JPS6060908A - Method for recovering liquefied gaseous sulfurous acid from apparatus for dry-desulfurizing stack gas - Google Patents

Method for recovering liquefied gaseous sulfurous acid from apparatus for dry-desulfurizing stack gas

Info

Publication number
JPS6060908A
JPS6060908A JP58170175A JP17017583A JPS6060908A JP S6060908 A JPS6060908 A JP S6060908A JP 58170175 A JP58170175 A JP 58170175A JP 17017583 A JP17017583 A JP 17017583A JP S6060908 A JPS6060908 A JP S6060908A
Authority
JP
Japan
Prior art keywords
gas
raw material
material gas
sulfur dioxide
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58170175A
Other languages
Japanese (ja)
Inventor
Takao Kamei
亀井 隆雄
Fuminobu Ono
小野 文信
Tsutomu Sano
佐野 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58170175A priority Critical patent/JPS6060908A/en
Publication of JPS6060908A publication Critical patent/JPS6060908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To recover efficiently liquefied gaseous SO2 by removing dust from exhaust gas contg. gaseous SO2 at high concn. after regenerating a desulfurizing agent, cooling the gas to a temp. close to room temp., drying it, and cooling the dried gas to the liquefaction temp. of gaseous SO2. CONSTITUTION:Stack gas contg. SOx is introduced into an absorption tower 1, where it is desulfurized. A desulfurizing agent contg. absorbed SOx is fed to a regeneration tower 2, where it is heated to convert the SOx into SO2, and gas contg. SO2 as starting material is introduced into a dust collector 3 to remove dust. The gas is then introduced into coolers 4, 5, where it is cooled to a temp. close to room temp., and condensed water is sprayed into stack gas from a spray nozzle 8 through a receiving tank 6. The cooled gas is pressurized with a blower 10 and introduced into a drier 11a or 11b, where it is dried to such a dew point that moisture in the gas is not condensed in a gaseous SO2 condenser 23. The dried gas is compressed with a compressor 21 and introduced into the condenser 23 through an after-cooler 22. In the condenser 23, the gas is cooled to the liquefaction temp. of gaseous SO2 to recover the gaseous SO2 in the gas as liquefied gaseous SO2.

Description

【発明の詳細な説明】 本発明は、ボイラ、加熱炉などの排煙中のSOxを除去
する乾式排煙脱硫装置において、脱硫剤の加熱再生時に
回収される高濃度のSO2を含有する再生排ガスから液
化亜硫酸ガスを回収する方法に関するものである。
Detailed Description of the Invention The present invention is a dry flue gas desulfurization device that removes SOx from flue gas from boilers, heating furnaces, etc. This invention relates to a method for recovering liquefied sulfur dioxide gas from.

通常、活性炭などを用いた乾式排煙脱硫装置で、排煙中
に約11000ppのSOxを含む排ガスを脱硫すると
、再生排ガス中のSO2濃度は15〜25%に濃縮され
る。従来はこの再生排ガス中のイオウ分を回収するのに
、石炭とかコークスケ部分燃焼し、700〜900°C
の高温に維持されているカーボン反応器に再生排ガスを
供給し、C−4−8o2→&S2+co2の反応により
、再生排ガス中のS02の約6割前後をイオウに転換し
、さらにカーボン反応器を出た排ガスはクラウス反応器
に導かれ、排ガス中の未反応So2およびカーボン反応
器内の副反応により生成したH2Sは、2H2S + 
So2→′/2S2+2H20の反応により、単体イオ
ウとして回収する方法が一般的である。
Normally, when exhaust gas containing about 11,000 pp of SOx is desulfurized using a dry flue gas desulfurization device using activated carbon or the like, the SO2 concentration in the recycled exhaust gas is concentrated to 15 to 25%. Conventionally, to recover the sulfur content in this recycled exhaust gas, coal or coke was partially combusted at temperatures of 700 to 900°C.
Regenerated exhaust gas is supplied to a carbon reactor maintained at a high temperature of The exhaust gas is led to the Claus reactor, and unreacted So2 in the exhaust gas and H2S generated by side reactions in the carbon reactor are converted into 2H2S +
A common method is to recover elemental sulfur through the reaction So2→'/2S2+2H20.

