JPS6060223A - Engine for automobile - Google Patents

Engine for automobile

Info

Publication number
JPS6060223A
JPS6060223A JP58168887A JP16888783A JPS6060223A JP S6060223 A JPS6060223 A JP S6060223A JP 58168887 A JP58168887 A JP 58168887A JP 16888783 A JP16888783 A JP 16888783A JP S6060223 A JPS6060223 A JP S6060223A
Authority
JP
Japan
Prior art keywords
engine
valve
intake
intake valve
closing timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58168887A
Other languages
Japanese (ja)
Inventor
Yasuo Matsumoto
松本 泰郎
Kazuyuki Miidokoro
三井所 和幸
Seinosuke Hara
誠之助 原
Yasuo Yoshikawa
康雄 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58168887A priority Critical patent/JPS6060223A/en
Publication of JPS6060223A publication Critical patent/JPS6060223A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • F02D13/023Variable control of the intake valves only changing valve lift or valve lift and timing the change of valve timing is caused by the change in valve lift, i.e. both valve lift and timing are functionally related
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To enhance response to accelerating an engine which is supplied with lean mixture at the time of low-speed operation and to increase the engine output, by making the volume of an intake passage from the position thereof located on the downstream side of a throttle valve to the position of an intake valve equal to or smaller than 1/3 of the total stroke volume of the engine, and delaying the valve closing time of the intake valve at the time of high-speed operation of the engine. CONSTITUTION:In an engine which is supplied with lean mixture at the time of steady, low-speed operation and supplied with rich mixutre at the tine of high-output operation, the volume of an intake passage 28 from the position thereof located on the downstream side of a throttle valve 31 to the position of an intake valve 26 is selected to be equal to or smaller than 1/3 of the total stroke volume of the engine. Further, the valve closing timing of the intake valve 26 is varied according to the engine speed. That is, the valve closing timing of the intake valve 26 at the low-speed operation of the engine is set at the position near the bottom dead point while it is delayed at the time of high-speed operation of the engine. Thus, since the volume of the intake passage on the downstream side of the intake valve is small, it is enabled to enhance response for accelerating an engine and to raise the charging efficiency by the pulsation effect of intake-air flow.

Description

【発明の詳細な説明】 (技術分野) 本発明は自動車用エンジン、詳しくは低速定常走行時に
は稀薄混合気で出力走行時には濃厚混合気で燃焼を行う
ことにより、燃費の改善と有害排出物の低減とを図りつ
つ運転性の向上を図った自動車用エンジンに関する。
Detailed Description of the Invention (Technical Field) The present invention relates to an automobile engine, and more specifically, to improve fuel efficiency and reduce harmful emissions by burning a lean mixture during low-speed steady driving and a rich mixture when driving at high output. The present invention relates to an automobile engine that is designed to improve drivability while also achieving the following.

(従来技術) 近年とみに仲くなった省資源、低燃費の要求とも相まっ
て、排出ガスの無公害化は自動車用エンジンにおける最
も大きな課題の1つである。
(Prior Art) Coupled with the recent demands for resource conservation and low fuel consumption, making exhaust gas pollution-free is one of the biggest challenges for automobile engines.

一般に、排気ガス中のHC,、COの発生はエンジンの
シリンダ内における不完全燃焼によるものであり、充分
な空気を供給し高温下で効率よく燃焼させれば、それら
の生成は大幅に減少させることが可能であり、これはエ
ンジンの燃焼効率の向上ともつながる。これに反して、
排気ガス中のNOxの発生を減少させることは、本質的
に燃焼ザイクルの最高温度を下げ、エンジンの燃焼効率
の向上と相反する傾向にある。
In general, the generation of HC, CO in exhaust gas is due to incomplete combustion within the engine cylinder, and their generation can be significantly reduced if sufficient air is supplied and combustion is performed efficiently at high temperatures. This also leads to improved engine combustion efficiency. On the contrary,
Reducing the generation of NOx in the exhaust gas inherently lowers the maximum temperature of the combustion cycle, which tends to be at odds with improving engine combustion efficiency.

従来その対策方法の1つととして混合比を変える方式が
知られており、この方式は燃焼を出来る限り稀薄混合気
で効率よく燃焼させるごとにより、燃焼効率を損なわず
に排気ガス中の有害成分(IIC,Co、N0x)の減
少を図ろうとするものである。
Conventionally, one known countermeasure is to change the mixture ratio. This method burns as lean a mixture as possible and efficiently burns the mixture, thereby eliminating harmful components in the exhaust gas ( This aims to reduce IIC, Co, NOx).

この方式を採用した従来の自動車用エンジンとしては、
例えば特公昭57−12011号公報に記載されたもの
がある。このエンジンを第1〜3図に基づき説明すると
、1はシリンダヘッドを示し、シリンダへソド1には吸
・排気弁2.3および3個の点火プラグ4.5.6が設
けられている。このシリンダヘッド1はシリンダ7内に
移動可能に収納されたピストン8とともに燃焼室9を画
成しており、燃焼室9には図示していない吸気通路を通
して気化器から混合気が供給される。気化器は燃焼を促
進するため微粒化装置あるいは加熱による気化装置等を
備えており、通常はHC,Co、NOx共極めて少ない
混合比20程度の稀薄混合気を、また加速時等は濃厚混
合気を供給する。点火プラグ4.5.6には、クランク
ケース10内のクランクシャフト11に同期してその接
点が回転するディストリビュータ12.13.14から
点火信号がそれぞれ供給されており、これらの点火信号
により点火プラグ4.5.6はすべて同時に点火する。
Conventional automobile engines that use this method are:
For example, there is one described in Japanese Patent Publication No. 57-12011. This engine will be explained based on FIGS. 1 to 3. Reference numeral 1 indicates a cylinder head, and the cylinder head 1 is provided with an intake/exhaust valve 2.3 and three spark plugs 4.5.6. This cylinder head 1 defines a combustion chamber 9 together with a piston 8 movably housed in a cylinder 7, and an air-fuel mixture is supplied to the combustion chamber 9 from a carburetor through an intake passage (not shown). The carburetor is equipped with an atomization device or a heating vaporization device to promote combustion, and normally produces a lean mixture with a mixture ratio of about 20, with very little HC, Co, and NOx, and a rich mixture during acceleration etc. supply. Ignition signals are supplied to the spark plugs 4.5.6 from distributors 12.13.14 whose contacts rotate in synchronization with the crankshaft 11 in the crankcase 10, and these ignition signals cause the spark plugs to 4.5.6 all fire at the same time.

