JPS6061005A - Separating process of substance - Google Patents

Separating process of substance

Info

Publication number
JPS6061005A
JPS6061005A JP16746283A JP16746283A JPS6061005A JP S6061005 A JPS6061005 A JP S6061005A JP 16746283 A JP16746283 A JP 16746283A JP 16746283 A JP16746283 A JP 16746283A JP S6061005 A JPS6061005 A JP S6061005A
Authority
JP
Japan
Prior art keywords
phase
separation
solvent
substance
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16746283A
Other languages
Japanese (ja)
Inventor
Hideki Iijima
秀樹 飯島
Seiichi Manabe
征一 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP16746283A priority Critical patent/JPS6061005A/en
Publication of JPS6061005A publication Critical patent/JPS6061005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To separate particular molecules or ions from >=2 kinds of molecules or ions contained as mixture in aq. soln. with high efficiency, quickly and with a simple procedure by allowing to perform separation and transportation separately by each separate mechanism. CONSTITUTION:Precision for separation is improved by imparting to a collector which is soluble in a solvent immiscible with water a high selectivity for a molecule or ion. Further, a high molecular porous film having >=0.01mum average pore size is used to perform microscopic phase separation into two phases. Preferred average pore size of the high molecular porous film is 0.1-10mum, and any material is usable so far as it can be formed to film. Moreover, the difference of solubility parameter between materials for each film constituting two kinds of high molecular porous film is preferred to be >=3(Cal/cm<2>)<0.5> in order to perform separation of an aq. phase and a solvent phase using 2 kinds of high molecular porous film having different solubility parameter with high efficiency.

Description

【発明の詳細な説明】 発明の技術分野 本発明は水溶液中に溶解している物質を選択的に分離す
る方法に関し、更に詳しく杜、分離しようとする物質を
特異的に捕捉する捕捉剤を溶解した水とは混和しない溶
媒と、上記水浴液とを混合し、相分離状態を生起せしめ
た後、平均孔径o、oiμm以上の高分子多孔膜を用い
て相分離状態にある溶液を分離する物質の分離方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for selectively separating substances dissolved in an aqueous solution. A substance that mixes a solvent that is immiscible with water and the water bath liquid to cause a phase separation state, and then separates the solution in a phase separation state using a porous polymer membrane having an average pore diameter of o, oi μm or more. Regarding the separation method.

従来技術 水浴液中に混在する各種の分子やイオンの中から特定の
分子またはイオンを分離する方法にL蒸留法、吸着法、
膜分離法、抽出法等が知られているが、これらは分離す
べき物質の性質、量、分離目的に応じて使いわける必要
がある。しかしながら、現在のところ、高い分離速度と
分離能、低いエネルギー消費と設備費などの基本的要求
のすべてを同時に満足する分離法は知られていない。
Conventional technology L-distillation method, adsorption method,
Membrane separation methods, extraction methods, etc. are known, but these methods need to be used depending on the nature and amount of the substance to be separated, and the purpose of separation. However, at present, there is no known separation method that simultaneously satisfies all of the basic requirements such as high separation speed and separation power, low energy consumption and equipment cost.

蒸留法線分離対象の広さ、並びに分離速度及び分離精度
の点で他の分離法にくらべて優れ、広く工業的に利用さ
れているが、エネルギーコストや設備コストの面では他
の分離法とくらべて必ずしも優位とは言えない。
It is superior to other separation methods in terms of the wide range of targets to be separated by distillation normal separation, as well as separation speed and separation accuracy, and is widely used industrially, but it is inferior to other separation methods in terms of energy cost and equipment cost. It cannot necessarily be said that it is superior.