この従来の方式において、脱硫装置で除去するイオウの
量が単体イオウで1日当!1l15トン以下といった設
備規模では、各反応器などでの放熱損失の割合が大きく
なシ、経済的に不利となってくること、カーボン反応器
で再生排ガス以外に石炭とかコークスの部分燃焼ガスが
発生するため、処理するガスの量が増えるとともに、処
理するガス中のSO2濃度が低下し脱硫効率が幾分低下
すること、および単体イオウの回収のだめに、石炭とか
コークスなどの炭素材が必要であるといった欠点がある
In this conventional method, the amount of sulfur removed by the desulfurization equipment is equivalent to 1 day's worth of elemental sulfur! If the equipment size is 1 liter or less than 15 tons, the rate of heat radiation loss in each reactor will be large, which will be economically disadvantageous, and the carbon reactor will generate partial combustion gas of coal or coke in addition to the recycled exhaust gas. Therefore, as the amount of gas to be treated increases, the SO2 concentration in the gas to be treated decreases, resulting in a slight decrease in desulfurization efficiency, and carbon materials such as coal or coke are required to recover elemental sulfur. There are drawbacks such as:

本発明は上記の諸点に鑑みなされたもので、乾式排煙脱
硫装置の脱硫剤再生塔から出る、高濃度の亜硫酸ガスを
含む脱硫剤再生排ガスを原料ガスとし、この原料ガス中
に含まれるダストを除去した後、原料ガスを常温付近ま
で冷却し、ついで原料ガス中の水分が亜硫酸ガス凝縮器
内で凝縮しない程度の露点まで乾燥した後、原料ガスを
圧縮し、さらに原料ガスを亜硫酸ガス凝縮器内で原料ガ
ス中の亜硫酸ガスが液化する温度まで冷却して、再生排
ガス中のSO2を液化亜硫酸ガスとして回収することに
よシ、運転が容易で、小規模の脱硫装置でも再生排ガス
中のSO2を、高効率で経済的に回収できるとともに、
回収物が液体であるため取扱いが容易である、乾式排煙
脱硫装置から液化亜硫酸ガスを回収する方法の提供を目
的とするものである。
The present invention has been made in view of the above points, and uses desulfurization agent regeneration exhaust gas containing a high concentration of sulfur dioxide gas, which is emitted from a desulfurization agent regeneration tower of a dry flue gas desulfurization equipment, as a raw material gas, and removes dust contained in this raw material gas. After removing the raw material gas, the raw material gas is cooled to around room temperature, and then dried to a dew point at which the moisture in the raw material gas does not condense in the sulfur dioxide gas condenser, the raw material gas is compressed, and the raw material gas is further condensed into sulfur dioxide gas. By cooling the sulfur dioxide gas in the raw material gas to a temperature that liquefies it in the reactor and recovering the SO2 in the regenerated exhaust gas as liquefied sulfur dioxide gas, it is easy to operate, and even small-scale desulfurization equipment can liquefy the sulfur dioxide gas in the regenerated exhaust gas. SO2 can be recovered efficiently and economically,
The object of the present invention is to provide a method for recovering liquefied sulfur dioxide gas from a dry flue gas desulfurization device, which is easy to handle because the recovered material is a liquid.

以下、本発明の構成を図面に基づいて説明する。Hereinafter, the configuration of the present invention will be explained based on the drawings.

ボイラ、加熱炉などからのSOxを含んだ排煙は、13
0〜160°Cで吸収塔lに導入され、吸収塔l内に充
てんされた活性炭などの脱硫剤で脱硫されて吸収塔lを
出る。排煙中のSOxを吸収した脱硫剤は吸収塔1下部
から抜き出され、再生塔2に入る。
Exhaust smoke containing SOx from boilers, heating furnaces, etc.
It is introduced into the absorption tower 1 at a temperature of 0 to 160°C, is desulfurized by a desulfurizing agent such as activated carbon filled in the absorption tower 1, and then exits the absorption tower 1. The desulfurizing agent that has absorbed SOx in the flue gas is extracted from the lower part of the absorption tower 1 and enters the regeneration tower 2.

