JPS6060187A - Method for operating tubular heating furnace - Google Patents
Method for operating tubular heating furnaceInfo
- Publication number
- JPS6060187A JPS6060187A JP16843483A JP16843483A JPS6060187A JP S6060187 A JPS6060187 A JP S6060187A JP 16843483 A JP16843483 A JP 16843483A JP 16843483 A JP16843483 A JP 16843483A JP S6060187 A JPS6060187 A JP S6060187A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- heating furnace
- air
- tube
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
本発明は、エチレンプラン1〜用づフリ分解炉など管内
流体を900〜1100℃に加熱づる管式加熱炉の操業
方法に関づるものである。
従来、高温流体加熱用の管式加熱炉では、加熱管に耐熱
vf鋼が使用されでおり、その最高使用温度は約110
0℃である。一方エチレンプラン1〜川ナフリー分解炉
は、管用[]流体温度約860℃、熱夷流率約Go、0
001< caA/ +n21+rテ運転され、管壁温
度ば1050−1100℃に達づる。この炉においては
、艙出り流体の温度Jノよび熱口流率を、[げる程、エ
チレンの収率が上昇し、例えば管出口流体の温度100
0℃、熱員流率100,0OOK can /m”l)
rの場合、管壁温度は1300℃に達し、耐熱鋳鋼管で
は耐熱強度が落らるため操業できない。
ここで、恒Hにセラミックスなど耐熱強度のある材料を
使用すれば、管壁温度を1400〜1500℃に上昇さ
せることが可能である。しかし、この場合、燃焼室内の
燃焼ガス温度が130(1−・1800℃の高温になる
ため燃)l”l消黄団が1 、4 j8程度増加する。
本発明の「1的は上述した管式加熱炉において、高温で
操業する場合にての燃料消費徴を少なくでさるようにり
ることにある。
本発明は、管内流体を900〜1100°Cに加熱する
管式加熱炉のIへを業方法において、加熱管を耐熱強度
の高い材料で形成し、該管式加熱炉の燃焼室に供給する
燃焼用空気を7を式加熱炉のJノ+ガスで 600〜1
000℃に予熱したのら、その予熱した燃焼用空気を燃
焼室に供給りることにより、従来の燃料温¥¥迅と同程
度で、しかも管出口流体温度を上昇でさり()員流!(
″を゛」げることがでさるようにしICものである。
以下、本発明に係る75式加熱炉の操栗方法の好適−実
施1ζ1を添(;1図面に基づいて説明りる。
第1図にJ3いて、1は耐火物などC・形成さINる加
熱炉本体で、その加熱炉本14.1内に燃力11室2が
形成される。燃焼¥r:2内にはヒラミックスなど耐熱
強度の高い材わ1で414成される加熱室3が多数本設
(]らねる。燃燃焼室の底部41どには、バー14が設
(づられ、イのバーナ4に燃料を供給Jる燃料供給箆5
及び燃焼用空気供給性6が人々接続される。
加熱炉本体1の上部には燃焼排カス出The present invention relates to a method of operating a tube-type heating furnace such as an ethylene plan 1-free cracking furnace that heats a fluid in the tube to 900 to 1100°C. Conventionally, in tube-type heating furnaces for heating high-temperature fluids, heat-resistant VF steel has been used for the heating tube, and its maximum operating temperature is approximately 110℃.
It is 0°C. On the other hand, in the ethylene plan 1 to Kawanafuri cracking furnace, the pipe fluid temperature is approximately 860°C, the thermal flow rate is approximately Go, 0
The tube wall temperature reaches 1050-1100°C. In this furnace, the higher the temperature J and the hot outlet flow rate of the pipe exit fluid, the higher the ethylene yield.