従来の溶媒抽出法においては、相分離した二相を静置し
て上下二層を分離しなければならず、太駄の溶液を処理
する場合には大容量の静置槽が不可欠であゃ、従って工
程中に留まる溶媒量が多く、溶媒や捕捉剤が高価であれ
ば分離コストが上昇するという問題がある。また、効率
の良い分離をするためには複雑な構造の分離装置と長い
工程時間が必費であり、特に二相の密度差が小さい場合
には静置によシニI−に分離できないので、この方法り
適当でない。
In the conventional solvent extraction method, the two phase-separated phases must be allowed to stand still to separate the upper and lower layers, and a large-capacity standing tank is indispensable when processing a solution of fata. Therefore, there is a problem that a large amount of solvent remains during the process, and if the solvent and scavenger are expensive, the separation cost increases. In addition, in order to perform efficient separation, a complicated structure of separation equipment and a long process time are required, and especially when the density difference between the two phases is small, it is not possible to separate them into small particles by standing still. This method is not suitable.

逆浸透法、限外濾過法などの平均孔径が100A以下(
0,01μm以下)の高分子膜を利用した膜分離法はエ
ネルギーコストや、設備コストの面で蒸留法より優れて
いると言われているが、分離速度が小さく、選択性の面
でも満足すべきものではない。
The average pore size of reverse osmosis, ultrafiltration, etc. is 100A or less (
Membrane separation methods using polymer membranes (0.01 μm or less) are said to be superior to distillation methods in terms of energy costs and equipment costs, but the separation speed is low and the selectivity is not satisfactory. It's not a kimono.

一方、平均孔径0.01μm以上の膜を利用した従来の
膜分離法では、溶解している低分子を分離することは一
般に不可能であった。
On the other hand, in conventional membrane separation methods using membranes with an average pore size of 0.01 μm or more, it has generally been impossible to separate dissolved low molecules.

発明の目的及び構成 本発明者らは水rG敵中に混在する二種以上の分子やイ
オンの中から時短の分子又はイオンを効率良く、迅速に
、そして簡便な操作で分離する方法を開発すべく、鋭意
努力した結果、分離と輸送とを各々、別の機構で分担さ
せることによシ著しく分離速度を増加させることができ
ることを見い出し、本発明をするに至った。
Purpose and Structure of the Invention The present inventors have developed a method for efficiently and quickly separating molecules or ions from two or more types of molecules or ions mixed in water rG with a short time and simple operation. As a result of extensive efforts to achieve this goal, the present inventors have discovered that the separation speed can be significantly increased by dividing separation and transportation into separate mechanisms, respectively, and have arrived at the present invention.

すなわち、本発明は水とは混和しない溶媒X中に分離し
ようとする物質Yを特異的に捕捉する性質を持つ捕捉剤
Zを浴解し、該捕捉剤Zを溶解した溶媒Xを物BYを溶
解した水浴液中に混和させ、水を主成分とした相(以下
、水相と略称)と溶媒Xを主成分とした相(以下、溶媒
相と略称)のばクロ相分離状態を生起せしめて、溶媒相
と水相との界面で構成される液体膜によシ水相中の物質
Yを溶媒相中に選択的に取p込んだ後、水相と溶媒相と
を平均孔径0.01μm以上の高分子多孔膜により、そ
れぞれ分離することにあル、かかる構成によシ水溶液中
に溶解していた物質Yを選択的に分離することができる
That is, in the present invention, a scavenger Z having the property of specifically capturing the substance Y to be separated is dissolved in a solvent X that is immiscible with water, and the solvent X in which the scavenger Z is dissolved is mixed with the substance BY. It is mixed into the dissolved water bath liquid to cause a phase separation state of a phase mainly composed of water (hereinafter abbreviated as aqueous phase) and a phase mainly composed of solvent X (hereinafter abbreviated as solvent phase). After the substance Y in the aqueous phase is selectively taken into the solvent phase by a liquid film formed at the interface between the solvent phase and the aqueous phase, the aqueous phase and the solvent phase are separated with an average pore diameter of 0. The porous polymer membrane having a diameter of 0.01 μm or more is used to separate the substances, and with this structure, it is possible to selectively separate the substance Y dissolved in the aqueous solution.