再生塔2には加熱管が内蔵されており、加熱管内に熱風
炉で発生させた熱風またはボイラからの高温排ガスなど
の高温ガスを通し、再生塔2内の脱硫剤を350〜40
0°Cに加熱する。加熱された脱硫剤は、吸収塔1で吸
着したSOx f SO2として放出するとともに、再
生反応によりN20.CO2、N2などが生成し、再生
排ガス中のSO2濃度は通常、15〜25VO1%とな
る。本発明は、再生塔2で脱硫剤より放出される、この
再生排ガスを原料ガスとして液化亜硫酸ガスを回収する
ものである。
The regeneration tower 2 has a built-in heating pipe, and high-temperature gas such as hot air generated by a hot air stove or high-temperature exhaust gas from a boiler is passed through the heating pipe, and the desulfurization agent in the regeneration tower 2 is heated to 350 to 400%
Heat to 0°C. The heated desulfurization agent is released as SOx f SO2 adsorbed in the absorption tower 1, and N20. CO2, N2, etc. are generated, and the SO2 concentration in the regenerated exhaust gas is usually 15 to 25 VO1%. The present invention recovers liquefied sulfur dioxide gas using the regenerated exhaust gas released from the desulfurization agent in the regeneration tower 2 as a raw material gas.

再生塔2からの高濃度のS02を含む液化原料ガス(以
下、原料ガスという)は、集じん機3に入り、原料ガス
中のダストを除去した後、原料ガス冷却器4.5に入る
。原料ガス冷却器4.5はそれぞれ冷却水、冷却ガスで
冷却され、原料ガスは常温付近、すなわち20〜40°
Cに冷却される。この原料ガスの冷却過程において、原
料ガス中に水蒸気が凝縮し、原料ガス冷却器4.5がら
凝縮水が抜き出される。この凝縮水中には2〜3%のS
O2が溶解しているので、この凝縮水は凝縮水受槽6、
ポンプ7を経て脱硫装置の吸収塔1に入る排煙ラインに
・スプレーノズlv8から噴霧し、排煙中に蒸発させる
The liquefied raw material gas (hereinafter referred to as raw material gas) containing a high concentration of S02 from the regeneration tower 2 enters the dust collector 3, and after removing dust from the raw material gas, enters the raw material gas cooler 4.5. The raw material gas cooler 4.5 is cooled with cooling water and cooling gas, respectively, and the raw material gas is kept at around room temperature, that is, 20 to 40 degrees.
It is cooled to C. In the process of cooling the raw material gas, water vapor is condensed in the raw material gas, and condensed water is extracted from the raw material gas cooler 4.5. This condensed water contains 2-3% S.
Since O2 is dissolved, this condensed water is sent to the condensed water receiving tank 6,
It is sprayed from a spray nozzle lv8 to the flue gas line that enters the absorption tower 1 of the desulfurization equipment via the pump 7, and is evaporated into the flue gas.

