、トを走査しなければならない。このような
プローブ走査方法で線測定に時間がかかるために、その
間に送受信機のゆら1によるレベル変動が発生し、かつ
2度走査することによるプローブの測定位置精度等の誤
差要因が生ずる確率が大きくなる。
The same scanning plane must be scanned. Since it takes time to measure the line with this probe scanning method, there is a probability that level fluctuations will occur due to transmitter/receiver fluctuations during that time, and error factors such as the accuracy of the probe's measurement position will occur due to scanning twice. growing.

また、直交する偏波を同時に受信する1個のプローブを
用いて、1回の走査で、情報を取得しても、先に述べた
送受信機のゆらぎによるレベル変動やプローブ測定位置
精度が生じ、この誤差により、被測定アンテナの遠方界
指向性に、ランダム誤差を発生させる要因になる。近傍
電界測定よる得られる指向性への要求精度((もよるが
、上記のランダム誤差は問題である。
Furthermore, even if information is acquired in one scan using a single probe that simultaneously receives orthogonal polarized waves, level fluctuations and probe measurement position accuracy may occur due to the above-mentioned fluctuations in the transceiver. This error causes a random error in the far-field directivity of the antenna under test. The above random error is a problem, although it depends on the required accuracy of the directivity obtained by near-field measurement.

光学系を用いるなどして、測定位置の精度を上げて、正
確な受信信号情報を得ることはできるがそのためKは費
用がぼう大忙かかるという欠点がある。
Although it is possible to obtain accurate received signal information by increasing the accuracy of the measurement position by using an optical system, etc., K has the drawback of being extremely expensive.

[発明の目的コ 本発明は以上の点に鑑みてなされたもので、被測定アン
テナの近傍電界を測定するプローブを複数個用いて、測
定時間の短縮を図ったり、また1回の走査で複数個の近
傍電界データを取得し、これ等のデータを用いて、被測
定アンテナの遠方界指向性上に生ずる誤差を減らして、
得られる指向性の精度の向上を図った近傍電界測定装置
を提供することを目的とする。
[Purpose of the Invention] The present invention has been made in view of the above points. Obtain nearby electric field data for 1000 yen, and use these data to reduce errors that occur in the far-field directivity of the antenna under test.
It is an object of the present invention to provide a near-field electric field measurement device that improves the accuracy of the directivity obtained.

〔発明の概要〕[Summary of the invention]

本発明は被測定アンテナの近傍電界を測定するプローブ
を複数個用い、その測定プローブの間隔をプローブの相
互結合量が一40dB以下となる距離に設定し、かつサ
ンプル間隔を前記のプローブ間距離の整数分の1に設定
したシステムで1回の走査で複数個の近傍電界値を測定
する近傍電界測定装置を提供するものである。
The present invention uses a plurality of probes that measure the electric field near the antenna under test, sets the distance between the measurement probes at a distance such that the amount of mutual coupling between the probes is 140 dB or less, and sets the sample interval to the distance between the probes. The present invention provides a near-field measuring device that measures a plurality of near-field electric field values in one scan using a system set to a fraction of an integer.

[発IjlJの効果] 本発明によると、第2図(a)に示す直交偏波を受信す
るようにプローブを設置すると1回の走査で被測定アン
テナの近傍電界データを取得できる。
[Effects of IjlJ] According to the present invention, when the probe is installed so as to receive the orthogonal polarized waves shown in FIG. 2(a), it is possible to obtain near electric field data of the antenna to be measured with one scan.

この方式を用いると、走査時間が短縮され受信機、送信
機変動、プローブ位置誤差等の誤差要因が入り込む確率
が減少するので、遠方界指向性上に生ずる誤差も減少し
精度が向上する。
When this method is used, the scanning time is shortened and the probability that error factors such as receiver and transmitter fluctuations and probe position errors will be introduced is reduced, so errors occurring in far-field directivity are also reduced and accuracy is improved.