このような自動車用エンジンは、混合比を20付近に維
持するとともに、混合気の稀薄化により生ずる燃焼速度
の遅れに対して3個の点火プラグ4.5.6を同時に点
火させ、火炎速度そのものは遅いが3方から火炎が伝播
することにより、所定のクランク角内で燃焼を完了させ
燃焼遅れによる出力低下、着火ミスによるエンジン不調
をなくし実用的な出力特性を得ている。
Such automobile engines maintain the mixture ratio at around 20, simultaneously ignite three spark plugs 4.5.6 to counter the delay in combustion speed caused by the dilution of the mixture, and maintain the flame speed itself. Although the flame propagation is slow, by propagating the flame from three directions, combustion is completed within a predetermined crank angle, eliminating the loss of output due to combustion delays and engine malfunctions due to ignition errors, thereby achieving practical output characteristics.

また、混合気をNOx発生が少ない混合比20付近で上
記のように効率よく燃焼させることにより、排気ガス中
のNOxの減少と共にHC,COも最小に抑えつつ燃費
の向上を図っている。
In addition, by efficiently burning the air-fuel mixture at a mixture ratio of around 20, where NOx generation is low, as described above, fuel efficiency is improved while reducing NOx in exhaust gas and minimizing HC and CO.

しかしながら、このような従来の自動車用エンジンにあ
っては、低速定常走行では混合比20程度の稀薄混合気
で運転し、絞り弁が全開となる出力走行時のみ混合気を
濃厚にして出力不足を補う構成となっていたため、低速
定常走行から出力走行に移行する際、絞り弁の作動に対
して吸気通路により供給される混合気の混合比 −変化
が緩慢であることから、絞り弁下流側の吸気通路(例え
ば、吸気マニホルド)番λ残留している稀薄混合気が供
給された後に、濃厚混合気が供給される。このため、エ
ンジン出方の立ち上がりが一瞬遅れいわゆる加速の息つ
きを生してしまう。その結果、運転車者の意図に反して
車両をスムーズに加速することができず運転性が悪化す
るという問題点があった。
However, such conventional automobile engines operate with a lean mixture with a mixture ratio of about 20 during low-speed steady driving, and enrich the mixture only when driving at full power when the throttle valve is fully open to avoid a lack of output. Since the mixture ratio of the air-fuel mixture supplied through the intake passage in response to the operation of the throttle valve changes slowly when transitioning from low-speed steady driving to power driving, the downstream side of the throttle valve changes slowly. After intake passage (eg, intake manifold) number λ, the remaining lean mixture is supplied, the rich mixture is supplied. As a result, the start-up of the engine is delayed for a moment, resulting in what is called a pause in acceleration. As a result, there is a problem in that the vehicle cannot be smoothly accelerated against the driver's intention, resulting in poor drivability.

(発明の目的) そこで本発明は、絞り弁下流から吸気弁までの吸気通路
容積をエンジン総排気量の1/3以下に設定するととも
に、吸気弁の閉弁時期をエンジン回転数に応して制御す
ることにより、絞り弁の作動に対してシリンダ内に供給
される混合気の混合比変化を速やかに行い加速時の息つ
き現象を防止するとともに、低速時にお&Jる混合気の
充填効率を高めてエンジンの運転性を向上させることを
目的としている。
(Purpose of the Invention) Therefore, the present invention sets the intake passage volume from the downstream side of the throttle valve to the intake valve to 1/3 or less of the total engine displacement, and also adjusts the closing timing of the intake valve according to the engine speed. By controlling the mixture ratio of the air-fuel mixture supplied into the cylinder in response to the operation of the throttle valve, it prevents the breathing phenomenon during acceleration, and also reduces the filling efficiency of the air-fuel mixture that decreases at low speeds. The purpose is to increase the engine's drivability.

(発明の構成) 本発明による自動車用エンジンは、低速定常走行では稀
薄混合気が、出力走行では濃厚混合気が供給される。そ
して、上記自動車用エンジンは絞り弁下流から吸気弁ま
での吸気通路容積をエンジン総排気量の1/3以下に設
定するとともに、吸気弁の閉弁時期を可変にする弁開閉
時期可変手段を設け、低回転時には吸気弁を下死点近傍
で閉弁し高回転時には下死点より遅く閉弁することによ
り、絞り弁の作動に対してシリンダ内に供給される混合
気の混合比変化を速やかに行うとともに、低速時におり
る混合気の充填効率を高めるものである。
(Structure of the Invention) The automobile engine according to the present invention is supplied with a lean air-fuel mixture during low-speed steady running, and a rich air-fuel mixture during power running. The above-mentioned automobile engine has the intake passage volume from the throttle valve downstream to the intake valve set to 1/3 or less of the total engine displacement, and is provided with a valve opening/closing timing variable means for varying the closing timing of the intake valve. By closing the intake valve near bottom dead center at low speeds and later than bottom dead center at high speeds, changes in the mixture ratio of the air-fuel mixture supplied into the cylinder in response to throttle valve operation are quickly controlled. This is to improve the filling efficiency of the air-fuel mixture that flows at low speeds.

(実施例) 以下、本発明を図面に基いて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第4〜6図は本発明の第1実施例を示す図であり、本発
明を直列4気筒エンジンに適用した例を示している。
4 to 6 are diagrams showing a first embodiment of the present invention, and show an example in which the present invention is applied to an in-line four-cylinder engine.

まず、構成を説明すると、21は直列に4個のシリンダ
22が配設されたエンジンを示し、エンジン21のシリ
ンダヘッド23には各シリンダ22内の燃焼室に連通ず
る吸気ボート24および排気ボート25が形成されてい
る。これらの吸気ボート24および排気ボート25は吸
気弁26および排気弁27によりそれぞれ開閉される。
First, to explain the configuration, reference numeral 21 indicates an engine in which four cylinders 22 are arranged in series, and the cylinder head 23 of the engine 21 has an intake boat 24 and an exhaust boat 25 that communicate with the combustion chamber in each cylinder 22. is formed. These intake boats 24 and exhaust boats 25 are opened and closed by intake valves 26 and exhaust valves 27, respectively.

