JPS6060530A - Wind tunnel testing device - Google Patents

Wind tunnel testing device

Info

Publication number
JPS6060530A
JPS6060530A JP16971983A JP16971983A JPS6060530A JP S6060530 A JPS6060530 A JP S6060530A JP 16971983 A JP16971983 A JP 16971983A JP 16971983 A JP16971983 A JP 16971983A JP S6060530 A JPS6060530 A JP S6060530A
Authority
JP
Japan
Prior art keywords
nozzle
wind tunnel
hydraulic
wind
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16971983A
Other languages
Japanese (ja)
Inventor
Tamaki Ikeda
池田 環
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16971983A priority Critical patent/JPS6060530A/en
Publication of JPS6060530A publication Critical patent/JPS6060530A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To conduct an efficient wind tunnel test by incorporating plural kinds of nozzle integrally in a structure which moves up and down, and left and right, and switching them according to a necessary wind speed parameter. CONSTITUTION:A hydraulic pressure generator 2 rotates a hydraulic motor 11 to rotate a screw 12 through a coupling 13, and a measured tunnel nozzle part 1 is moved up and down with the output of a nut 18 to select one of nozzles 6a-6c which coincides with a necessary wind speed parameter, e.g. 6b. Rough positioning is performed through a sensor 14 and a controller 15, a servo valve 4 is closed, and the hydraulic motor 11 is stopped. Then, the taper pin 16b of the nozzle part 1 is thrust into a support tunnel through a controller 3 and the servo valve 4 to align the nozzle center with the center of the air course of the wind tunnel testing device. When nozzles are switched, the taper pin 16b is extracted from the hydraulic cylinder 17b and the current nozzle is switched to another nozzle 6a or 6c as mentioned above. Therefore, a wind tunnel test with good efficiency is conducted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、風洞試験装置において、各種風速パラメー
タを設定するためノズルを切換えることによりノズル形
状を変化させ得るようにした点を特徴とするものである
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is characterized in that the nozzle shape can be changed by switching the nozzle in order to set various wind speed parameters in a wind tunnel test device. be.

〔従来技術〕[Prior art]

第1図は吹出式風洞試験装置の例であシ。 Figure 1 shows an example of a blow-out type wind tunnel test device.

図において、(1)は測定胴ノズル部、(3O)は貯気
槽、(31)はしゃ断弁、(32)は調圧弁、(33)
は集合胴、(34)は模型支持胴、(35)は拡散胴で
ある。上記測定胴ノズル部(1)のノズル形状は、所定
の風速パラメータに合致したものが必要である。これに
対処するために、従来は、油圧駆動装置と制御装置によ
りノズル形状を所定の風速パラメータに合わせて変化さ
せるフレキシブル方式と、ノズル形状を所定の風速パラ
メータに合わせて1lll定胴ノズル部を1つずつ製作
し、試験する風速に合わせた測定胴ノズル部を交換しな
がら使う方式の2通りがあった。
In the figure, (1) is the measuring barrel nozzle part, (3O) is the air storage tank, (31) is the shutoff valve, (32) is the pressure regulating valve, (33) is
is a collection cylinder, (34) is a model support cylinder, and (35) is a diffusion cylinder. The nozzle shape of the measurement barrel nozzle part (1) needs to match a predetermined wind speed parameter. In order to deal with this, conventionally, a flexible method in which the nozzle shape is changed according to a predetermined wind speed parameter using a hydraulic drive device and a control device, and a 1llll fixed-body nozzle section in which the nozzle shape is adjusted to a predetermined wind speed parameter are used. There were two methods: one was made one by one, and the measuring cylinder nozzle part was replaced depending on the wind speed to be tested.