原料ガス冷却器4.5を出た原料ガスは、プロワ10に
より常圧より少し高い圧力まで外圧され、乾燥器11a
に入る。乾燥器には脱湿剤として活性アルミナ、ゼオラ
イト、モレキュラーシーブ、シリカゲルなどを充てんし
、原料ガス中の水分がSO2の液化工程で凝縮し々い程
度まで乾燥する。このだめには、乾燥器量口の原料ガス
中の水分の露点を、通常は一40°C以下とする必要が
ある。乾燥器は、原料ガスを連続的に乾燥するために、
通常、2基以上設けられる。図面は乾燥器を2基設ける
例を示している。一方の乾燥器11aは原料ガスを通気
し、原料ガスを乾燥している状態である。他方の乾燥器
11bは、ブロワ12、エアヒータ13を通って約20
0〜300°Cに加熱された空気を通気し、乾燥器11
b内に充てんされた脱湿剤を再生している状態を示して
いる。乾燥器の乾燥運転と再生運転の切換は、たとえば
原料ガスの乾燥時間を4時間、加熱空気による脱湿剤の
再生時間を3時間とすると、それぞれの時間をタイマー
にセットし、加熱空気による再生時間が過ぎると、遮断
弁14が閉、遮断弁15が開となり、冷空気がブロワ1
2によシ乾燥器11bに入り、加熱空気で再生された脱
湿剤の冷却を開始する。つぎに乾燥時間の4時間が経過
すると、遮断弁15.16が閉、遮断弁17.14が開
となシ、再生の終了した乾燥器11bに原料が入シ、原
料ガスの乾燥が行われる。一方、乾燥器11aにはブロ
ワ12、エアヒータ13を通って加熱された空気が入シ
、脱湿剤の再生が行われる。゛原料ガスの脱湿時間、脱
湿剤の再生時間、脱湿剤の冷却時間の設定は、乾燥器の
操作を説明するだめの一例であり、また脱湿、再生、冷
却の各操作は、乾燥器を3基以上の複数基とすれば、個
々に並行して行うこともできる。乾燥工程では原料ガス
中の水分が除去される他、原料ガス中に微量台まれる可
能性のあるアンモニアガス、塩酸などの不純ガスも除去
され、液化亜硫酸ガスの純度を上げる効果もある。一方
、再生排ガス中のS02も脱湿剤に幾分吸着されるので
、脱湿剤の再生排ガスは、脱硫装置の吸収塔1に入る排
煙ラインに循環させ、再生排ガス中のSO2を除去する
The raw material gas exiting the raw material gas cooler 4.5 is externally pressured by the blower 10 to a pressure slightly higher than normal pressure, and then transferred to the dryer 11a.
to go into. The dryer is filled with dehumidifiers such as activated alumina, zeolite, molecular sieves, and silica gel, and is dried to the extent that the moisture in the raw gas is condensed in the SO2 liquefaction process. In this tank, it is necessary that the dew point of the moisture in the raw material gas at the dryer intake is usually -40°C or less. The dryer is used to continuously dry the raw material gas.
Usually, two or more units are provided. The drawing shows an example in which two dryers are provided. One of the dryers 11a is in a state where the raw material gas is vented and dried. The other dryer 11b passes through a blower 12 and an air heater 13, and
Air heated to 0 to 300°C is ventilated, and the dryer 11
This shows the condition in which the desiccant filled in b is being regenerated. To switch the dryer between drying operation and regeneration operation, for example, if the raw material gas drying time is 4 hours and the dehumidifier regeneration time using heated air is 3 hours, each time is set on a timer and the regeneration using heated air is performed. When the time has passed, the shutoff valve 14 closes, the shutoff valve 15 opens, and cold air flows into the blower 1.
Step 2 enters the dryer 11b and starts cooling the regenerated desiccant with heated air. Next, when the drying time of 4 hours has elapsed, the cutoff valves 15 and 16 are closed and the cutoff valves 17 and 14 are opened, and the raw material enters the dryer 11b where the regeneration has been completed, and the raw material gas is dried. . On the other hand, heated air enters the dryer 11a through the blower 12 and air heater 13, and the desiccant is regenerated.゛The settings for the dehumidification time of the raw gas, the regeneration time of the dehumidifier, and the cooling time of the dehumidifier are just examples to explain the operation of the dryer, and each operation of dehumidification, regeneration, and cooling is If three or more dryers are used, drying can be carried out individually and in parallel. In addition to removing moisture from the raw material gas, the drying process also removes impurity gases such as ammonia gas and hydrochloric acid that may be present in trace amounts in the raw material gas, and has the effect of increasing the purity of the liquefied sulfur dioxide gas. On the other hand, some S02 in the regenerated exhaust gas is also adsorbed by the dehumidifier, so the regenerated exhaust gas from the dehumidifier is circulated through the flue gas line that enters the absorption tower 1 of the desulfurization equipment to remove SO2 in the regenerated exhaust gas. .

エアヒータ13での空気の加熱には、熱風発生炉、ボイ
ラなどからの高温排ガスを用い、空気の加熱に用いた後
の排ガスは、プロワ18により排煙ラインに合流させ、
排ガス中のSOxを除去した後、煙突に放出する。なお
空気加熱用の高温排ガスがSOxなどを含まないクリー
ンなガスの場合は、そのまま煙突に放出する。2oは放
出用のプロワである。
High-temperature exhaust gas from a hot air generator, boiler, etc. is used to heat the air in the air heater 13, and the exhaust gas after being used for heating the air is made to join the flue gas line by the blower 18.
After removing SOx from the exhaust gas, it is released into the chimney. If the high-temperature exhaust gas for heating the air is clean gas that does not contain SOx, it is released directly into the chimney. 2o is a blower for discharge.