また、第2図(b)に示すように例えば同一偏波を受信
するプローブを3個用いてデータを取得すると被測定ア
ンテナの遠方界指向性が、各プローブに対応して3個求
められるので、これ等のデータを平均操作することで、
誤差量の平均化が図られ、得られる指向性の精度が向上
する。
In addition, as shown in Figure 2(b), if data is acquired using three probes that receive the same polarized wave, three far-field directivities of the antenna under test can be obtained for each probe. , by averaging these data,
The amount of error is averaged, and the accuracy of the obtained directivity is improved.

また、3つのプローブは、同一サンプル点で。Also, the three probes are at the same sample point.

データを収集しているので、近傍電界値の相互比較と補
正が出来る。
Since data is collected, it is possible to compare and correct neighboring electric field values.

従って、本発明を用いることにより、得られるアンテナ
特性の精度を向上できる。光学系を用いたシステムでな
くても良く、装置の製作費が安くなるという効果もある
Therefore, by using the present invention, the accuracy of the antenna characteristics obtained can be improved. The system does not need to use an optical system, and the manufacturing cost of the device can be reduced.

[発明の実施例コ 本発明の一実施例を第3図に示す。[Embodiments of the invention] An embodiment of the present invention is shown in FIG.

本発明は、送信機加と被測定アンテナ21と複数個のプ
ローブnと、前記プローブを2次元平面上を駆動する装
置枠ると、前記プローブよりのRF信号を切替える切替
装置Uと受信機がと、コンピュータで構成されている制
御uF#27、プローブ位型情報と受信信号を蓄える装
置器と前記プローブを駆動する装置29と前記プローブ
の位置を検出する装置(9)で構成されている。
The present invention includes a transmitter, an antenna to be measured 21, a plurality of probes n, a device frame for driving the probes on a two-dimensional plane, a switching device U for switching RF signals from the probes, and a receiver. , a control uF #27 made up of a computer, a device for storing probe position type information and received signals, a device 29 for driving the probe, and a device (9) for detecting the position of the probe.

以下この発明の動作を具体例を示しながら説明する。1
例として第4図に被測定アンテナ31と2個のopen
ended導波管32 、33から成る測定系を示す0
この測定系において、被測定アンテナ31に電圧vO1
内部抵抗ZOである送信機34を接続したときの入射信
号をalとする。さらに、$1.1のプローブへの入射
信号をb2.baとする。
The operation of the present invention will be described below with reference to specific examples. 1
As an example, Fig. 4 shows an antenna to be measured 31 and two open
0 showing a measurement system consisting of ended waveguides 32 and 33
In this measurement system, a voltage vO1 is applied to the antenna 31 under test.
Let al be the incident signal when the transmitter 34, which is an internal resistance ZO, is connected. Furthermore, the incident signal to the probe of $1.1 is changed to b2. Let it be ba.

第4図において、プローブ+1のみが存在したとき被測
定アンテナ31によってブローブナ1に生ずる信号レベ
ルb2け、 b2 = 812 al−(1) 812は被測定アンテナから導波管32への送信関数を
示す係数で表わされ、 同様にブローブナ2のみが存在しているときブローブナ
2上に生ずる信号レベルb3は、ba = 81311
 −(2) と表わされる。
In FIG. 4, when only the probe +1 exists, the signal level generated by the antenna under test 31 at the Brobner 1 is b2, b2 = 812 al-(1) 812 represents the transmission function from the antenna under test to the waveguide 32. Similarly, the signal level b3 that occurs on Blobner 2 when only Blobner 2 is present is expressed as a coefficient: ba = 81311
−(2) It is expressed as

次に、ブローブナ1とす2が同時に存在する場合におい
て、ブローブナ2によって散乱反射されブローブナ1上
に結合する量を結合係数832と表わす。これはプロー
ブ+2に入った信号が再び外部空間へ出てプローブ+2
上入る信号を表わしている。
Next, in the case where Blowbunners 1 and 2 are present at the same time, the amount of light that is scattered and reflected by Blowbunner 2 and coupled onto Blowbunner 1 is expressed as a coupling coefficient 832. This means that the signal that entered probe +2 goes out to the outside space again and probe +2
It represents an incoming signal.