第2図に油圧駆動装置と制御装置を用いたフレキシブル
方式を示す。(1)は測定胴ノズル部、(2)は油圧発
生装置、(3)は制御器、(4)はサーボパルプ、(5
)は油圧シリンダ、(68X6b)はノズル、(9)は
床面である。この方式は上記ノズル(6a)及び(6b
)の形状が1台の装置で可能となる。例えば高速用のノ
ズル(6a)の形状を矢印方向へ変化させ、破線で示す
低速用ノズルへ変更するためには、油圧発生装置(2)
からの油量を制御器(3)によりサーボバルブ(4)の
開度を制御することにより、油圧シリンダ(5)の移動
量を制御して行うことができる。したがって、コストは
油圧発生装置の大型化、制御系の複雑さで膨大な製作費
がががり、かつノズル形状を所要風速パラメータに合わ
せて再現するために厳正な較正が必要となり、ランニン
グコストの面でも膨大な費用が発生する欠点がある。
Figure 2 shows a flexible system using a hydraulic drive device and a control device. (1) is the measurement cylinder nozzle part, (2) is the hydraulic pressure generator, (3) is the controller, (4) is the servo pulp, (5) is the
) is the hydraulic cylinder, (68x6b) is the nozzle, and (9) is the floor surface. This method uses the above nozzles (6a) and (6b).
) can be achieved with one device. For example, in order to change the shape of the high-speed nozzle (6a) in the direction of the arrow and change it to the low-speed nozzle shown by the broken line, the hydraulic pressure generator (2)
By controlling the opening degree of the servo valve (4) using the controller (3), the movement amount of the hydraulic cylinder (5) can be controlled. Therefore, the production cost increases enormously due to the large size of the hydraulic generator and the complexity of the control system, and strict calibration is required to reproduce the nozzle shape according to the required wind speed parameters, which reduces running costs. However, it has the drawback of incurring huge costs.

一方、ノズル形状は固定して所要風速パラメータに合わ
せた測定胴ノズル部を数種類製作し、試験しようとする
風速パラメータにあった測定胴ノズル部を変換しながら
使う方式がある。この場合、第3図に示すように測定胴
ノズル部(1)を台車(7)に搭載し、レール(8)を
案内として、床面(9)上を移動させ、所定位置にセッ
トし着脱するのが一般的である。したがって、この方式
は製作コストの面では上記油圧駆動装置及び制御装置を
用いた方式に比べ格段に安価である。しかし、上記測定
胴ノズル部(1)の着脱交換に際してはすでに取付けら
れた測定用ノズル部(11の取外し、運搬及び保管作業
を要し、さらには交換品を運搬し。
On the other hand, there is a method in which the nozzle shape is fixed, several types of measurement barrel nozzle sections are manufactured to match the required wind speed parameters, and the measurement barrel nozzle sections that match the wind speed parameters to be tested are used while being changed. In this case, as shown in Figure 3, the measuring cylinder nozzle part (1) is mounted on a trolley (7), moved on the floor (9) using the rail (8) as a guide, set in a predetermined position, and attached/detached. It is common to do so. Therefore, in terms of manufacturing costs, this method is much cheaper than the method using the above-mentioned hydraulic drive device and control device. However, when replacing the measurement cylinder nozzle part (1), it is necessary to remove, transport and store the measurement nozzle part (11) that has already been installed, and also to transport the replacement part.

セットすることが必要であり1作業性が非常に悪く、シ
かもその間風洞試験を長時間に渡って停止しておく必要
があり、非能率となる欠点をもっていた。また2重量物
の運搬・取扱すに伴う安全性の見地からも好ましくなか
った0 〔発明の概要j この発明は、上記欠点を除去するものであり、数種類の
測定ノズルを1つの上下もしくは左右に移動可能な構造
体に組込んで一体化し、測定胴ノズル部のノズルを所要
風速パラメータにあわせて容易に交換できるようにしだ
風胴装置を提案するものである。
It is necessary to set up the wind tunnel test, and the workability is very poor, and the wind tunnel test has to be stopped for a long time during the setup, resulting in inefficiency. This invention was also unfavorable from the viewpoint of safety when transporting and handling heavy objects. The present invention proposes a wind cylinder device that is integrated into a movable structure so that the nozzle of the measuring cylinder nozzle part can be easily replaced according to the required wind speed parameters.