発明の構成及び効果の説明 本発明の第一の特徴は水とは混和しない溶媒Xに溶解す
る捕捉剤2に分子また社イオンの高度選択能を持たせる
ことによシ分離精度を高くすることである。溶媒Xの水
への溶解度は10重針チ以下、望ましくは0.1重量−
以下である。
Description of Structure and Effects of the Invention The first feature of the present invention is to improve the separation accuracy by giving the scavenger 2, which dissolves in the solvent X which is immiscible with water, a high degree of selectivity for molecules and ions. It is. The solubility of solvent X in water is less than 10% by weight, preferably 0.1% by weight.
It is as follows.

本発明の第二の特徴は平均孔径が0.01μm 以上で
ある孔径が大きな高分子多孔膜を用いてばクロ相分離し
た2相を分離する点である。
The second feature of the present invention is that by using a large porous polymer membrane with an average pore size of 0.01 μm or more, two phases that have undergone chromophase separation can be separated.

これらの2つの特徴を持つため、本発明方法では非常に
大きな分離速度と高分離能を達成することができる。
Due to these two characteristics, the method of the present invention can achieve very high separation speed and high resolution.

高分子多孔膜の平均孔径が0.01μm未満となると分
離速度が著しく減少し、分離速度を太きくしようとして
、膜に負荷する圧力を大きくすると分離能が低下し、事
案上、ミクロ相分離後の水相と溶媒相との分離ができな
くなる。従って、高分子多孔膜の平均孔径としては0.
1μm〜10μmが望ましく、さらに望ましくは0.2
μm〜1.0μmである。
When the average pore diameter of the porous polymer membrane is less than 0.01 μm, the separation rate decreases significantly, and if the pressure applied to the membrane is increased in an attempt to increase the separation rate, the separation performance decreases, and in some cases, after microphase separation. separation of the aqueous phase and solvent phase becomes impossible. Therefore, the average pore diameter of the porous polymer membrane is 0.
The thickness is preferably 1 μm to 10 μm, more preferably 0.2 μm.
It is μm to 1.0 μm.

本発明に用いる高分子多孔膜の素材としては、製膜可能
であれは、どのような素材でも良い。単−素材を用いて
も良いし、膜表面上の親和性を調節するために、溶解度
パラメーターの異なる複数の素材をブレンドして製膜素
材としてもよい。高分子多孔膜素材としては、例えば、
酢酸セルロース(溶解度パラメーター12.03〜13
.14(Cal/c+4)’)、再生セルロース(24
,08)、ナイロン6 (12,43)、ポリスルホン
(12,61)、ポリエチレン(8,56)、ポリプロ
ピレン(8,02)、ポリ塩化ビニル(11,03)、
ポリメタクリル酸メチル(9,93)、ポリアクリロニ
トリル(14,39)、ポリ四フッ化エチレン(6,2
)、ポリ塩化三フッ化エチレン(7,2) 、ポリブタ
ジェン(8,40) 、ポリメタクリル酸エチル(9,
ω、ポリビニルアルコール(19,06) などである
。ただし、多孔膜の表面と内部との化学組成を異にする
複合膜の場合には、多孔膜の表面を構成する化学勧賞の
溶解度パラメーターをその多孔膜の溶解度パラメーター
とする。また、溶解度パラメーターの異なる複数の素材
をブレンドした場合には、それぞれの構成重置分率と溶
解度パラメーターの積の総計を便宜上、その多孔膜の溶
解度パラメーターとする。
The porous polymer membrane used in the present invention may be made of any material as long as it can be formed into a membrane. A single material may be used, or a plurality of materials with different solubility parameters may be blended to form a film forming material in order to adjust the affinity on the film surface. Examples of porous polymer membrane materials include:
Cellulose acetate (solubility parameter 12.03-13
.. 14 (Cal/c+4)'), regenerated cellulose (24
,08), nylon 6 (12,43), polysulfone (12,61), polyethylene (8,56), polypropylene (8,02), polyvinyl chloride (11,03),
Polymethyl methacrylate (9,93), polyacrylonitrile (14,39), polytetrafluoroethylene (6,2
), polychlorinated trifluoroethylene (7,2), polybutadiene (8,40), polyethyl methacrylate (9,
ω, polyvinyl alcohol (19,06), etc. However, in the case of a composite membrane in which the surface and interior of the porous membrane have different chemical compositions, the solubility parameter of the chemical compound forming the surface of the porous membrane is taken as the solubility parameter of the porous membrane. In addition, when a plurality of materials having different solubility parameters are blended, the sum of the products of their constituent overlapping fractions and solubility parameters is conveniently taken as the solubility parameter of the porous membrane.