プローブ◆1とす2が近接しておかれたとき、被測定ア
ンテナ31によってブローブナ1に生ずる信号の係数8
12とプローブ+2上に生ずる信号の係数81sは大体
同強度である。
When probes ◆1 and 2 are placed close to each other, the coefficient 8 of the signal generated by the antenna to be measured 31 at the blower 1
The coefficients 81s of the signals occurring on probe 12 and probe +2 are approximately the same strength.

従って、プローブ÷1で受信する電界信号b2はb2 
= aI S12 + aI S13 S32 −(3
)=: al s、 (1+ 832 ) ・・・(4
)となる。
Therefore, the electric field signal b2 received by probe ÷ 1 is b2
= aI S12 + aI S13 S32 - (3
)=: als, (1+832)...(4
).

ブローブナ2が存在していないときは b2 ”’ ”I S13 であるから、プローブ+2が存在することより生ずる相
互結合832のためプローブ≠1の受信信号上に生ずる
誤差は832で与えられる。
Since b2 "'"I S13 when Brobner 2 is not present, the error that occurs on the received signal when probe≠1 due to mutual coupling 832 caused by the presence of probe +2 is given by 832.

被測定アンテナの放射指向性をめる請求によシ定まる近
傍電界測定の測定精度は、低サイドロープアンテナや高
性能アンテナにおいては、一般に受信近傍電界に生ずる
誤差を0.1dB以内にする必要がある。すなわち、こ
れはプローブ間の相互結合832を−40d B以下に
する必要が、(4)式よシわかる。
The measurement accuracy of near electric field measurement, which is determined by the request for determining the radiation directivity of the antenna under test, generally requires that the error occurring in the receiving near electric field be within 0.1 dB for low side rope antennas and high performance antennas. be. That is, it is clear from equation (4) that the mutual coupling 832 between the probes needs to be -40 dB or less.

第5図に周波数12GHzにおいて導波管を2個配列し
、その間隔dを変化させたときのプローブ間の相互結合
量832を示す。第5図よシ相互結合量は距離dにより
周期的な波を打つととがわか9、実線で示したE面間の
相互結合量の方がH面結合量より強いことがわかる。
FIG. 5 shows the amount of mutual coupling 832 between probes when two waveguides are arranged at a frequency of 12 GHz and the interval d between them is varied. In Figure 5, it can be seen that the amount of mutual bonding forms a periodic wave depending on the distance d9, and it can be seen that the amount of mutual bonding between the E planes, shown by the solid line, is stronger than the amount of bonding on the H plane.

また、第5図に示すように、B 、 H面の相互結合量
が共に一40dB以下になる範囲が存在し、最初のプロ
ーブ間隔dは4λの点である。
Furthermore, as shown in FIG. 5, there is a range in which the amount of mutual coupling on both the B and H planes is less than -40 dB, and the initial probe spacing d is 4λ.

そこで、具体例として第6図に示すようにプローブを3
個用いた例を考える。プローブは被測定アンテナの近傍
電界の水平偏波成分と垂直偏波成分の2つの偏波信号を
受信する必要がある。
Therefore, as a specific example, three probes are used as shown in Figure 6.
Let's consider an example using a single individual. The probe needs to receive two polarized signals: a horizontally polarized component and a vertically polarized component of the electric field near the antenna under test.

第6図(a)に示す垂直偏波を受信するプローブ配置に
おいて導波管40と41は、H面結合で、40と42は
H面結合で、@6図(b)に示す水平偏波を受信するプ
ローブ配置は40と41がE面、40と42が11重結
合である。li 、 H面結合とも、−40dB以下に
する必要があるので第5図よりプローブ間隔d1.d2
を共に4λに選定すればよいことがわかる。
In the probe arrangement for receiving vertically polarized waves shown in Fig. 6(a), waveguides 40 and 41 are H-plane coupled, and 40 and 42 are H-plane coupled, @horizontal polarized waves shown in Fig. 6(b). The probe arrangement for receiving is that 40 and 41 are in the E plane, and 40 and 42 are in an 11-fold bond. Both li and H-plane coupling need to be -40 dB or less, so from FIG. 5, the probe spacing d1. d2
It can be seen that it is sufficient to select both of them to be 4λ.