〔発明の実施例〕[Embodiments of the invention]

第4図、第5図はこの発明の一実施例で示すものであり
、この例は、ノズルの上下移動に油圧モータ、台形ネジ
及びナンドを、ノズルの風洞の流路との位置決めに光学
センサーとテーパビンを用いたものである。第4図は気
流方向から見た図であり、第5図は断面図である。(1
)〜(41,!61及び(9)は上記従来装置と同一の
ものである。aυは油圧モータ、αδは油圧モータ0υ
に取付けた台形ネジ、(131は油圧モータCLIIと
台形ネジ幅とのカップリング、α4は光学センサ、09
は光学センサの制呻器、αQはテーパビン、晒はテーパ
ピン傾を測定胴ノズル部(1)の前後の風洞試験装置で
ある集合洞(33)及び模型支持胴(34)に勘合する
だめの油圧シリンダα樽は台形ネジαりの回転如より測
定胴ノズル部(1)を上下させるナツトである。所要風
速パラメータに合わせたノズル形状を風洞の流路に合わ
せるには、油圧発生装置(2)により油圧モータ(1)
を回転させ、カップリング03を介して接続した台形ネ
ジαのを回転させ。
Figures 4 and 5 show an embodiment of the present invention, in which a hydraulic motor, trapezoidal screw, and NAND are used to move the nozzle up and down, and an optical sensor is used to position the nozzle with the flow path of the wind tunnel. and a taper bottle. FIG. 4 is a view seen from the airflow direction, and FIG. 5 is a sectional view. (1
) to (41, !61 and (9) are the same as the above conventional device. aυ is a hydraulic motor, αδ is a hydraulic motor 0υ
(131 is the coupling between the hydraulic motor CLII and the trapezoidal screw width, α4 is the optical sensor, 09
is the damper of the optical sensor, αQ is the taper pin, and stand is the oil pressure of the tank that fits into the collecting tunnel (33) and model support cylinder (34) which are wind tunnel test equipment before and after the cylinder nozzle part (1), which measures the taper pin inclination. The cylinder α barrel is a nut that raises and lowers the measuring cylinder nozzle part (1) by rotating around a trapezoidal screw α. To match the nozzle shape to the flow path of the wind tunnel according to the required wind speed parameters, the hydraulic motor (1) is controlled by the hydraulic generator (2).
and turn the trapezoidal screw α connected via coupling 03.

ナツト傾によつて発生する力により測定胴ノズル部(1
)を上下させる。所要風速パラメータに合致したノズル
(6)を(6b)であるとすると。
The measuring cylinder nozzle part (1
) up and down. Assume that the nozzle (6) that meets the required wind speed parameter is (6b).

荒い位置決めを光学センサαaと制御器a9で行い、油
圧用制御器(3)に信号を伝達してサーボパルプ(4)
を閉じることにより油圧モータ0υを停止させる。
Rough positioning is performed using the optical sensor αa and controller a9, and a signal is transmitted to the hydraulic controller (3) to control the servo pulp (4).
By closing, the hydraulic motor 0υ is stopped.

次に測定胴ノズル部(11内に納っているテーバビン(
16b)を制御器(3)及びサーボバルブ(4b)を介
して押し出し、測定胴ノズル部(1)の前後の風洞試験
装置、集合胴(33)及び模型支持胴(34)に押し込
むことにより正確にノズル中心と風洞試験装置の風路中
心を一致させ。
Next, the measurement cylinder nozzle part (the barbin housed in 11)
16b) through the controller (3) and servo valve (4b), and pushed into the wind tunnel test equipment, collection cylinder (33) and model support cylinder (34) before and after the measurement cylinder nozzle part (1). Align the center of the nozzle with the center of the wind tunnel test equipment.

風路上に段違い等ができ流れが乱れな−ようにする0更
に所要風速パラメータを変更する際には9位置決め用の
テーパビン(46b)を油圧シリンダ(t7b)により
測定胴ノズル部(1)の前後の風洞装置よシ抜き、上記
と同様の方法にて他のノズル(6a)又は(6C)にノ
ズル形状を変更させて風洞試験を行う。
To prevent the flow from being turbulent due to unevenness in the air path, etc. 0 Furthermore, when changing the required wind speed parameter, move the tapered bin (46b) for positioning before and after the measuring cylinder nozzle part (1) using the hydraulic cylinder (t7b). A wind tunnel test is conducted by removing the wind tunnel apparatus and changing the nozzle shape to another nozzle (6a) or (6C) using the same method as above.

ところで、上記説明では移動装置に油圧。By the way, in the above explanation, the moving device uses hydraulic pressure.

位14検出に光学センナを用い、風速パラメータに合致
したノズル形状を得るために上下移動の例を用いた例で
示したが、他の鳴動装置、位置検出センサを用すたり、
測定胴ノズル部の移動方向を左右にしても差支えない。
In this example, an optical sensor is used to detect position 14, and the nozzle is moved up and down to obtain a nozzle shape that matches the wind speed parameters.
There is no problem even if the direction of movement of the measuring cylinder nozzle part is left or right.