水相と溶媒相がだクロ相分離状態で存在しているとキ、
溶解度パラメーターの異カる2種の多孔膜を適当に選定
すれば、溶解度パラメーターの高い多孔膜から水相のみ
を通過させ、溶解度パラメーターの低い多孔膜から溶媒
相のみを透過させることができる。これらの選択透過性
はぐクロ相分離した各相と、高分子多孔膜の間に働く界
面張力の差によって発現する。水相および溶媒相を溶解
度パラメーターの異なる二種類の高分子多孔膜によシ効
率よく分離するためには、2種類の高分子多孔膜tl−
構成する各々の膜の素材の溶解度パラメーターの差が3
 (Cal/cd)″A以上あることが望ましく、10
 (Cal/、4)”/z以上の差があればよυ望まし
い組み合せである。この溶解度パラメーターの差が3未
満であっても、操作圧力を低くし、孔径を小さくすれば
、2相の分離は可能であるが、単位時間あたりの処理1
が少ない。
When the aqueous phase and the solvent phase exist in a state of diachromatic phase separation,
If two types of porous membranes with different solubility parameters are appropriately selected, only the aqueous phase can pass through the porous membrane with a high solubility parameter, and only the solvent phase can pass through the porous membrane with a low solubility parameter. These permselective properties are developed due to the difference in interfacial tension between the macromolecular phase-separated phases and the porous polymer membrane. In order to efficiently separate the aqueous phase and the solvent phase using two types of porous polymer membranes with different solubility parameters, two types of porous polymer membranes tl-
The difference in solubility parameters of the constituent membrane materials is 3.
(Cal/cd) ″A or more is desirable, 10
It is a desirable combination if there is a difference of (Cal/, 4)"/z or more. Even if the difference in solubility parameters is less than 3, if the operating pressure is lowered and the pore size is made smaller, the two-phase Separation is possible, but the processing per unit time is 1
Less is.

多孔膜の最適の平均孔径及び操作圧力は分離効率を考慮
して適宜足められる。透過速度を大きくするには平均孔
径は出来るだけ大きく設定するのが望ましい。また、膜
の形態は平膜状、中空糸状、スパイラル状などのいずれ
の形態でも本質的に区別なく使用できる。
The optimum average pore diameter and operating pressure of the porous membrane are determined as appropriate in consideration of separation efficiency. In order to increase the permeation rate, it is desirable to set the average pore diameter as large as possible. Furthermore, the membrane can be used in any form, such as a flat membrane, a hollow fiber, or a spiral, essentially without distinction.

分離すべき物質が金属イオンであれば、捕捉剤として種
々のキレート剤の中よりイオン選択性と溶媒への溶解度
を基準にして、最適キレート剤と金属イオンの組み゛合
せを決めることが(゛きる。
If the substance to be separated is a metal ion, it is possible to determine the optimal combination of chelating agent and metal ion among various chelating agents as a scavenger based on ion selectivity and solubility in the solvent. Wear.