0°C, heat flux rate 100,0OOK can/m”l)
In the case of r, the pipe wall temperature reaches 1300°C, and heat-resistant cast steel pipes cannot be operated because their heat-resistant strength decreases. Here, if a material with heat resistance and strength such as ceramics is used, it is possible to raise the tube wall temperature to 1400 to 1500°C. However, in this case, the temperature of the combustion gas in the combustion chamber becomes as high as 130°C (1-1800°C), so the amount of quenching group increases by about 1.4j8. An object of the present invention is to reduce fuel consumption characteristics when operating at high temperatures in a tube heating furnace. In this method, the heating tube is made of a material with high heat resistance strength, and the combustion air to be supplied to the combustion chamber of the tube heating furnace is heated to 600 to 1 with J gas of the type heating furnace.
By preheating the air to 1,000℃ and then supplying the preheated combustion air to the combustion chamber, the temperature of the fuel at the pipe outlet can be increased while maintaining the same level as the conventional fuel temperature. (
It is an IC device that allows you to increase the power consumption. Preferred implementation 1ζ1 of the method for manipulating the Type 75 heating furnace according to the present invention is described below with reference to the drawings. In the heating furnace main body, 11 combustion chambers 2 are formed in the heating furnace main 14.1.In the combustion chamber 2, there are 414 heating chambers 3 made of a material 1 having high heat resistance and strength such as Hiramix. A large number of bars 14 are installed at the bottom 41 of the combustion chamber.
and combustion air supply 6 are connected. Combustion waste is emitted from the upper part of the heating furnace body 1.
【」7が設り1う
れ、この出ロアにり排ガスダクトε3が接続される。J
)lガスグラ1−〇は空気予熱器9を介して吸引ファン
10に接続され、吸引ファン″10の杖気側は煙突11
に接続さPLる。
バーナ4に燃焼空気を供給づる空気供給グク1−6は、
空気予熱器9を介して押込ファン12に接続される。空
気予熱器9は、例えば多数の伝熱管から椙成され、伝熱
管内に燃焼用空気を流し、仏熱恒外部に形動i: Il
l IJIガスを流す1.この場合伝熱管はヒラミック
ス4「ど耐熱強度の高い4a J’lて形成づる。
以上におい11押込みフッ・ン′12から吸込まれた常
温の空気は、空気予熱器S〕を通って予熱され、空気供
給ダクトからバーナ4に供給され、燃料供給室5からの
に(S料ど其に燃焼室2内に噴出され、燃焼ガスとな−
ノて加だ! ’r’i 3′内の被加熱流体を加熱し!
このlう排ガスグク1〜8、空気予熱器9を通じて煙突
11からIt気される。
被加熱流体の’j”j+ jl、j D温度を900〜
1100°Cどづるには、燃焼室2内の燃焼ガスの温度
を1300−I It O(1℃に保持覆る必要がある
。この場合、従来行なわれているように燃焼用空気を常
温のまま或いは500℃近くまで予熱した空気を供給し
たのでは燃料消費illが増加りるが、燃焼後のJll
カスをにC1気予熱器9を通して燃焼用空気を600〜
1100°Cに予熱づることができるので燃料の消費量
を少なくJ”ることができる。この場合、空気予熱器9
内の伝熱管の笛檗温度は90()〜1400℃よ(゛上
背りろがIzj熱篇は耐熱強度の高い材料で形成される
の(充分耐え11する。
第2図は、燃焼空気予熱温度’「aと燃焼室効率η1え
の関係を示すグラフで、燃料がIQ、950CaA/