また、各シリンダ22には吸気ボート24を介して吸気
通路28が接続されるとともに、排気ボー1−25を介
して排気通路29が接続されている。吸気通路28は図
示していないエアクリーナを介して外気に連通しており
、その通路途中には上流側から気化器30および絞り弁
31が順次配設されている。また、吸気通路28は絞り
弁31下流側に位置する集合部32と、該集合部32か
ら分岐して各シリンダ22内の燃焼室に連通ずる4個の
分岐部33と、を有しており、分岐部33の長さβ(第
5図参照)は出来る限り短く設定される。そして、絞り
弁31下流から吸気弁26までの吸気通路28の容積(
すなわち、集合部32および4個の分岐部33の容積の
総和)はエンジン21の総排気1(4(11i1ノシI
J 7ダ22容積の総和)の1/3以下に設定されてい
る。前記気化器30は上記のように設定される吸気通路
28に絞り弁3■の開度に応して所定混合比の混合気を
供給しており、低速定席走行時(絞り弁31の開度がO
〜3/4である範囲をいう)には混合比20程度の稀薄
混合気を、出力走行時(絞り弁31)の開度が3/4を
超え4/4までの範囲をいう)には混合比14.7 (
理論空燃比)かあるいはそれ以下の濃厚混合気を供給す
る。
Further, an intake passage 28 is connected to each cylinder 22 via an intake boat 24, and an exhaust passage 29 is connected via an exhaust boat 1-25. The intake passage 28 communicates with the outside air via an air cleaner (not shown), and a carburetor 30 and a throttle valve 31 are sequentially disposed in the middle of the passage from the upstream side. Further, the intake passage 28 has a gathering portion 32 located downstream of the throttle valve 31, and four branch portions 33 that branch from the gathering portion 32 and communicate with the combustion chambers in each cylinder 22. , the length β (see FIG. 5) of the branch portion 33 is set as short as possible. The volume of the intake passage 28 from the downstream side of the throttle valve 31 to the intake valve 26 (
That is, the total volume of the collecting part 32 and the four branch parts 33) is the total exhaust gas 1 (4 (11i1 no I) of the engine 21.
It is set to 1/3 or less of the total volume of J 7 da 22 volumes. The carburetor 30 supplies the air-fuel mixture at a predetermined mixture ratio to the intake passage 28 set as described above according to the opening degree of the throttle valve 3. is O
- 3/4), use a lean mixture with a mixture ratio of about 20, and during power running (referring to the range where the throttle valve 31 opening degree exceeds 3/4 to 4/4). Mixing ratio 14.7 (
A rich mixture at or below the stoichiometric air-fuel ratio is supplied.

また、吸気弁26は第6図に示す弁開閉時期可変手段3
4により、その閉弁時期が可変になされている。弁開閉
時期可変手段34は一端がエンジン回転に同期して回転
する弁駆動カム35に当接し他端が吸気弁26のステム
エンF’ 26 aに当接するロッカアーム36と、ロ
ッカアーム36の背面にその長手方向に沿って配設され
該ロッカアーム36の回動軸37を吸気弁26の略軸線
方向に移動可fiHに保持するとともにスプリング38
によりロッカアーム36から離隔する方向にイ」勢され
ているレバー39と、シリンダヘッド23に固定された
ブラケット40に埋設されるとともにその先端部である
アクチュエータ41がレバー39の端部に当接し図中上
下方向に移動してロッカアーム36とレノ\−39との
離隔距離を変える油圧ピボット42と、を有している。
Further, the intake valve 26 is connected to the valve opening/closing timing variable means 3 shown in FIG.
4, the valve closing timing is made variable. The valve opening/closing timing variable means 34 includes a rocker arm 36, one end of which contacts a valve drive cam 35 that rotates in synchronization with engine rotation, and the other end of which contacts a stem engine F' 26a of the intake valve 26. The rotation shaft 37 of the rocker arm 36 is held movable in substantially the axial direction of the intake valve 26, and the spring 38
The lever 39 is urged upwardly in the direction away from the rocker arm 36, and the actuator 41, which is embedded in a bracket 40 fixed to the cylinder head 23 and is the tip thereof, comes into contact with the end of the lever 39, as shown in the figure. It has a hydraulic pivot 42 that moves in the vertical direction to change the separation distance between the rocker arm 36 and the reno 39.

この弁開閉時期可変手段34はエンジンの回転数に基い
てオイルギヤラリ43がら油圧ピボット42の第1油圧
室44に供給する制御油圧を変えることにより、アクチ
ュエータ41の移動距離を変えレバー39とロッカアー
ム36との離隔距離を変更して該ロッカアーム36の揺
動支点をその背面に沿って移動させ吸気弁26のリフト
量および開閉時期を可変とする。すなわち、エンジン2
1が低回転域にあるときには、オイルギヤラリ43から
供給される制御油圧が第2油圧室45内の油圧およびコ
イルスプリング46の付勢力より小さくアクチュエータ
41が下方へ移動せずレバー39とロッカアーム36と
の離隔距離が大きい。このため、弁駆動カム350回転
によりロッカアーム36はその支点を移動させながら図
中時計回りの方向に回動するが、この場合ロッカアーム
36の支点は該アーム36の屈曲部の頂点近傍までは移
動しない。したがって、バルブスプリング47により閉
弁方向にイ」勢されている吸気弁がのリフト量(押し下
げ量)は小さく、また開弁時期が遅くなり閉弁時期が早
くなる。一方、エンジン21が高回転域にあるときには
、上記制御油圧が第2油圧室45内の油圧およびコイル
スプリング46の付勢力より大きく逆止弁4Bが閉弁し
て第2油圧室45に制御油圧が導入されアクチュエータ
41が下方へ移動してレバー39とロッカアーム36と
の離隔距離を狭める。この場合、ロッカアーム36は弁
駆動カム35の回転によりその支点を徐々に該アーム3
6の屈曲部頂点近傍まで移動させながら図中時計回りの
方向に回動する。
This valve opening/closing timing variable means 34 changes the movement distance of the actuator 41 by changing the control oil pressure supplied from the oil gear rally 43 to the first hydraulic chamber 44 of the hydraulic pivot 42 based on the engine rotation speed. The swinging fulcrum of the rocker arm 36 is moved along the back surface of the rocker arm 36 by changing the distance between the rocker arm 36 and the lift amount and opening/closing timing of the intake valve 26. That is, engine 2
1 is in the low rotation range, the control hydraulic pressure supplied from the oil gear rally 43 is smaller than the hydraulic pressure in the second hydraulic chamber 45 and the biasing force of the coil spring 46, and the actuator 41 does not move downward, preventing the lever 39 and rocker arm 36 from moving downward. Separation distance is large. Therefore, as the valve drive cam 350 rotates, the rocker arm 36 rotates in the clockwise direction in the figure while moving its fulcrum, but in this case, the fulcrum of the rocker arm 36 does not move to the vicinity of the apex of the bent portion of the arm 36. . Therefore, the lift amount (depression amount) of the intake valve, which is urged in the valve closing direction by the valve spring 47, is small, and the valve opening timing is delayed and the valve closing timing is early. On the other hand, when the engine 21 is in a high rotation range, the control oil pressure is greater than the oil pressure in the second hydraulic chamber 45 and the biasing force of the coil spring 46, and the check valve 4B closes, causing the control oil pressure to flow into the second hydraulic chamber 45. is introduced and the actuator 41 moves downward to narrow the distance between the lever 39 and the rocker arm 36. In this case, the rocker arm 36 gradually changes its fulcrum by the rotation of the valve drive cam 35.
Rotate in the clockwise direction in the figure while moving it to the vicinity of the apex of the bending part 6.