乾燥器で脱湿された原料ガスは、圧縮器21で4〜6%
Gまで圧縮される。圧縮された原料ガスはアフタークー
ラ22に入り、冷却水にょシ常温付近まで冷却された後
、亜硫酸ガス凝縮器23に導入される。亜硫酸ガス凝縮
器23では、冷凍機24で一30°C以下に冷却された
プラインなどを冷媒として原料ガスを、凝縮器23内で
原料ガス中のS02が液化する温度まで冷却する。通常
は原料ガスを−20〜−35°Cに冷却し、原料ガス中
のS02の90%前後を液化亜硫酸ガスとして回収する
The raw material gas dehumidified in the dryer is reduced to 4 to 6% in the compressor 21.
Compressed to G. The compressed raw material gas enters the aftercooler 22 and is cooled down to around room temperature using cooling water, and then introduced into the sulfur dioxide gas condenser 23. In the sulfur dioxide gas condenser 23, the raw material gas is cooled to a temperature at which S02 in the raw material gas is liquefied in the condenser 23, using a prine or the like cooled to below -30° C. by the refrigerator 24 as a refrigerant. Usually, the raw material gas is cooled to -20 to -35°C, and about 90% of the S02 in the raw material gas is recovered as liquefied sulfur dioxide gas.

亜硫酸ガス凝縮器23でS02を回収した後の処理原料
ガス(以下、処理ガスという)は、膨張弁25で常圧よ
り僅かに高い圧力まで減圧される。
The processing raw material gas (hereinafter referred to as processing gas) after recovering S02 in the sulfur dioxide gas condenser 23 is depressurized by the expansion valve 25 to a pressure slightly higher than normal pressure.

処理ガスが膨張弁25で急激に膨張する際、ジュ−ルト
ムソン効果により処理ガスは亜硫酸ガス凝縮器23の出
口温度以下に低下する。この低温の処理ガスは原料ガス
冷却器5に入シ、原料ガスと熱交換した後、処理ガス中
の残留SO2を除去するため、脱硫装置の吸収塔1に入
る排煙ラインに循環される。
When the processing gas is rapidly expanded by the expansion valve 25, the processing gas is lowered to below the outlet temperature of the sulfur dioxide gas condenser 23 due to the Joule-Thomson effect. This low-temperature processing gas enters the raw material gas cooler 5, exchanges heat with the raw material gas, and is then circulated to the flue gas line that enters the absorption tower 1 of the desulfurization equipment in order to remove residual SO2 in the treated gas.

以上説明したように、本発明の方法によれば、従来の方
法に比べてつぎのような効果を奏する。
As explained above, the method of the present invention provides the following effects compared to conventional methods.

(1) 再生塔出口のS O2濃度が高く、処理すべき
ガス量が小量のため、装置が小型であり、ユーティリテ
ィ消讐量も少ない。
(1) Since the S O2 concentration at the outlet of the regeneration tower is high and the amount of gas to be treated is small, the equipment is small and the amount of utility effacement is small.

(2)複雑な反応を伴わないので、運転が容易かつ自動
化しやすい。またプロセスから排水が出ないので、排水
処理設備が不要である。
(2) Since it does not involve complicated reactions, it is easy to operate and automate. Additionally, since no wastewater is generated from the process, wastewater treatment equipment is not required.

(3) So、、として回収するので副原料が不要で、
かつ石こうまたは硫酸として回収する場合に比し、回収
副産物の取扱い重量が軽く、液状であるため取扱いが容
易である。
(3) Since it is recovered as So, auxiliary raw materials are not required.
In addition, compared to the case of recovering as gypsum or sulfuric acid, the recovered by-products are lighter in weight and easier to handle because they are in liquid form.

(4)小規模の装置でも放熱量が少ないので、従来のイ
オウ回収法に比し経済的である。
(4) Since the amount of heat dissipated is small even with a small-scale device, it is more economical than conventional sulfur recovery methods.

(5)回収した液化SO2は硫酸原料、殺虫剤、医薬品
、漂白剤、非水溶媒など用途が広い。
(5) The recovered liquefied SO2 has a wide range of uses, including as a raw material for sulfuric acid, pesticides, pharmaceuticals, bleach, and non-aqueous solvents.

つぎに本発明の実施例について説明する。Next, embodiments of the present invention will be described.