例えば、銅イオンを含む水溶液中よυ銅を分離する場合
には、キレート剤としてはサリクラドキシム誘導体の二
種であるLIX65N あるい社、8−ヒドロキシキノ
リン置換体が使える。この場合の溶媒としてはキシレン
、トルエン、シクロヘキサンなどの水とは混和しない有
機溶媒を用いることが出来る。
For example, in the case of separating υ copper from an aqueous solution containing copper ions, two types of salicradoxime derivatives, LIX65N or 8-hydroxyquinoline substituted product, can be used as the chelating agent. As the solvent in this case, an organic solvent that is immiscible with water, such as xylene, toluene, or cyclohexane, can be used.

キレート剤の他にジー2−エチルへキシルリン酸、ナフ
テン酸、パーサト酸(Versatic acid )
などの有機酸を有機溶媒に溶解し、コバルトやニッケル
を分離することが出来、また、トリブチルホスフェート
を有機溶媒に酵解してウランを分離することが出来る。
In addition to chelating agents, di-2-ethylhexyl phosphoric acid, naphthenic acid, and versatic acid
It is possible to separate cobalt and nickel by dissolving organic acids such as in an organic solvent, and it is also possible to separate uranium by fermenting tributyl phosphate in an organic solvent.

本発明においてはミクロ相分離状態にある浴液は撹拌状
態であることが望ましく、また、溶解度パラメーターの
差ができる限り大きな二種の膜を同時に用いて連続的に
分離した方が透過速度および分離効率を高く保持する際
に望ましい。
In the present invention, it is desirable that the bath liquid in the microphase-separated state is in an agitated state, and it is better to simultaneously use two types of membranes with as large a difference in solubility parameters as possible to continuously separate them. Desirable when maintaining high efficiency.

実施例 以下に本発明の詳細な説明するが、本発明の技術的範囲
をこれらの実施例に限定するものでないこと祉いうまで
もない。なお、本発明において平均孔径2ra は以下
のようにして測定する。
EXAMPLES The present invention will be described in detail below, but it goes without saying that the technical scope of the present invention is not limited to these Examples. In the present invention, the average pore diameter 2ra is measured as follows.

く平均孔径2raの測定法〉 25℃の純水を0.2μmの孔径を持つポリカーボネー
ト多孔膜(ゼネラルエレクトリック社製、商品名nuc
lepore )で濾過し、微粒子の存在しない純水を
調製する。この純水を用いて、一定の圧力差△P (m
Hy) での試料多孔膜の単位面積当p17)濾過速度
J (cm/5ec) を測定すれば、2 ra (c
m)は次式で算出することができる。
Measuring method of average pore size 2RA> Pure water at 25°C was heated to a polycarbonate porous membrane with a pore size of 0.2 μm (manufactured by General Electric Co., trade name: nuc).
lepore) to prepare pure water free of fine particles. Using this pure water, a constant pressure difference △P (m
If we measure the filtration rate J (cm/5ec) per unit area of the sample porous membrane at
m) can be calculated using the following formula.

ここでηWは純水の粘度で通常1センチポイズである。Here, ηW is the viscosity of pure water and is usually 1 centipoise.

dは膜の厚さく国)で、マイクロメーターで測定する。d is the thickness of the film (country) and is measured with a micrometer.