したがって、吸気弁ルのリフト量が大きくなるとともに
、開弁時期が早くなり閉弁一時期が遅くなる。
Therefore, as the lift amount of the intake valve increases, the valve opening timing becomes earlier and the valve closing timing becomes later.

なお、シリンダヘッド23には各シリンダ22に対向す
る位置に1つのシリンダ22毎に複数の点火プラグ(図
示路)が取り付けられており、これらの点火プラグはシ
リンダ22毎にすべて同時に点火する。
Note that a plurality of spark plugs (shown in the diagram) are attached to the cylinder head 23 at positions facing each cylinder 22 for each cylinder 22, and these spark plugs ignite for each cylinder 22 at the same time.

次に作用を説明するが、最初に本発明の原理について説
明する。
Next, the operation will be explained, but first, the principle of the present invention will be explained.

第7図は一般的な自動車エンジンにおいて総排気量18
00cc、回転数150Orpm 、 )ルク3kg・
mのとき1、NOxの低減率90%が得られるように排
気還流(EGR)を行った場合の混合比と燃料消費率と
の関係を示す図である。この図から明らかであるように
、混合比が稀薄化する程燃料消費率が低減し、またEG
R量も減少している。特に、混合比20付近においては
、燃焼温度が低下してNOxの発生が少なくなるととも
に燃料消費率も極めて少ないものとなる。しかしながら
、EGRを全く行わずにNOxの低減率90%を達成し
混合比20以上で運転することができる実用的なエンジ
ンは実際上未だ実現されていない。その理由は大別して
2つあり、第1の理由は混合比20以上で運転した場合
エンジン加速時に大きな息つき現象が発生して運転性が
悪化することであり、第2の理由はこのような息つき現
象を防止するために、例えば吸気通路の長さを短くする
と低速時に混合気の充填効率が低下しやはり運転性が悪
化することである。
Figure 7 shows a typical car engine with a total displacement of 18
00cc, rotation speed 150Orpm, ) Luk 3kg・
FIG. 3 is a diagram showing the relationship between the mixture ratio and the fuel consumption rate when exhaust gas recirculation (EGR) is performed so as to obtain a NOx reduction rate of 90% when m is 1. As is clear from this figure, as the mixture ratio becomes leaner, the fuel consumption rate decreases, and the EG
The amount of R is also decreasing. In particular, when the mixture ratio is around 20, the combustion temperature decreases, the generation of NOx decreases, and the fuel consumption rate becomes extremely low. However, a practical engine that can achieve a NOx reduction rate of 90% without performing any EGR and can be operated at a mixture ratio of 20 or more has not yet been realized. There are two main reasons for this.The first reason is that when operating at a mixture ratio of 20 or more, a large breathing phenomenon occurs when the engine accelerates, resulting in poor drivability.The second reason is that In order to prevent the breathing phenomenon, for example, if the length of the intake passage is shortened, the air-fuel mixture filling efficiency decreases at low speeds, which also deteriorates drivability.

すなわち、このような稀薄燃焼を行うエンジンにおいて
、第8図aに示すように所定の加速タイミングも、で低
速定常走行から絞り弁開度を全開とする加速走行(出力
走行)に移行する際、低速定常走行時に混合比14〜1
5程度の理論空燃比近傍の混合気で運転していれば、第
8図すに破線B、で表示するように混合気を直しに濃化
して第8図Cに同しく破線C1で表示するようにエンジ
ン出力を速やかに増大さ−ヒることができる(息つき現
象が発生しない)。一方、低速定常走行時に混合比20
程度の稀薄混合気で運転していれば、第8図すに実線B
2で表示するように加速タイミングt、から遅れたタイ
ミングt2でようやく混合気を濃化することができ、第
8図Cに実線C2で表示するようにエンジン出力の増大
が遅れて加速応答遅れ(タイムラグ)Tが生じる(すな
わち、大きな息つき現象が発生ずる)。この原因は従来
技術の項でも説明したように、加速走行時には混合比を
理論空燃比と同程度かあるいはそれ以上に濃化しなけれ
ば加速に必要なエンジン出力を十分に確保することがで
きないが、絞り弁の開度変化に対して混合比の変化が緩
慢であることからどうしても混合比変化に応答遅れが生
じるためである。
In other words, in an engine that performs such lean combustion, as shown in FIG. Mixing ratio 14-1 during low speed steady driving
If the engine is operating with an air-fuel mixture near the stoichiometric air-fuel ratio of about 5, the mixture will be enriched as shown by the broken line B in Figure 8, and the same will be shown by the broken line C1 in Figure 8C. As a result, the engine output can be increased quickly (no breathing phenomenon occurs). On the other hand, during low-speed steady driving, the mixture ratio is 20
If you are operating with a fairly lean mixture, the solid line B in Figure 8
2, the mixture can finally be enriched at timing t2, which is delayed from acceleration timing t, and as shown by solid line C2 in Figure 8C, the increase in engine output is delayed and the acceleration response is delayed ( time lag) T occurs (that is, a large breathing phenomenon occurs). The reason for this is, as explained in the section on prior art, that during acceleration, the mixture ratio must be enriched to the same level or higher than the stoichiometric air-fuel ratio in order to secure sufficient engine output for acceleration. This is because the mixture ratio changes slowly with respect to the opening degree change of the throttle valve, so a response delay inevitably occurs in the mixture ratio change.