実施例 排煙中にSOx IoooI)II)mを含有する排ガ
ス100,00ONnf/Hを乾式脱硫装置で脱硫した
。この場合、再生塔出口の原料ガス中のS○2濃度は、
約20VO工%、原料ガス中の水分は、約60vo1%
、原料ガス量は、60ONyd/Hであった。この原料
ガスを図面に示すフローに従って処理した。すなわち、
この原料ガスを冷却、乾燥した後の原料ガス中のSo2
′a度は、45VO工%となシ、この原料ガスを5%l
Gに圧縮し、凝縮器で一25°Cに冷却した。その結果
、原料ガス中のSo2の88%が液化亜硫酸ガスとして
回収できた。原料ガス中のSO2を液化するに必要な動
力はブロワ、圧縮機、冷凍機を含め、13QKWH1冷
却水量は30T/Hで、非常に少ないユーティリティで
液化亜硫酸ガスが回収することができた。
Example 100,00 ONnf/H of exhaust gas containing SOx IoooI)II)m was desulfurized using a dry desulfurization device. In this case, the S○2 concentration in the raw material gas at the outlet of the regeneration tower is
Approximately 20 VO engineering%, moisture in raw gas is approximately 60 VO1%
The raw material gas amount was 60ONyd/H. This raw material gas was processed according to the flow shown in the drawing. That is,
So2 in the raw material gas after cooling and drying this raw material gas
'A degree is 45VO%, and this raw material gas is 5%l.
G and cooled to -25°C in a condenser. As a result, 88% of the So2 in the raw material gas could be recovered as liquefied sulfur dioxide gas. The power required to liquefy SO2 in the raw material gas includes a blower, compressor, and refrigerator, and the amount of cooling water for 13QKWH1 was 30 T/H, making it possible to recover liquefied sulfur dioxide gas with very little utility.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法を実施する装置の一例を示すフロー
シートである。 1・・・吸収塔、2・・・再生塔、3・・・集じん機、
4.5・・冷却器、6・・・凝縮水受槽、7・・・ポン
プ、8・・・スプレーノズル、lO・・・ブロワ、ll
a、llb・・・乾燥器、12・・・ブロワ、13・・
・エアヒータ、14.15.16.17・・・遮断弁、
18.20・・・ブロワ、21・・・圧縮機、22・・
・アフタークーラ、23・・・亜硫酸ガス凝縮器、24
・・・冷凍機、25・・・膨張弁量 願 人 川崎重工
業株式会社 代理人 弁理士塩出真− 2・・□ (パ −゛・、・ \−
The drawing is a flow sheet showing an example of an apparatus for carrying out the method of the present invention. 1... Absorption tower, 2... Regeneration tower, 3... Dust collector,
4.5...Cooler, 6...Condensed water receiver, 7...Pump, 8...Spray nozzle, lO...Blower, ll
a,llb...Dryer, 12...Blower, 13...
・Air heater, 14.15.16.17...Shutoff valve,
18.20...Blower, 21...Compressor, 22...
・Aftercooler, 23...Sulfur dioxide gas condenser, 24
... Refrigerator, 25 ... Expansion valve amount Applicant: Kawasaki Heavy Industries Co., Ltd. agent Patent attorney Makoto Shiide - 2...□ (Par...

Claims (1)