実施例1〜4 セルロースリンター(粘度平均分子1:2.4X10 
)を公知の方法で調製した銅アンモニア溶液中に4〜1
2重1%の各濃度で溶解後、該溶液中にアセトンを15
重t%添加し、撹拌後、その溶液を30℃のアセトン蒸
気雰囲気の濃度が飽和蒸気圧の80チの雰囲気に置かれ
たガラス板上に、厚さ250μmとなるようにアプリケ
ーターで流延し、該雰囲気下に10分間放置した。次い
で、20℃の硫酸水浴液に15分間浸漬し、その後水洗
し、水分をP紙で吸い取り、20℃のアセトン中に15
分間浸漬して膜中の水分をアセトンで置換し、p紙には
さんで30℃で風乾することによシ、平均孔径0.01
μm以上のセルロース多孔膜を調製した。この膜厚は約
40μmであった。
Examples 1-4 Cellulose linter (viscosity average molecule 1:2.4X10
) in a copper ammonia solution prepared by a known method.
After dissolving 2 parts at each concentration of 1%, add 15% acetone to the solution.
After stirring, the solution was cast with an applicator to a thickness of 250 μm onto a glass plate placed in an acetone vapor atmosphere at 30°C with a saturated vapor pressure of 80 cm. , and left in this atmosphere for 10 minutes. Next, it was immersed in a 20°C sulfuric acid water bath for 15 minutes, then washed with water, the moisture was absorbed with P paper, and the water was soaked in acetone at 20°C for 15 minutes.
The membrane was immersed for 1 minute to replace the moisture in the membrane with acetone, then sandwiched between sheets of P paper and air-dried at 30°C.
A cellulose porous membrane with a size of μm or more was prepared. This film thickness was approximately 40 μm.

一方、再生セルロースよシも溶解度パラメーターの低い
素材の高分子多孔膜として公知の方法で調製したポリプ
ロピレン多孔膜(平均孔径−1,2X10′″4C#!
、膜厚1.5X10−”m、 空孔率Pr−75%)を
用いた。
On the other hand, a polypropylene porous membrane (average pore size -1.2X10'''4C#!) prepared by a known method was used as a polymeric porous membrane made of a material with a low solubility parameter such as regenerated cellulose.
, a film thickness of 1.5×10-”m, and a porosity of Pr-75%).

”/10M酢酸緩衝液(pH5,0)にCu80a +
15H20を各種の濃度で溶解し、銅イオンを含む水溶
液(〜を調製した。一方、キレート剤LIX65N (
日本ヘンケル■製)を25 volチになるようにトル
エン中に溶解し、溶液(時を調製した。
”/Cu80a + in 10M acetate buffer (pH 5,0)
15H20 was dissolved at various concentrations to prepare an aqueous solution (~) containing copper ions.On the other hand, the chelating agent LIX65N (
A solution (manufactured by Henkel Japan) was dissolved in toluene to a volume of 25 vol.

第1図に示すような直径47111の円板状膜を2枚、
向かい合せに装着することのできる容器の一方に再生セ
ルロース多孔膜1、もう一方にポリプロピレン多孔膜2
を装着し、溶液(〜と溶液(ロ)を体積比1:1で混合
し、容器0の内部8に注入し、撹拌子6によυ150 
rl)m で撹拌した。容器Oの内部8内の溶液はミク
ロ相分離状態となり、不透明であった。
Two disk-shaped membranes with a diameter of 47111 as shown in Figure 1,
A regenerated cellulose porous membrane 1 is placed on one side of a container that can be mounted facing each other, and a polypropylene porous membrane 2 is placed on the other side.
, mix the solution (~ and solution (B) at a volume ratio of 1:1, inject it into the interior 8 of the container 0, and mix it with the stirrer 6 at υ150
rl) m. The solution in the interior 8 of the container O was in a state of microphase separation and was opaque.

再生セルロース多孔膜1を透過した透過液(C−1)と
ポリプロピレン多孔膜2を透過した透過液(C−2)は
いずれも均一な一相状態であった。
The permeated liquid (C-1) that permeated through the regenerated cellulose porous membrane 1 and the permeated liquid (C-2) that permeated through the polypropylene porous membrane 2 were both in a uniform one-phase state.

水溶液(〜、透過液(e−1)の銅イオン濃度を830
nmの吸光度よ請求めた。水溶液(〜と透過液(C−1
)の透過速度をまとめて表1に示す。表1に示すように
再生セルロース多孔膜1を通過した透過WCC−1)の
銅イオン濃度は溶液Nの約172に減少してbた。
Aqueous solution (~, copper ion concentration of permeate (e-1) is 830
The absorbance was calculated in nm. Aqueous solution (~ and permeate (C-1)
) are summarized in Table 1. As shown in Table 1, the copper ion concentration of the permeated WCC-1) that passed through the regenerated cellulose porous membrane 1 was reduced to about 172 b of solution N.