また、被測定アンテナの近傍電界を同一点でプローブ4
0 、41 、42でサンプルすれば、プローブ位置誤
差や送受信機の振幅、位相変動による受信信号の変化が
近傍電界値で比較できる。そのためには前記の間隔d1
.d2をサンプル間隔の整数倍にする必要がある。この
条件を満すよう罠、サンプル間λ 隔ail設定すれば良いので、ここでは、Si=、とす
る。すなわち、41でサンプルした点ヲ40は8サンプ
ル後にもう一度サンプルすることになる。
Also, measure the electric field near the antenna under test at the probe 4 at the same point.
By sampling at 0, 41, and 42, changes in the received signal due to probe position errors, transmitter/receiver amplitude, and phase fluctuations can be compared using nearby electric field values. For that purpose, the above-mentioned interval d1
.. It is necessary to make d2 an integral multiple of the sample interval. Since it is sufficient to set the interval λ ail between samples to satisfy this condition, here, it is assumed that Si=. That is, the point 40 sampled at 41 will be sampled again 8 samples later.

プローブ、駆動装置器で、プローブnをX方向に動かし
、プローブ位置検出装置間でプローブz2の位置を検出
しその情報をコンビーータnに送るうプローブの位置と
サンプル位置が一致したとき装置nはマイクロスイッチ
24を用いて、各導波管プローブ40 、41 、42
の出力信号のうち、1個を受信機に接続し、その他の出
力信号を無反射終端43シlプローブ信号のみのデータ
をとりこみ、装置謔に蓄える。次に別のプローブ信号を
とりこみ、その他のプローブ信号を無反射終端する。こ
れをプローブの個数回繰り近見す。この切替時間内にお
いて、プローブ走行による設定点の誤差は受信信号をと
り込む時間の方がはるかに短いので無視できる。
The probe and drive device move the probe n in the X direction, detect the position of probe z2 between the probe position detection devices, and send that information to the converter n. When the probe position and the sample position match, the device n Using the switch 24, each waveguide probe 40 , 41 , 42
Of the output signals, one is connected to the receiver, and the other output signals are taken in as data only for the non-reflection terminated 43 sil probe signal and stored in the device recorder. Next, another probe signal is taken in, and the other probe signals are terminated without reflection. Repeat this several times for each probe. Within this switching time, errors in the set point due to probe travel can be ignored because the time to capture the received signal is much shorter.

このようにして、近傍電界データを収集すると同一走査
面に対して1回の走査で3個の近傍電界データが得られ
る。そしておのおののデータに対し、被測定アンテナの
遠方界指向性をめる。
When near electric field data is collected in this way, three pieces of near electric field data can be obtained in one scan for the same scanning plane. Then, for each data, calculate the far-field directivity of the antenna to be measured.

この得られたパターンには、前記に述べたプローブ位置
誤差送受信機のレベル変動による誤差要因のために、誤
差が生じている。
This obtained pattern has an error due to the error factor caused by the level fluctuation of the probe position error transmitter/receiver mentioned above.

そこで3つのデータを用いて、被測定アンテナの遠方界
パターンの平均操作を行なうと誤差の平均化が図られ1
データよりめるものより誤差を減少できる。
Therefore, by performing an averaging operation on the far-field pattern of the antenna under test using three pieces of data, the errors can be averaged.
Errors can be reduced compared to those based on data.

また、第7図に示すように、2つの導波管を用い、互に
直交するようにおくことで、直交した偏波受信信号を収
集することもできる。
Further, as shown in FIG. 7, by using two waveguides and placing them orthogonally to each other, it is also possible to collect orthogonally polarized received signals.

この方式を用いれば、収集時間を約半分に短縮できる。Using this method, the collection time can be cut in half.

よって上記で述べた近傍電界中に生ずる誤差が入り込む
確率も減少するので、精度の良い指向性をめることもで
きる。
Therefore, the probability that errors occurring in the near-field electric field described above will be introduced is also reduced, so that highly accurate directivity can be achieved.