また、冒頭で吹出式風洞試験装置の構成例を用いて説明
したが、吸込み式または回流式風洞試験装置におりで上
記測定胴ノズル部の装置を利用できることはいうまでも
ない。
Further, although the explanation was given at the beginning using an example of the configuration of a blow-out type wind tunnel test device, it goes without saying that the device of the measurement barrel nozzle part can be used in a suction-type or circulation-type wind tunnel test device.

〔発明の効果〕〔Effect of the invention〕

このように、一つの測定胴ノズル部に複数の形状のノズ
ルを一台の上下または左右できる支持台に取付けること
により低価格で、測定胴ノズル部の交換の無駄時間を省
き、効率の良い測定胴ノズル部を用いた風洞装置を提供
できる。
In this way, by attaching multiple shapes of nozzles to one measurement cylinder nozzle part on a single support stand that can be moved up and down or left and right, it is possible to achieve efficient measurement at a low cost and by eliminating wasted time in replacing the measurement cylinder nozzle part. A wind tunnel device using a body nozzle part can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吹出式風洞試験装置の構成例を示す図、第2図
は従来の油圧駆動装置と制御器を用いたフレキシブル方
式測定胴ノズル部を示す図、第3図は従来の複数の測定
胴ノズル部を用いたものを示す図、第4図、第5図はこ
の発明の一実施例を示す図であり1図中、(1)は測定
胴ノズル部、(2)は油圧発生装置、(3)は制御器、
(4)はサーボパルプ、(5)は油圧シリンダ、(6)
はノズル、(9)は床面、aυは油圧モータ、a4は台
形ネジ。 0はカップリング、 (14は光学センサ、α9は光学
センサの制御器、 tsrはテーバピン、0ηは油圧シ
リンダ、鱈はナツトである。 なお9図中同一符号は同−又は相当部分を示す0 代理人 大岩増雄 第1図 第2図 第3図
Figure 1 is a diagram showing an example of the configuration of a blow-out type wind tunnel test device, Figure 2 is a diagram showing a flexible measurement barrel nozzle section using a conventional hydraulic drive device and controller, and Figure 3 is a diagram showing a conventional multiple measurement system. Figures 4 and 5 are diagrams showing an embodiment of the present invention using a cylinder nozzle part. In Figure 1, (1) is a measuring cylinder nozzle part, and (2) is a hydraulic pressure generator. , (3) is a controller,
(4) is servo pulp, (5) is hydraulic cylinder, (6)
is the nozzle, (9) is the floor, aυ is the hydraulic motor, and a4 is the trapezoidal screw. 0 is a coupling, (14 is an optical sensor, α9 is a controller for the optical sensor, tsr is a taper pin, 0η is a hydraulic cylinder, and a cod is a nut. Note that the same reference numerals in Figure 9 indicate the same or equivalent parts. People Masuo Oiwa Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 ノズルの形状を変えることにより、低音速から高音速ま
での各種風洞に係るパラメータを設定し得る風洞試験装
置忙おいて、風速パラメータの所要数に応じて形状の異
なる少なくとも2つ以上のノズルを上下もしくは左右に
移動のできる一台の支持台に風路の中心が一致できるよ
うに設け、所要の風速パラメータに応じて駆動装置を用
いて上記支持台所定位置に移動させ。 それによってノズルの切換えを行うように構成したこと
を特徴とする風洞装置。
[Claims] In a wind tunnel testing device, it is possible to set parameters related to various wind tunnels from low to high sonic velocities by changing the shape of the nozzle. Two or more nozzles are provided on one support base that can be moved vertically or horizontally so that the center of the air path coincides with the center of the air path, and the support base is moved to a predetermined position using a drive device according to a required wind speed parameter. A wind tunnel device characterized in that it is configured to switch nozzles accordingly.
JP16971983A 1983-09-14 1983-09-14 Wind tunnel testing device Pending JPS6060530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16971983A JPS6060530A (en) 1983-09-14 1983-09-14 Wind tunnel testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16971983A JPS6060530A (en) 1983-09-14 1983-09-14 Wind tunnel testing device

Publications (1)