ところで、このような不具合を解消するには、絞り弁が
全開となる加速タイミングt1で速やかに濃厚混合気を
シリンダ内に供給すればよいことは明白である。その方
法として、例えば、絞り弁下流から吸気弁までの吸気通
路容積をエンジン総排気量の1/3以下に減少させれば
、加速応答遅れを実用上支障のない値以下とすることが
できるという事実が実験の結果判明している。第9.1
0図は総排気量1800ccのエンジンについてその実
験結果を示す図である。第9図において、曲線D2は上
記容積が800cc (総排気量の約1/2)である従
来の吸気通路における稀薄混合気からの加速特性を示し
、また曲線D3はその容積が600cc (総排気量の
l/3)、曲線り一はその容積が450cc (m排気
量の1/4)である場合をそれぞれ示し、さらに曲線り
、はその容積が800ccで理論空燃比近傍の濃厚混合
気からの加速特性を示している。また、第1θ図におい
て、加速応答遅れが実用上支障のない値T、となる場合
を上記容積が800ccで濃厚混合気からの加速時とす
ると、稀薄混合気からの加速応答遅れは上記容積を80
0cc 、600CC’−450ccと変えた場合、図
中実線上のE2、E3、E−4とそれぞれ変化する。以
上のことから、上記容積を少なくともエンジン総排気量
の1/3以下に設定すれば、加速応答遅れをなくするこ
とができる。
By the way, in order to eliminate such a problem, it is clear that the rich mixture should be promptly supplied into the cylinder at the acceleration timing t1 when the throttle valve is fully opened. For example, if the volume of the intake passage from downstream of the throttle valve to the intake valve is reduced to 1/3 or less of the total engine displacement, the acceleration response delay can be reduced to a value that does not cause any practical problems. This fact has been established through experiments. Section 9.1
Figure 0 is a diagram showing the experimental results for an engine with a total displacement of 1800 cc. In FIG. 9, curve D2 shows the acceleration characteristics from a lean mixture in a conventional intake passage whose volume is 800 cc (approximately 1/2 of the total displacement), and curve D3 shows the acceleration characteristics from a lean mixture in the conventional intake passage whose volume is 600 cc (about 1/2 of the total displacement). 1/3 of the volume), the curve 1 indicates the case where the volume is 450cc (1/4 of the m displacement), and the curve 1 indicates the case where the volume is 800cc and the rich mixture near the stoichiometric air-fuel ratio. It shows the acceleration characteristics of In addition, in Figure 1θ, if the case where the acceleration response delay is a value T that does not cause any practical problem is when the volume is 800cc and acceleration is performed from a rich mixture, then the acceleration response delay from a lean mixture is 80
When changing from 0cc to 600CC'-450cc, the values change to E2, E3, and E-4 on the solid line in the figure, respectively. From the above, if the volume is set to at least ⅓ or less of the total engine displacement, the acceleration response delay can be eliminated.

しかしながら、吸気通路容積を減少させるには吸気抵抗
の点から吸気通路の長さを短くするのが一般的であり、
その場合低回転域において吸気の脈動効果を活用するこ
とができず混合気の充填効率が低下する(エンジン出力
の低下を招き、特に低速出力走行時の運転性が悪化する
)という新たな不具合が発生ずる。これは前述した第2
の理由に該当する。すなわち、第11図に示すように吸
気通路の長さしを0〜3mの範囲で変化させた場合、該
長さLが短くなると吸気の脈動効果により高回転域での
充填効率は高められるが、低回転域でのそれは低下して
しまう。ここで、吸気通路の長さしと吸気の脈動効果を
得ることができる同調回転数NOとの間には次式で示さ
れる関係がある。
However, in order to reduce the intake passage volume, it is common to shorten the length of the intake passage from the viewpoint of intake resistance.
In this case, a new problem arises: the pulsating effect of the intake air cannot be utilized in the low rotation range, and the air-fuel mixture filling efficiency decreases (resulting in a decrease in engine output, which worsens drivability, especially when driving at low speeds). Occurs. This is the second
This falls under the following reason. That is, when the length of the intake passage is changed in the range of 0 to 3 m as shown in Fig. 11, the shorter the length L, the more the filling efficiency in the high rotation range is increased due to the pulsation effect of the intake air. , it decreases in the low rotation range. Here, there is a relationship expressed by the following equation between the length of the intake passage and the tuned rotational speed NO at which the intake pulsation effect can be obtained.

ただし、 nニジリンダ数 a:音速(m/sec’l 上式は吸気通路の長さしが短くなると、上記同調回転数
Noが上昇し低回転域での充填効率が低下することを示
している。
However, n cylinder number a: speed of sound (m/sec'l) The above equation shows that as the length of the intake passage becomes shorter, the tuned rotation speed No. increases and the filling efficiency in the low rotation range decreases. .

一方、充填効率は吸気弁の閉弁時期に対して第12図に
示す相関関係(すなわち、吸気の慣性効果)を有してい
る。この図において、曲線F1は通電の閉弁時期(例え
ば、下死点後52゜近傍)、曲線F2は早い(下死点近
傍)閉弁時期におけるそれぞれの充填効率を示しており
、閉弁時期を早めると低回転域での充填効率が高められ
る。これは、次のような理由による。すなわち、吸気行
稈の下死点では吸気流入の遅れ(吸気の慣性)によって
シリンダ内圧力は吸気通路圧力よりも低い。したがって
、未だ吸気の流入が続いているので、吸気弁の閉弁時期
を遅らせたほうが充填効率が高くなる。下死点を過ぎる
と、ピストンによる圧縮が始まり、圧力が上昇し始め、
やがてシリンダ内圧は一気通路圧力に等しくなる。ここ
でなお吸気弁が開いていると、今度はシリンダ内圧が吸
気通路圧力よりも高くなって、一度シリンダに吸入され
たものが吸気通路へ押し戻されることになる。したがっ
て、最大の充填効率を得るには、シリンダ内圧が吸気通
路圧力に等しくなった瞬時に吸気弁を閉じればよい。回
転数が高いときは吸気の流入遅れが大きいため、最大の
充填効率を得る閉弁時期は遅くなる。一方、回転数が低
い、ときは、逆に吸気弁を早く閉しる場合に最大の充填
効率が得られる。このような現象は、一般には吸気の慣
性効果と称されている。
On the other hand, the filling efficiency has a correlation (that is, the inertia effect of intake air) shown in FIG. 12 with respect to the closing timing of the intake valve. In this figure, the curve F1 shows the filling efficiency at the valve closing timing of energization (for example, near 52 degrees after the bottom dead center), and the curve F2 shows the filling efficiency at the early valve closing timing (near the bottom dead center). If the speed is accelerated, charging efficiency in the low rotation range will be increased. This is due to the following reasons. That is, at the bottom dead center of the intake culm, the cylinder internal pressure is lower than the intake passage pressure due to a delay in intake air inflow (intake inertia). Therefore, since the intake air is still flowing in, the filling efficiency will be higher if the closing timing of the intake valve is delayed. After passing the bottom dead center, compression by the piston begins and the pressure begins to rise,
Eventually, the cylinder internal pressure becomes equal to the stroke passage pressure. If the intake valve is still open at this point, the cylinder internal pressure will now become higher than the intake passage pressure, and what was once sucked into the cylinder will be pushed back into the intake passage. Therefore, in order to obtain maximum filling efficiency, the intake valve should be closed at the instant when the cylinder internal pressure becomes equal to the intake passage pressure. When the rotational speed is high, the delay in intake air inflow is large, so the valve closing timing for obtaining maximum charging efficiency is delayed. On the other hand, when the engine speed is low, the maximum filling efficiency can be obtained by closing the intake valve early. Such a phenomenon is generally referred to as the inertia effect of intake air.