1<9、過剰空気が10%、燃焼用空気が17.5K(
1/Ko−燃料、とした場合の燃焼室効・(′を示した
乙のであり、燃焼室効率は下式でめ(d)る。
第2図Jこり明らかなように燃焼室記度王。を一定に保
持したとすると、燃焼空気予熱温度が高()れば高い稈
燃焼室効率が良くなる。+4−11λぽ、燃焼至温度下
。が180 (1℃ の場合、従来の予熱範(jil
1 、’+〜500°Cでは効率が8〜20%(7度て
゛あるが本発明のように600〜ioo、o℃に予熱づ
ることにより効率を25〜4096程度に」−けること
が可能どなる。
次に、従来、1200℃の燃焼ガス411度で、かつ燃
焼用空気を予熱せずに運転した場合(従来例1)の燃料
消費mを100どし、°されを11月こ燃焼ガスの温度
の力を1 /l (1(1’(:に十η1さμた場合(
従来例2)と、本発明の、Jζ′)に燃焼用空気を60
0℃に予熱した場合の燃焼室クツ率η、と燃わ1消費耐
とを下表に示づ。
表 −1
上記表」、す?、Y−来例2の如く燃焼用空気を予熱け
−ずに燃焼ガス)晶瓜1G を1200°Cから140
0°Cに上げた場合は、燃曽、:ZI’F効串η が下
がり、かつ燃料消費用が増加づるが、本発明にJ3いて
は燃焼室効率η。及び燃tl消費量も従来例1と変らず
、しかし管内流体の温J哀を上げることが可能となる。
j、た同様に燃焼用空気を400℃に12熱した場合に
おいC,燃焼ガス温度を1200℃どじI、:場合(従
来例3)と、てれを1400℃に上げた場合(従来例4
)と、燃焼ガス温度を1400℃に」げ、しかb r、
<焼用゛べ“】気を10 (1(1°Cに予熱り、に本
発明のJ3A合とを下表に示づ。
表 −2
表−2より燃焼用空気を1 (l Of+ ”Cにi′
−だ)した場合においてし表−1と同様の結束がi!i
、 (E、れる。従って燃焼用空気を600〜1 (1
410℃に子熱りることにより、従来と同程瓜の燃料消
費量で、しがも1゛ττ内流温度をl 5i1さUるこ
とが可能となる。
以上詳述してきたことから明らかなように本発明によれ
ば次のごとき優れIC効果を発揮づる。
(1) 燃焼用空気を管j(加熱炉の排ガスで600〜
1000℃にY熱したのち燃焼室に供治り−ることによ
り燃料消費量を少なくして管内流体を900−110(
1℃に加熱することができる。
(2) 加熱管を耐熱強度の高い14石で形成したので
、予熱温度を600〜1000℃にしても十分な耐熱弾
痕4右りる。
(3) 従来の燃tl ’d!i費格ど同程度で笛内流
1本の温度を高くJることがでさるので効率がよく、例
えば−j−ノリ’t>前炉どじて使用りれぽ′Lブーレ
ンの成牛を[ニ??させることがCきる。7 is provided, and the exhaust gas duct ε3 is connected to this lower outlet. J
) The gas gratings 1-0 are connected to the suction fan 10 via the air preheater 9, and the air side of the suction fan 10 is connected to the chimney 11.
Connected to PL. The air supply device 1-6 that supplies combustion air to the burner 4 is
It is connected to a forced fan 12 via an air preheater 9. The air preheater 9 is made up of, for example, a large number of heat exchanger tubes, and allows combustion air to flow through the heat exchanger tubes so that the air preheater 9 is heated outside the heat exchanger.
l Flow IJI gas 1. In this case, the heat transfer tube is made of Hiramix 4, which has high heat resistance and strength.The room temperature air sucked from the air 11 pusher 12 is preheated by passing through the air preheater S. The air is supplied from the air supply duct to the burner 4, and from the fuel supply chamber 5 (S) is injected into the combustion chamber 2 and becomes combustion gas.
Noteka! Heat the heated fluid in 'r'i 3'!
The exhaust gases 1 to 8 are discharged from the chimney 11 through the air preheater 9. 'j''j+ jl,jD temperature of the heated fluid is 900~
To achieve a temperature of 1100°C, it is necessary to keep the temperature of the combustion gas in the combustion chamber 2 at 1300°C (1°C). Alternatively, if air preheated to nearly 500°C is supplied, fuel consumption will increase, but the Jll after combustion will increase.