実施例5 実施例1〜4と同グの装置で溶液(〜と溶液0の体積比
を1:2で行った。表1に示すように銅イオンの分離効
率は溶液(鴫の比率が高い方が良好でおった。
Example 5 Using the same equipment as in Examples 1 to 4, the volume ratio of solution (~ and solution 0) was 1:2. It was better.

撹拌を笑施しなかった以外は、実施ft1lと同じ条件
で濾過を行った。表1に示す様に、透過液C−1の濃度
はほとんど変化なく、また透過速度も小さかった。
Filtration was carried out under the same conditions as in the ft1l experiment except that stirring was not performed. As shown in Table 1, the concentration of permeated liquid C-1 hardly changed, and the permeation rate was also small.

遣J 実施例6〜8 実施9′l12においてポリプロピレン多孔膜2を通過
した透過液、(C−2)に硫酸水浴液(PI−11,0
)を所定社加え、実施例1〜5と同様の膜分離装置によ
り再生セルロース多孔膜1の透過/l[(1)−1)と
ポリプロピレン多孔膜2の透過液(D−2)に分離した
Example J Examples 6 to 8 The permeate that passed through the polypropylene porous membrane 2 in Example 9'l12 was added to (C-2) with a sulfuric acid water bath solution (PI-11,0
) was added from a specified company and separated into permeate/l of regenerated cellulose porous membrane 1 [(1)-1) and permeate of polypropylene porous membrane 2 (D-2) using the same membrane separator as in Examples 1 to 5. .

表2に示したように、本発明に従えば、銅イオンを透過
液(L)−1)に濃縮することができる。
As shown in Table 2, according to the present invention, copper ions can be concentrated in the permeate (L)-1).

anus

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に使用する膜分離装置の1つの代
表例の態様を示す図面である。 1・・・再生セルロース多孔膜、2・−・テア0ン多孔
g、a、a’・・・ステンレス製メツシュ、 4.4’
・・・〇−りング、6・・・撹拌子、7・・・マグネテ
ツクースターラー、8・−・容器内部。
FIG. 1 is a drawing showing an aspect of one representative example of a membrane separation apparatus used in the method of the present invention. 1...Regenerated cellulose porous membrane, 2...Tearless porous g, a, a'...Stainless steel mesh, 4.4'
...〇-Ring, 6... Stirrer, 7... Magnetic stirrer, 8... Inside the container.

Claims (1)

【特許請求の範囲】 1、 水とは混合しない溶媒X中に物質Yを特異的に捕
捉する捕捉剤Zを溶解した溶液と、物質Yを溶解した水
溶液とを混和し、水を主成分とした相(水相)と該溶媒
Xを主成分とした相(溶媒相)とのミクロ相分離状態を
生起せしめて物質Yを溶媒相に選択的に取り込んだ後、
水相と溶媒相を平均孔径0.01μm以上の高分子多孔
膜により分離することを特徴とする物質の分離方法。 2、溶解度パラメーターの差が3 (Ca 17m1 
)し2以上ある2種類以上の高分子物質よシなる2種類
以上の高分子多孔膜を用いる特許請求の範囲第1) 項記載の物質の分離方法。 3、物質Yが金属イオンで1、捕捉剤2が金属イオンを
特異的に捕捉するキレート剤である特許請求の範囲第1
項又は第2項記載の物質の分離方法。 4、多孔膜の平均孔径が0.02μm〜′10μmの範
囲である特許請求の範囲第1項、第2項又は第3項記載
の物質の分離方法。
[Claims] 1. A solution in which a capture agent Z that specifically captures substance Y is dissolved in a solvent X that is immiscible with water is mixed with an aqueous solution in which substance Y is dissolved, and water is the main component. After causing a microphase separation state between a phase (aqueous phase) and a phase (solvent phase) containing the solvent X as a main component and selectively incorporating substance Y into the solvent phase,
A method for separating substances, which comprises separating an aqueous phase and a solvent phase using a porous polymer membrane having an average pore diameter of 0.01 μm or more. 2, the difference in solubility parameters is 3 (Ca 17ml
1) A method for separating substances according to claim 1), which uses two or more types of porous polymer membranes comprising two or more types of polymer substances. 3. Claim 1, in which the substance Y is a metal ion 1, and the capture agent 2 is a chelating agent that specifically captures metal ions
A method for separating the substance described in Section 1 or Section 2. 4. The method for separating substances according to claim 1, 2, or 3, wherein the porous membrane has an average pore diameter in the range of 0.02 μm to 10 μm.
JP16746283A 1983-09-13 1983-09-13 Separating process of substance Pending JPS6061005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16746283A JPS6061005A (en) 1983-09-13 1983-09-13 Separating process of substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16746283A JPS6061005A (en) 1983-09-13 1983-09-13 Separating process of substance