【特許請求の範囲】 ■ 乾式排煙脱硫装置の脱硫剤再生塔から出る、高濃度
の亜硫酸ガスを含む脱硫剤再生排ガスを原料ガスとし、
この原料ガス中に含まれるダストを除去した後、原料ガ
スを常温付近まで冷却し、ついで原料ガス中の水分が亜
硫酸ガス凝縮器内で凝縮しない程度の露点まで乾燥した
後、原料ガスを圧縮し、さらに原料ガスを亜硫酸ガス凝
縮器内で原料ガス中の亜硫酸ガスが液化する温度まで冷
却して液化亜硫酸ガスを回収することを特徴とする乾式
排煙脱硫装置から液化亜硫酸ガスを回収する方法。 2 乾式排煙脱1iifj装置の脱硫剤再生塔から出る
、高濃度の亜硫酸ガスを含む脱硫剤再生排ガスを原料ガ
スとし、この原料ガス中に含まれるダストを除去した後
、原料ガスを常温付近まで冷却し、ついで原料ガス中の
水分が亜硫酸ガス凝縮器内で凝縮しない程度の露点まで
乾燥した後、原料ガスを圧縮し、さらに原料ガスを亜硫
酸ガス凝縮器内で原料ガス中の亜硫酸ガヌが液化する温
度まで冷却して液化亜硫酸ガスを回収し、一方、前記の
原料ガスを常温付近まで冷却する際に、原料ガスから凝
縮してくる凝縮液を、乾式排煙脱硫装置の吸収塔に入る
排煙ラインに噴霧することを特徴とする乾式排煙脱硫装
置から液化亜硫酸ガスを回収する方法。 3 乾式排煙脱硫装置の脱硫剤再生塔から出る、高濃度
の亜硫酸ガヌを含む脱硫剤再生排ガスを原料ガスとし、
この原料ガス中に含捷れるダストを除去した後、原料ガ
スを常温付近まで冷却し、ついで原料ガス中の水分が亜
硫酸ガス凝縮器内で凝縮しない程度の露点まで乾燥した
後、原料ガスを圧縮し、さらに原料ガヌを亜硫酸力゛ス
凝縮器内で原料ガス中の亜硫酸ガスが液化する温度まで
冷却して液化亜硫酸ガスを回収し、一方、前記の原料ガ
ス乾:DA工程において、活性アルミナ、ゼオライト、
モレキュラシーブ、シリカゲルなどの脱湿剤を充てんし
た複数の乾燥器で、原料ガスの乾燥と乾燥器内の脱湿剤
の再生とを交互に行い、再生期間中に脱湿剤から放散さ
れるガスを乾式排煙脱硫装置の吸収塔に入る排煙ライン
に循環することを特徴とする乾式排煙脱硫装置から液化
亜硫酸ガスを回収する方法。 4 乾式排煙脱硫装置の脱硫剤再生塔から出る、高濃度
の亜硫酸ガスを含む脱硫剤再生排ガスを原料ガスとし、
この原料ガス中に含まれるダストを除去した後、原料ガ
スを常温付近まで冷却し、ついで原料ガス中の水分が亜
硫酸ガス凝縮器内で凝縮しない程度の露点まで乾燥した
後、原料ガスを圧縮し、さらに原料ガスを亜硫酸ガス凝
縮器内で原料ガス中の亜硫酸ガスが液化する温度まで冷
却して液化亜硫酸ガスを回収するとともに処理ガスを分
離し、この処理ガスを常圧付近に減圧した後、乾式排煙
脱硫装置の吸収塔に入る排煙ラインに循環することを特
徴とする乾式排煙脱硫装置から液化亜硫酸ガスを回収す
る方法二
[Scope of Claims] ■ Desulfurization agent regeneration exhaust gas containing high concentration of sulfur dioxide gas discharged from a desulfurization agent regeneration tower of a dry flue gas desulfurization device is used as a raw material gas,
After removing the dust contained in this raw material gas, the raw material gas is cooled to around room temperature, and then dried to a dew point at which the moisture in the raw material gas will not condense in the sulfur dioxide gas condenser, and then the raw material gas is compressed. A method for recovering liquefied sulfur dioxide gas from a dry flue gas desulfurization device, which further comprises cooling the raw material gas in a sulfur dioxide gas condenser to a temperature at which the sulfur dioxide gas in the raw material gas liquefies to recover liquefied sulfur dioxide gas. 2 The desulfurization agent regeneration exhaust gas containing a high concentration of sulfur dioxide gas emitted from the desulfurization agent regeneration tower of the dry flue gas removal 1IIFJ equipment is used as the raw material gas, and after removing the dust contained in this raw material gas, the raw material gas is heated to around room temperature. After cooling and then drying to a dew point at which the moisture in the raw material gas does not condense in the sulfur dioxide gas condenser, the raw material gas is compressed, and the raw material gas is further heated in the sulfur dioxide gas condenser until the sulfite gas in the raw material gas is removed. The liquefied sulfur dioxide gas is recovered by cooling it to the temperature at which it liquefies.Meanwhile, when the raw material gas is cooled to around room temperature, the condensate that condenses from the raw material gas enters the absorption tower of the dry flue gas desulfurization equipment. A method for recovering liquefied sulfur dioxide gas from a dry flue gas desulfurization device, which comprises spraying it into a flue gas line. 3. The desulfurization agent regeneration exhaust gas containing high concentration of sulfite from the desulfurization agent regeneration tower of the dry flue gas desulfurization equipment is used as the raw material gas,
After removing the dust contained in this raw material gas, the raw material gas is cooled to around room temperature, and then dried to a dew point at which the moisture in the raw material gas does not condense in the sulfur dioxide gas condenser, and then the raw material gas is compressed. Then, the raw material gas is further cooled in a sulfite force condenser to a temperature at which the sulfur dioxide gas in the raw material gas liquefies to recover liquefied sulfur dioxide gas.Meanwhile, in the raw material gas drying (DA process), activated alumina , zeolite,
Multiple dryers filled with dehumidifiers such as molecular sieves and silica gel are used to alternately dry the raw material gas and regenerate the dehumidifier in the dryer, reducing the amount of gas released from the dehumidifier during the regeneration period. A method for recovering liquefied sulfur dioxide gas from a dry flue gas desulfurization device, characterized in that it is circulated through a flue gas line that enters an absorption tower of the dry flue gas desulfurization device. 4. The desulfurization agent regeneration exhaust gas containing high concentration of sulfur dioxide gas, which is emitted from the desulfurization agent regeneration tower of the dry flue gas desulfurization equipment, is used as the raw material gas,
After removing the dust contained in this raw material gas, the raw material gas is cooled to around room temperature, and then dried to a dew point at which the moisture in the raw material gas will not condense in the sulfur dioxide gas condenser, and then the raw material gas is compressed. Further, the raw material gas is cooled in a sulfur dioxide gas condenser to a temperature at which the sulfur dioxide gas in the raw material gas liquefies, the liquefied sulfur dioxide gas is recovered, and the treated gas is separated, and the treated gas is depressurized to around normal pressure. Method 2 for recovering liquefied sulfur dioxide gas from a dry flue gas desulfurization device, characterized by circulating it into the flue gas line that enters the absorption tower of the dry flue gas desulfurization device.
JP58170175A 1983-09-14 1983-09-14 Method for recovering liquefied gaseous sulfurous acid from apparatus for dry-desulfurizing stack gas Pending JPS6060908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58170175A JPS6060908A (en) 1983-09-14 1983-09-14 Method for recovering liquefied gaseous sulfurous acid from apparatus for dry-desulfurizing stack gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58170175A JPS6060908A (en) 1983-09-14 1983-09-14 Method for recovering liquefied gaseous sulfurous acid from apparatus for dry-desulfurizing stack gas