Publication Number Publication Date
JPS6060530A true JPS6060530A (en) 1985-04-08

Family

ID=15891588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16971983A Pending JPS6060530A (en) 1983-09-14 1983-09-14 Wind tunnel testing device

Country Status (1)

Country Link
JP (1) JPS6060530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651482A (en) * 2015-12-29 2016-06-08 中国航天空气动力技术研究院 Control system and method of stop valve and total pressure regulating valve in hypersonic wind tunnel
CN110793746A (en) * 2019-09-10 2020-02-14 中国空气动力研究与发展中心超高速空气动力研究所 Wind tunnel test device for thrust measurement of oblique cutting nozzle of hypersonic vehicle
CN112462813A (en) * 2020-12-01 2021-03-09 中国空气动力研究与发展中心高速空气动力研究所 Temporary-stroke type high-speed wind tunnel pressure regulating valve safety control device and control method based on virtual valve position calculation
CN115655631A (en) * 2022-12-12 2023-01-31 杭州兆华电子股份有限公司 Method and device for detecting voiceprint in wind tunnel environment based on hydraulic generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651482A (en) * 2015-12-29 2016-06-08 中国航天空气动力技术研究院 Control system and method of stop valve and total pressure regulating valve in hypersonic wind tunnel
CN110793746A (en) * 2019-09-10 2020-02-14 中国空气动力研究与发展中心超高速空气动力研究所 Wind tunnel test device for thrust measurement of oblique cutting nozzle of hypersonic vehicle
CN110793746B (en) * 2019-09-10 2024-03-19 中国空气动力研究与发展中心超高速空气动力研究所 Wind tunnel test device for measuring thrust of oblique cutting spray pipe of hypersonic vehicle
CN112462813A (en) * 2020-12-01 2021-03-09 中国空气动力研究与发展中心高速空气动力研究所 Temporary-stroke type high-speed wind tunnel pressure regulating valve safety control device and control method based on virtual valve position calculation
CN112462813B (en) * 2020-12-01 2022-10-25 中国空气动力研究与发展中心高速空气动力研究所 Temporary-impulse type high-speed wind tunnel pressure regulating valve safety control device and control method based on virtual valve position resolving
CN115655631A (en) * 2022-12-12 2023-01-31 杭州兆华电子股份有限公司 Method and device for detecting voiceprint in wind tunnel environment based on hydraulic generator
CN115655631B (en) * 2022-12-12 2023-04-07 杭州兆华电子股份有限公司 Method and device for detecting voiceprint in wind tunnel environment based on hydraulic generator

Similar Documents

Publication Publication Date Title
CN204536220U (en) A kind of automatic checkout equipment of mobile phone camera base
CN105583164B (en) A kind of online leak tester of medicine bottle vacuum and the vacuum leak detecting system applied to leak tester
CN108776063A (en) A kind of valve rigidity compression tester
CN106226013A (en) Wind electricity blade ultrasonic no damage detection device
CN109029296B (en) Industrial track parallelism detection robot
CN106270271B (en) The full-automatic closing device of Closely locking nut
CN113125994B (en) Automatic bulb detection machine
CN214052673U (en) High-speed glass carousel check out test set
JPS6060530A (en) Wind tunnel testing device
CN206824559U (en) A kind of LED element automatic bending machine
CN110102504A (en) A kind of micromotor failure automatic detection device
JPH02204018A (en) Method and apparatus of raising injection molding
CN206405058U (en) Full-automatic drift, no-go gage nut, which are surveyed, selects machine
CN108917521A (en) Bearing block threaded hole position detection device
CN112729046A (en) Device for detecting height deviation of columnar workpiece
CN205027325U (en) Wheel pair axle journal automatic measure machine
CN208304301U (en) Air conditioning for automobiles fills spool automatic mounting machine
JPS6055241A (en) Air channel testing device
CN205861332U (en) A kind of safety valve of oil tank performance test machine
CN205879869U (en) Automatic mark formula arcwall face nondestructive test mechanism
CN204638581U (en) Armature disc automatic separation equipment
CN209508312U (en) A kind of tight detection device of steelmaking converter sublance plug clamp
CN208383639U (en) A kind of floor coverings surface sliding frictional wear test device
CN106563647B (en) Inductance pedestal check device
CN109990687A (en) A kind of detection device of silica gel cable connector