本発明は、吸気通路容積を1/3以下に設定して加速応
答遅れを防止する一方、吸気弁の閉弁時期を回転数に応
じて可変制御し低回転域での充填効率を高めることによ
り、稀薄混合気による実用的なエンジンを得るという原
理に基づいている。
The present invention prevents delay in acceleration response by setting the intake passage volume to 1/3 or less, while variably controlling the closing timing of the intake valve according to the rotation speed to increase filling efficiency in the low rotation range. , is based on the principle of obtaining a practical engine with a lean mixture.

次に、本実施例によるエンジンの作用について説明する
Next, the operation of the engine according to this embodiment will be explained.

低速定席走行においては、混合気は混合比20程度に稀
薄化されて吸、気通路28から吸気弁26を介してシリ
ンダ22内に供給される。このとき、吸気弁26の閉弁
時期は、弁開閉時期可変手段34により早められ第13
図に曲線G、で示すように略下死点(B D C)近傍
となっている(なお、第13図中TDCは上死点を示す
)。このため、稀薄混合気は高い充填効率でシリンダ2
2内に供給される。この稀薄混合気は所定の着火タイミ
ングに複数の点火プラグで着火され、一般の実用的エン
ジンと同程度の燃焼完了時間で燃焼する。したがって、
十分なエンジン出力を得ることができるとともに、あわ
せてNOxの低減と燃費の改善とを図ることができる。
During low-speed, fixed-seat driving, the air-fuel mixture is diluted to a mixture ratio of about 20 and is supplied into the cylinder 22 from the air passage 28 through the intake valve 26. At this time, the closing timing of the intake valve 26 is advanced by the valve opening/closing timing variable means 34.
As shown by curve G in the figure, it is approximately in the vicinity of bottom dead center (BDC) (TDC in FIG. 13 indicates top dead center). For this reason, the lean mixture can be filled into the cylinder 2 with high filling efficiency.
Supplied within 2 days. This lean air-fuel mixture is ignited by multiple spark plugs at predetermined ignition timing, and burns in about the same combustion completion time as a general practical engine. therefore,
Sufficient engine output can be obtained, and at the same time, NOx can be reduced and fuel efficiency can be improved.

次に、所定の加速タイミングで絞り弁31を全開にする
と、気化器30により混合気が理論空燃比近傍に濃化さ
れ、吸気通路四を通してシリンダ22内に供給される。
Next, when the throttle valve 31 is fully opened at a predetermined acceleration timing, the air-fuel mixture is enriched to near the stoichiometric air-fuel ratio by the carburetor 30, and is supplied into the cylinder 22 through the intake passage 4.

このとき、絞り弁31下流側の吸気通路28容積が減少
しており、すなわちエンジン21の総排気量の1/3以
下に設定されており、濃厚混合気は直ちにシリンダ22
内に供給される。したがって、絞り弁31の作動に対し
て加速応答遅れが生ずることなくエンジン出力を速やか
に増大させ、出力走行にスムーズに移行することができ
る。また、この出力走行時においてエンジン21が高回
転域にあれば、弁開閉時期可変手段34により吸気弁2
6の閉弁時期が第13図に曲線G2で示すように下死点
1&52°近傍まで遅くなされており、混合気は吸気の
慣性効果を十分に活用し高い充填効率でシリンダ22内
に供給される。さらにこのとき、吸気は吸気通路28の
長さが短いことから、吸気の脈動効果をも受けている。
At this time, the volume of the intake passage 28 on the downstream side of the throttle valve 31 is reduced, that is, it is set to 1/3 or less of the total displacement of the engine 21, and the rich mixture is immediately transferred to the cylinder 22.
supplied within. Therefore, the engine output can be quickly increased without causing a delay in acceleration response to the operation of the throttle valve 31, and a smooth transition to power running can be achieved. In addition, if the engine 21 is in a high rotation range during this output running, the valve opening/closing timing variable means 34 controls the intake valve 21.
As shown by curve G2 in Fig. 13, the valve closing timing of No. 6 is delayed to near the bottom dead center 1° and 52°, and the air-fuel mixture is supplied into the cylinder 22 with high filling efficiency by fully utilizing the inertia effect of the intake air. Ru. Furthermore, at this time, since the length of the intake passage 28 is short, the intake air is also affected by the pulsation effect of the intake air.

したがって、高回転域におけるエンジン出力をより一層
向上させることができる。
Therefore, the engine output in the high rotation range can be further improved.

一方、低回転域にあるときには、吸気弁26の閉弁時期
が早められており、吸気の慣性効果により充填効率のピ
ークが低回転域に移行している。したがって、低速出力
走行時におけるエンジン出力も向上させることができる
On the other hand, when the engine is in a low engine speed range, the closing timing of the intake valve 26 is advanced, and the peak of the filling efficiency shifts to the low engine speed range due to the inertia effect of the intake air. Therefore, engine output during low-speed power running can also be improved.