また、プローブとして、第5図に示した導波管プローブ
以外でも同様な効果が得られろ。
Further, similar effects may be obtained with a probe other than the waveguide probe shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の近傍電界測定装置の説明図、第2図はプ
ローブ設置例の説明図、第3図は本発明の一実施例を示
す図、第4図はプローブ間の相互れ本発明のプローブ配
列例を示す図である。 肋・・・送信機、 21・・・被測定アンテナ、が・・
・受信機、 n・・・制御装置(CVP)、謔・・・デ
ータ蓄積装置、四・・・プローブ駆動装置、(9)・・
・位置検出装置、 31・・・アンテナ素子、32 、
33・・・導波管、40 、41 、42・・・導波管
プローブ、43・・無反射終端0 代理人 弁理士 則 近 憲 佑 (ほか1名) 第 1 図 第 21 tcl) (ムン 第 3 図 第 4 図 第 5 図 1入 1人 3人 4込 3^ 乙入 ブローノ“ 周ht 第6図 第 7 図
Fig. 1 is an explanatory diagram of a conventional near electric field measuring device, Fig. 2 is an explanatory diagram of an example of probe installation, Fig. 3 is a diagram illustrating an embodiment of the present invention, and Fig. 4 is a diagram illustrating the mutual relationship between probes according to the present invention. FIG. 3 is a diagram showing an example of a probe arrangement. Rib...Transmitter, 21...Antenna to be measured,...
・Receiver, n...control device (CVP), data storage device, 4...probe drive device, (9)...
・Position detection device, 31... antenna element, 32,
33... Waveguide, 40, 41, 42... Waveguide probe, 43... Non-reflection termination 0 Agent Patent attorney Noriyuki Chika (and 1 other person) Fig. 1 Fig. 21 tcl) (Mun) Figure 3 Figure 4 Figure 5 Figure 1 included 1 person 3 people 4 included 3^ Otsuiri burono “Zhouht” Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)被測定アンテナと、この被測定アンテナに給電す
る送信機と、前記被測定アンテナの近傍電界を測定する
プローブと、このプローブを駆動する装置と、前記プロ
ーブの位置を検出する装置と、前記プローブの位置情報
を用いてプローブ受信信号を取得する装置と、前記受信
信号情報とプローブの位置情報を用いてプローブ受信信
号を取得する装置と、前記受信信号情報とプローブ位置
情報等を蓄える装置とから成る平面走査近傍電界測定に
おいて、前記プローブを複数個設けるとともに前記プロ
ーブと受信機の間に前記プローブの位置情報を用いて受
信信号を取得する装置によシ制御されるプローブの出力
を切替える装置を設け、この切替装置によシ1プローブ
出力のみを受信機に接続しその他のプローブ出力を無仄
射終端する動作をサンプル間隔内に前記プローブの偶数
回繰り返えすととを特徴とする近傍電界測定装置。
(1) An antenna to be measured, a transmitter that feeds power to the antenna to be measured, a probe that measures an electric field near the antenna to be measured, a device that drives this probe, and a device that detects the position of the probe; A device for acquiring a probe reception signal using position information of the probe, a device for acquiring a probe reception signal using the reception signal information and probe position information, and a device for storing the reception signal information, probe position information, etc. In plane scanning near electric field measurement consisting of, a plurality of the probes are provided and the output of the probes controlled by a device that acquires a received signal using position information of the probes is switched between the probes and the receiver. A switching device is provided, and the operation of connecting only one probe output to the receiver and wirelessly terminating the other probe outputs by the switching device is repeated an even number of times for the probes within a sample interval. Nearby electric field measuring device.
(2)被測定アンテナの近傍電界を測定するプローブの
間隔を、プローブ間の相互結合量が、−40dB以下と
なる距離に設定し、かつサンプル間隔を前記のプローブ
間距離の整数分の1に設定することを特徴とする特許請
求の範囲第1項記載の近傍電界測定装置。
(2) Set the spacing between the probes that measure the electric field near the antenna under test to a distance such that the amount of mutual coupling between the probes is -40 dB or less, and set the sample spacing to an integer fraction of the distance between the probes. A near-field electric field measuring device according to claim 1, characterized in that:
JP16923083A 1983-09-16 1983-09-16 Near electric field measuring device Expired - Lifetime JPH0616058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16923083A JPH0616058B2 (en) 1983-09-16 1983-09-16 Near electric field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16923083A JPH0616058B2 (en) 1983-09-16 1983-09-16 Near electric field measuring device