Combustion air is passed through the C1 air preheater 9 to 600~
Since it can be preheated to 1100°C, fuel consumption can be reduced.In this case, the air preheater 9
The temperature of the internal heat exchanger tube is 90 to 1400℃ (the upper back is made of a material with high heat resistance and strength (11). Figure 2 shows the temperature of the combustion air This is a graph showing the relationship between preheating temperature 'a and combustion chamber efficiency η1e, when the fuel is IQ, 950CaA/
1<9, excess air is 10%, combustion air is 17.5K (
The combustion chamber efficiency when 1/Ko - fuel is shown as (2), and the combustion chamber efficiency can be calculated using the following formula (d). Assuming that . is held constant, the higher the combustion air preheating temperature ( ), the higher the efficiency of the high culm combustion chamber. (jil
1. The efficiency is 8 to 20% at +500°C (7 degrees, but it is possible to increase the efficiency to about 25 to 4096 degrees by preheating to 600 to 4096°C as in the present invention) Next, we will increase the fuel consumption (m) by 100 in the case of conventional operation with combustion gas of 1200℃ and 411℃ without preheating the combustion air (conventional example 1). If the temperature force of 1/l (1(1') is 10η1 μ, then (
Combustion air was supplied to conventional example 2) and Jζ′) of the present invention at 60%
The combustion chamber heat ratio η and the combustion resistance when preheated to 0°C are shown in the table below. Table-1 The above table", S? , Y - 1G of crystal melon was heated from 1200°C to 140°C without preheating the combustion air as in Example 2.
When the temperature is raised to 0°C, the combustion chamber efficiency η decreases and the fuel consumption increases, but in the case of J3 in the present invention, the combustion chamber efficiency η decreases. The amount of fuel and fuel consumed is also the same as in the first conventional example, but it is possible to increase the temperature of the fluid in the pipe. J, Similarly, when the combustion air is heated to 400°C for 12 seconds, C, when the combustion gas temperature is 1200°C (Conventional Example 3), and when the heating temperature is raised to 1400°C (Conventional Example 4).
) and increase the combustion gas temperature to 1400℃,
Preheat the combustion air to 10°C (1°C), and the J3A combination of the present invention is shown in the table below. i' to C
-), then the same unity as in Table 1 is obtained for i! i
, (E, will be. Therefore, the combustion air will be 600 ~ 1 (1
By heating to 410° C., it is possible to reduce the internal flow temperature by 1゛ττ with the same amount of fuel consumption as in the past. As is clear from the above detailed description, the present invention provides the following excellent IC effects. (1) Pipe combustion air (exhaust gas from heating furnace 600~
By heating the fluid to 1000℃ and then heating it in the combustion chamber, the fuel consumption can be reduced and the fluid in the pipe can be heated to 900-110℃.
It can be heated to 1°C. (2) Since the heating tube is made of 14 stones with high heat-resistant strength, it has sufficient heat-resistant bullet holes even if the preheating temperature is 600 to 1000°C. (3) Conventional Motl'd! It is efficient because it is possible to raise the temperature of a single stream at a high temperature with the same cost.For example, when using a forehearth for an adult cow [Ni? ? It is possible to do C.
第1図は本発明に係る質式加熱炉の操業方法を実施づる
賛同の一プご施例を示ず図、第2図は燃焼空気予熱’J
L度と燃焼室効率の関係を示リグラフである。
図中、2は燃焼室、3は加熱管、4はバーナ、6は形動
2空気IJj給ダクト、9は空気j5熱器である1特許
出願人 石川、島1m磨重工業株代会社代理人弁理十
絹 谷 信 AJIFigure 1 is a diagram showing an example of support for implementing the method of operating a high-quality heating furnace according to the present invention, and Figure 2 is a diagram showing an example of the method for operating a high-temperature heating furnace according to the present invention.