次に、第14〜16図は本発明の第2実施例を示す図で
あり、この実施例では弁開閉時期可変手段51の構成が
前記実施例と異なる。すなわち、吸気弁26のステムエ
ンド26aにはロッカアーム52の一端が当接しており
、該ロッカアーム52の他端はエンジン回転に同期して
回転する弁駆動カム53に当接している。弁駆動カム5
3はカムシャフト54の軸線方向に沿って順次配設され
た高速カム部53aおよび低速カム部53bを有してい
る。また、ロッカアーム52はロッカシャフト55の軸
線方向に沿って移動可能であり、このロッカアーム52
の移動はソレノイド56を有する電磁アクチユエ−り5
7への通電をエンジン回転数に基づいて制御することに
より行われる。電磁アクチュエータ57はエンジン高回
転時そのソレノイド56に通電されると、ロッカアーム
52を第14図中上方へ移動させて該ロッカアーム52
の他端を高速カム部53aに当接させ第16図に曲線H
2で示すように吸気弁26をリフトさせ(閉弁時期を遅
くする)、一方、エンジン低回転時ソレノイド56への
通電が遮断されると、ロッカアーム52を下方へ移動さ
せてその他端を低速カム部53bに当接させ第16図に
曲線H8で示すように吸気弁26をリフトさせる(閉弁
時期を早める)。
Next, FIGS. 14 to 16 are diagrams showing a second embodiment of the present invention, and in this embodiment, the configuration of the valve opening/closing timing variable means 51 is different from the previous embodiment. That is, one end of a rocker arm 52 is in contact with the stem end 26a of the intake valve 26, and the other end of the rocker arm 52 is in contact with a valve drive cam 53 that rotates in synchronization with engine rotation. Valve drive cam 5
3 has a high speed cam portion 53a and a low speed cam portion 53b which are sequentially arranged along the axial direction of the camshaft 54. Further, the rocker arm 52 is movable along the axial direction of the rocker shaft 55.
The movement is performed by an electromagnetic actuator 5 having a solenoid 56.
This is done by controlling the energization to 7 based on the engine speed. When the solenoid 56 of the electromagnetic actuator 57 is energized at high engine speed, it moves the rocker arm 52 upward in FIG.
The other end is brought into contact with the high-speed cam portion 53a and curve H is shown in FIG.
2, the intake valve 26 is lifted (delaying the valve closing timing). On the other hand, when the power to the solenoid 56 is cut off during low engine speed, the rocker arm 52 is moved downward and the other end is connected to the low speed cam. The intake valve 26 is brought into contact with the portion 53b to lift the intake valve 26 as shown by curve H8 in FIG. 16 (to advance the valve closing timing).

上記ロッカアーム52、弁駆動カム53および電磁アク
チュエータ57は全体として弁開閉時期可変手段51を
構成している。その他の部分は前記実施例と同様である
The rocker arm 52, valve drive cam 53, and electromagnetic actuator 57 collectively constitute a valve opening/closing timing variable means 51. The other parts are the same as those in the previous embodiment.

したがって、この実施例においても前記実施例と同様の
効果を得ることができるが、吸気弁26の開弁時期が一
定であるため排気弁27とのバルブオーバラップが変化
せず、特に吸気弁26開弁時における吸気の慣性を効率
よく利用することができる利点がある。
Therefore, in this embodiment, the same effects as in the previous embodiment can be obtained, but since the opening timing of the intake valve 26 is constant, the valve overlap with the exhaust valve 27 does not change. This has the advantage that the inertia of intake air when the valve is opened can be efficiently utilized.

なお、上記各実施例は本発明を気化器を備えたエンジン
に適用した例であるが、気化器に限らず、例えば電子制
御式の燃料噴射装置を備えたエンジンにも適用すること
ができるのは勿論である。
Although the above embodiments are examples in which the present invention is applied to an engine equipped with a carburetor, the present invention is not limited to a carburetor, but can also be applied to an engine equipped with an electronically controlled fuel injection device, for example. Of course.

また、本発明は低速定常走行において稀薄混合気で燃焼
を行うエンジンに限らず、例えば理論空燃比近傍の混合
気で燃焼を行うとともに大量の排気還流を行うエンジン
に対しても適用することができる。そして、その場合に
も加速応答性の改善や低速出力走行時の充填効率の向上
を図ることができる。
Furthermore, the present invention is not limited to engines that perform combustion with a lean mixture during low-speed steady running, but can also be applied to, for example, engines that perform combustion with a mixture near the stoichiometric air-fuel ratio and recirculate a large amount of exhaust gas. . In this case, it is also possible to improve acceleration response and charging efficiency during low-speed power running.

(効果) 本発明によれば、加速応答性を改善することができると
ともに、低速時における混合気の充填効率を高めること
ができ、エンジンの運転性を向上させることができる。
(Effects) According to the present invention, acceleration response can be improved, and the air-fuel mixture filling efficiency at low speeds can be increased, and engine drivability can be improved.