Publications (2)

Publication Number Publication Date
JPS6061664A true JPS6061664A (en) 1985-04-09
JPH0616058B2 JPH0616058B2 (en) 1994-03-02

Family

ID=15882636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16923083A Expired - Lifetime JPH0616058B2 (en) 1983-09-16 1983-09-16 Near electric field measuring device

Country Status (1)

Country Link
JP (1) JPH0616058B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165975A (en) * 1999-12-10 2001-06-22 Mitsubishi Electric Corp Apparatus and method for measuring antenna
JP2007232468A (en) * 2006-02-28 2007-09-13 Ntt Docomo Inc Vicinal electric field measuring instrument using optical modulator
JP2017181070A (en) * 2016-03-28 2017-10-05 アンリツ株式会社 Electric field intensity distribution measurement device and electric field intensity distribution measurement method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6389206B2 (en) * 2016-05-23 2018-09-12 アンリツ株式会社 Field strength distribution measuring apparatus and field strength distribution measuring method
JP6389210B2 (en) * 2016-07-12 2018-09-12 アンリツ株式会社 Field strength distribution measuring apparatus and field strength distribution measuring method
US10735113B2 (en) 2016-09-27 2020-08-04 Anritsu Corporation Near-field measurement system and near-field measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165975A (en) * 1999-12-10 2001-06-22 Mitsubishi Electric Corp Apparatus and method for measuring antenna
JP2007232468A (en) * 2006-02-28 2007-09-13 Ntt Docomo Inc Vicinal electric field measuring instrument using optical modulator
JP2017181070A (en) * 2016-03-28 2017-10-05 アンリツ株式会社 Electric field intensity distribution measurement device and electric field intensity distribution measurement method

Also Published As

Publication number Publication date
JPH0616058B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
Smith et al. Calculation of site attenuation from antenna factors
US5371505A (en) Radome test systems and methods
US6762726B2 (en) Antenna array for the measurement of complex electromagnetic fields
US8018380B2 (en) System and method for measuring antenna radiation pattern in Fresnel region
FI85427B (en) FOERFARANDE OCH ANORDNING FOER ETT OBJEKTS AZIMUT- OCH ELEVATIONSMAETNING.
US6448787B1 (en) Apparatus and method for measuring and tuning circularly polarized antennas
US5039949A (en) RF absorber test system
CN110703218A (en) One-transmitting-multi-receiving combined rotary table rotating double-station scattering measurement system and method
JPS6061664A (en) Nearby electric field measuring apparatus
Conway et al. A reflectometer for fluctuation and correlation studies on the Joint European Torus tokamak
CN117347958A (en) Millimeter wave radar testing method and testing system
CN117007868A (en) Vector network analysis device and system
JP4578603B2 (en) Antenna measuring apparatus and antenna measuring method
CN114371348B (en) Super-surface testing device, testing method and PB phase testing method
CN111505391B (en) Method for detecting mismatched antenna unit in array antenna
CN110346398B (en) Vector tuning detection device and method for magnetic resonance probe
JPH06160449A (en) Instrument for measuring influence of object on electromagnetic field
JP3451324B2 (en) Method of determining coverage of planar scanning near-field antenna measurement
CN110166147A (en) A kind of antenna for base station intermodulation fault location test system and method
CN112147423B (en) Method for testing polarization isolation of metal wire grid
Alexander et al. CISPR standard for calibration of EMC antennas
Fordham Use of time domain gating in spherical near-field measurements
Barbano Phase center distributions of spiral antennas
FUJII et al. Evaluation of sites for measuring complex antenna factors: Comparison of theoretical calculation and TRL-based experiment
Roberts Avenues for improvement in the design and calibration of VHF-UHF noise and field strength meters