Publications (1)

Publication Number Publication Date
JPS6061005A true JPS6061005A (en) 1985-04-08

Family

ID=15850121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16746283A Pending JPS6061005A (en) 1983-09-13 1983-09-13 Separating process of substance

Country Status (1)

Country Link
JP (1) JPS6061005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215667A (en) * 1991-08-20 1993-06-01 Exxon Chemical Patents Inc. Method for separating water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215667A (en) * 1991-08-20 1993-06-01 Exxon Chemical Patents Inc. Method for separating water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction

Similar Documents

Publication Publication Date Title
CA2409569C (en) Polysulfonamide matrices
Pusch et al. Synthetic membranes—preparation, structure, and application
CN103394295B (en) Hydrophilic PVDF (Polyvinylidene Fluoride) composite ultrafiltration membrane and preparation method thereof
US6837996B2 (en) Polysulfonamide matrices
AU2001292542A2 (en) Polysulfonamide matrices
AU2001292542A1 (en) Polysulfonamide matrices
US6783711B2 (en) Process for preparing a sulfonamide polymer matrix
CN106179002B (en) A kind of poly- tertiary amine microfiltration membranes of polysulfones side chain graft
Jiang et al. Poly (vinyl chloride) and poly (ether sulfone)‐g‐poly (ether glycol) methyl ether methacrylate blend membranes with improved ultrafiltration performance and fouling resistance
JPS58342B2 (en) Polycarbonate thin film for hemodialysis
EP0080684B1 (en) Membrane filtration using ultrafiltration membrane
Ma et al. Nanosponge membrane with 3D-macrocycle β-cyclodextrin as molecular cage to simultaneously enhance antifouling properties and efficient separation of dye/oil mixtures
Karunakaran et al. Nanostructured double hydrophobic poly (styrene-b-methyl methacrylate) block copolymer membrane manufactured via a phase inversion technique
CN106110908A (en) The preparation method of aromatic polyamides hydridization NF membrane
DE69112862T2 (en) Process for drying gases.
JPS6061005A (en) Separating process of substance
US20210236998A1 (en) A cross-linked polymeric membrane
EP1925357A2 (en) Method for fabrication of elastomeric asymmetric membranes from hydrophobic polymers
JPS6147812B2 (en)
CN106345317B (en) A kind of composite membrane that preparation method, the preparation method of the composite membrane of Selective Separation ammonia nitrogen obtain and its application
Khulbea et al. Study of the structure and transport of asymmetric polyamide membranes for reverse osmosis using the electron spin resonance (ESR) method
CN111001319A (en) PVDF/ZrO2Preparation method of-PVA modified ultrafiltration membrane
JPS58180442A (en) Separation and concentration method of ethanol from aqueous solution thereof
EP3398677A1 (en) Glycidol modified silica for removing boron from water
Cuciureanu et al. The influence of changing the polyaniline and polysulphone ratio on composite PSF-PANI membranes performances