また、上記各実施例においては、吸気弁の閉弁時期をエ
ンジン回転数に応じて可変しているため、高速出力走行
時には吸気の脈動効果のみならず慣性効果も利用するこ
とができエンジン出力をより一層向上させることが−で
き、一方低速出力走行時には吸気の慣性効果によりエン
ジン出力を向上させることができる。その結果、出力走
行時の運転性を向上させることができる。
In addition, in each of the above embodiments, the closing timing of the intake valve is varied according to the engine speed, so that not only the pulsation effect of the intake air but also the inertia effect can be used during high-speed power running, and the engine output can be increased. On the other hand, when driving at low speed, the engine output can be improved due to the inertia effect of the intake air. As a result, drivability during power running can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は従来の自動車用エンジンを示す図であり、
第1図はそのシリンダヘッドの平面図、第2図はそのシ
リンダ部の断面図、第3図はそのシリンダ部の要部断面
図、第4〜6し1は本発明に係る自動小用エンジンの第
1実施例を示す図であり、第4図はその平面図、第5図
は第4図のV−V矢視断面図、第6図はその弁開閉時期
可変手段を示す断面図、第7〜13図は同実施例の作用
を説明するための図であり、第7図はその混合比と燃料
消費率、排気還流量との関係を示す図、第8図a・〜C
はその絞り弁の開度と混合比、ニアシン出力との関係を
示す図、第9図はその吸気通路容積に対する加速特性を
示す図、第10図はその吸気通路容積に対する加速応答
遅れを示す図、第11図はその吸気通路の長さに対する
エンジン回転数、充填効率の関係を示す図、第12図は
その吸気弁閉弁時期に対するエンジン回転数、充填効率
の関係を示す図、第13図はその吸気弁の開閉時期を示
す図、第14〜16図は本発明に係る自動車用エンジン
の第2実施例を示す図であり、第14図はその弁開閉時
期可変手段を示す平面図、第15図はその弁開閉時期可
変手段を示す断面図、第16図はその吸気弁開閉時期を
示す図である。 21−−−−−エンジン、 26−−−−吸気弁、 28−−−m−吸気通路、 3I−一絞り弁、 34.51−−−弁開閉時期可変手段。 第1図 第2図 第9図 第10図 咀λ走、卦1 第11図 第12図 エンジーン口片り蛋1crp慮り 第13図 第14図 第15図 第16図
1 to 3 are diagrams showing conventional automobile engines,
Fig. 1 is a plan view of the cylinder head, Fig. 2 is a sectional view of the cylinder part, Fig. 3 is a sectional view of the main part of the cylinder part, and Fig. 4 to 6-1 are automatic small engine according to the present invention. FIG. 4 is a plan view thereof, FIG. 5 is a sectional view taken along the line V-V in FIG. 4, and FIG. 6 is a sectional view showing the valve opening/closing timing variable means. 7 to 13 are diagrams for explaining the operation of the same embodiment, and FIG. 7 is a diagram showing the relationship between the mixture ratio, fuel consumption rate, and exhaust gas recirculation amount, and FIG. 8 a to C
9 is a diagram showing the relationship between the opening degree of the throttle valve, the mixture ratio, and the nearsin output, FIG. 9 is a diagram showing the acceleration characteristic with respect to the intake passage volume, and FIG. 10 is a diagram showing the acceleration response delay with respect to the intake passage volume. , FIG. 11 is a diagram showing the relationship between the engine speed and charging efficiency with respect to the length of the intake passage, FIG. 12 is a diagram showing the relationship between the engine speed and charging efficiency with respect to the intake valve closing timing, and FIG. 13 is a diagram showing the relationship between the engine speed and charging efficiency with respect to the intake valve closing timing. 14 to 16 are diagrams showing the second embodiment of the automobile engine according to the present invention, and FIG. 14 is a plan view showing the valve opening/closing timing variable means. FIG. 15 is a sectional view showing the valve opening/closing timing variable means, and FIG. 16 is a diagram showing the intake valve opening/closing timing. 21---Engine, 26---Intake valve, 28---M-Intake passage, 3I-One throttle valve, 34.51---Valve opening/closing timing variable means. Figure 1 Figure 2 Figure 9 Figure 10 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 低速定常走行では稀薄混合気が、出力走行では濃厚混合
気が供給される自動車用エンジンにおいて、絞り弁下流
から吸気弁までの吸気通路容積をエンジン総排気量の1
/3以下に設定するとともに、吸気弁の閉弁時期を可変
にする弁開閉時期可変手段を設け、低回転時には吸気弁
を下死点近傍で閉弁し高回転時には下死点より遅く閉弁
するようにしたことを特徴とする自動車用エンジン。
In automobile engines that are supplied with a lean mixture during low-speed steady running and a rich mixture when running at high power, the intake passage volume from downstream of the throttle valve to the intake valve is calculated as 1 of the total engine displacement.
/3 or less, and a valve opening/closing timing variable means is provided to vary the closing timing of the intake valve, so that the intake valve closes near bottom dead center at low speeds and later than bottom dead center at high speeds. An automobile engine characterized by:
JP58168887A 1983-09-12 1983-09-12 Engine for automobile Pending JPS6060223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168887A JPS6060223A (en) 1983-09-12 1983-09-12 Engine for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168887A JPS6060223A (en) 1983-09-12 1983-09-12 Engine for automobile

Publications (1)

Publication Number Publication Date
JPS6060223A true JPS6060223A (en) 1985-04-06

Family

ID=15876403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168887A Pending JPS6060223A (en) 1983-09-12 1983-09-12 Engine for automobile

Country Status (1)

Country Link
JP (1) JPS6060223A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124839A (en) * 1986-11-12 1988-05-28 Honda Motor Co Ltd Air-fuel ratio setting method
WO1997009521A1 (en) * 1995-09-01 1997-03-13 Yamaha Hatsudoki Kabushiki Kaisha Suction device for a supercharged engine
US6983738B2 (en) * 2001-10-29 2006-01-10 Yamaha Hatsudoki Kabushiki Kaisha Engine control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124839A (en) * 1986-11-12 1988-05-28 Honda Motor Co Ltd Air-fuel ratio setting method
JPH0545777B2 (en) * 1986-11-12 1993-07-12 Honda Motor Co Ltd
WO1997009521A1 (en) * 1995-09-01 1997-03-13 Yamaha Hatsudoki Kabushiki Kaisha Suction device for a supercharged engine
CN1087810C (en) * 1995-09-01 2002-07-17 雅马哈发动机株式会社 Suction device for supercharged engine
US6983738B2 (en) * 2001-10-29 2006-01-10 Yamaha Hatsudoki Kabushiki Kaisha Engine control system

Similar Documents

Publication Publication Date Title
JP4987076B2 (en) 4-cycle engine
JP2005180458A (en) Multi-cylinder diesel engine with variably actuated valve
JP2006274951A (en) Four cycle spark ignition engine
JPH10184370A (en) Four-cycle engine
JP2005016408A (en) Control device for spark ignition type engine
WO2013002411A1 (en) Six-cycle engine
JP5116465B2 (en) Method for operating an internal combustion engine and internal combustion engine implementing the method
JPH045457A (en) Otto cycle engine
CN101691845B (en) Internal combustion engine
JP2000510545A (en) Method for reducing harmful exhaust emissions of gasoline engines operated with lean fuel-air mixtures
US10337427B2 (en) Control device of compression self-ignition engine
JP2009162113A (en) Control device of internal combustion engine
JP6428715B2 (en) Control device for internal combustion engine
JP4151395B2 (en) High expansion ratio cycle engine
JP4089407B2 (en) High expansion ratio cycle engine
JPS6060223A (en) Engine for automobile
JP4591300B2 (en) 4-cycle spark ignition engine
JP4019492B2 (en) Spark ignition internal combustion engine
US8991357B2 (en) Internal combustion engine
JP3885702B2 (en) Control device for spark ignition engine
JP4045743B2 (en) Control device for internal combustion engine
JP7151882B2 (en) internal combustion engine
JPH027203Y2 (en)
JPH0621579B2 (en) Variable valve timing engine control method
JP3826850B2 (en) Control device for spark ignition engine