Publications (1)

Publication Number Publication Date
JPS6060908A true JPS6060908A (en) 1985-04-08

Family

ID=15900080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58170175A Pending JPS6060908A (en) 1983-09-14 1983-09-14 Method for recovering liquefied gaseous sulfurous acid from apparatus for dry-desulfurizing stack gas

Country Status (1)

Country Link
JP (1) JPS6060908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318141A (en) * 2018-12-28 2020-06-23 江西世龙实业股份有限公司 Device and method for treating raw material gas for producing thionyl chloride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111318141A (en) * 2018-12-28 2020-06-23 江西世龙实业股份有限公司 Device and method for treating raw material gas for producing thionyl chloride

Similar Documents

Publication Publication Date Title
CA2738301C (en) Carbon dioxide purification using activated carbon as nox and so2 sorbent/catalyst
EP2481471B1 (en) Apparatus and system for NOx reduction in wet flue gas
US20120145000A1 (en) Drying Process For Flue Gas Treatment
CA2206236C (en) Removal of nitrogen oxides from gas streams
US20190178574A1 (en) Carbon dioxide recovery method and recovery apparatus
KR20140018874A (en) A method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
CN108423681B (en) Absorption and rectification combined denitration and purification process for carbon capture gas
CA1124639A (en) Removal of undesired gaseous components from hot waste gases
US4378977A (en) Removal of undesired gaseous components from hot waste gases
US8535630B2 (en) Method and apparatus for SOx and CO2 removal from flue gas
US4521398A (en) Controlled temperature expansion in oxygen production by molten alkali metal salts
CA2828644C (en) Method for low nox emitting regeneration of desiccants
US20110139046A1 (en) Emissionless Oxyfuel Combustion Process and a Combustion System Using Such a Process
JPH10128059A (en) Two-stage adsorbing and separating equipment for recovering carbon dioxide from waste combustion gas and two-stage method for adsorbing and separating carbon dioxide
CN212283448U (en) Fixed bed type flue gas low-temperature adsorption desulfurization system
CA1213126A (en) Method for removing unwanted gaseous components from hot flue-gases
US3708955A (en) Method for drying gases
US9067173B2 (en) Method and equipment for treating CO2-rich smoke
JPS6060908A (en) Method for recovering liquefied gaseous sulfurous acid from apparatus for dry-desulfurizing stack gas
JPH0691128A (en) Continuous gas separation and recovery device
CA2912158C (en) Method and apparatus for sox and co2 removal from flue gas
JPS5969415A (en) Manufacture of liquefied gaseous carbon dioxide
JPH02119921A (en) Method for removing so2 from so2 containing waste gas
JPH0810552A (en) Method for dehumidifying waste gas and dehumidifier
JP2554167B2 (en) Combustor exhaust gas desulfurization method