This is a graph showing the relationship between L degree and combustion chamber efficiency. In the figure, 2 is the combustion chamber, 3 is the heating tube, 4 is the burner, 6 is the active 2 air IJJ supply duct, and 9 is the air j5 heater.1 Patent applicant: Ishikawa, Shima 1m Ma Heavy Industries Co., Ltd. Agent Ten patent attorneys
Shin Kinutani AJI
Claims (1)
操業方法にJ3いて、加熱管を耐熱強度の高い材オ′3
1で形成し、上記管式加熱炉の燃焼室に、燃焼用空気を
管式加熱炉の排ガスで600〜1000℃に予熱したの
ら、これを供給するようにしたことを特徴とJる管式加
熱炉の操業方法。J3 is a method of operating a tube heating furnace that heats the fluid inside the tube to 900 to 1100℃, and the heating tube is made of a material with high heat resistance strength.
1, and the combustion air is supplied to the combustion chamber of the tube heating furnace after being preheated to 600 to 1000°C with the exhaust gas of the tube heating furnace. How to operate a type heating furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16843483A JPS6060187A (en) | 1983-09-14 | 1983-09-14 | Method for operating tubular heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16843483A JPS6060187A (en) | 1983-09-14 | 1983-09-14 | Method for operating tubular heating furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6060187A true JPS6060187A (en) | 1985-04-06 |
Family
ID=15868041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16843483A Pending JPS6060187A (en) | 1983-09-14 | 1983-09-14 | Method for operating tubular heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6060187A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62148591A (en) * | 1985-12-23 | 1987-07-02 | ザ エム.ダブリユ.ケロツグ カンパニ− | Method for steam cracking of hydrocarbon into cracking gasesin tubular furnace |
-
1983
- 1983-09-14 JP JP16843483A patent/JPS6060187A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62148591A (en) * | 1985-12-23 | 1987-07-02 | ザ エム.ダブリユ.ケロツグ カンパニ− | Method for steam cracking of hydrocarbon into cracking gasesin tubular furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6319552B2 (en) | ||
RU2007137496A (en) | MULTI-TUBE HEAT TRANSFER SYSTEM FOR FUEL BURNING AND HEATING OF TECHNOLOGICAL FLUID AND ITS USE | |
JPS62119318A (en) | Improvement in heated heater, furnace or boiler for conducting chemical process | |
KR970011368B1 (en) | Cracking furnace | |
CN106090918A (en) | A kind of sintering ignition furnace preheater | |
CN205420285U (en) | Energy -saving tubular coal tar heating furnace | |
CN217541088U (en) | Energy-saving gas hot blast stove capable of adjusting backflow | |
JPS6060187A (en) | Method for operating tubular heating furnace | |
CN206724703U (en) | A kind of propylene vapor cracking reaction tubular heater | |
JPH0220902B2 (en) | ||
JP2003021462A (en) | Combustion heating furnace | |
KR200202893Y1 (en) | Heat exchange hot water boiler of high efficiency | |
US1751136A (en) | Apparatus for heating the air blast for furnaces and the like | |
CN106016306B (en) | Organic solvent prepainted waste gas incinerator system and its application method | |
NO177653B (en) | Device for indirect heating of fluids | |
JPS57112694A (en) | Heat transfer promoter for radiant tube | |
US2533457A (en) | Furnace with jet cooling | |
US1953275A (en) | Firing system | |
CN209944996U (en) | Novel fuel heat treatment furnace with efficient preheating and rapid cooling functions | |
US2288366A (en) | Furnace | |
CN106439860A (en) | Alcohol dehydration steam heating system | |
SU775593A1 (en) | Device for utilizing waste gas heat | |
ATE267994T1 (en) | DEVICE FOR CLEANING AND COMBUSTING SHAFT FURNACE EXHAUST GASES | |
JPS57198913A (en) | Burner for fuel of low calorific value | |
US1841072A (en) | Oil cracking still |