JPS6059407A - Position control method - Google Patents

Position control method

Info

Publication number
JPS6059407A
JPS6059407A JP16648483A JP16648483A JPS6059407A JP S6059407 A JPS6059407 A JP S6059407A JP 16648483 A JP16648483 A JP 16648483A JP 16648483 A JP16648483 A JP 16648483A JP S6059407 A JPS6059407 A JP S6059407A
Authority
JP
Japan
Prior art keywords
counter
speed
gain
points
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16648483A
Other languages
Japanese (ja)
Inventor
Shunichi Kishimoto
俊一 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16648483A priority Critical patent/JPS6059407A/en
Publication of JPS6059407A publication Critical patent/JPS6059407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To control smoothly the speed of an object to avoid an evil effect to a machine mechanism by controlling the gain of a position control loop so that the speed changing factor is reduced when the object passes through points between two specific points. CONSTITUTION:The signal of a resolver 2 synchronizing with a motor 1 is converted into a pulse by a converter 3. These pulses are counted by a counter 4. A shift amount is delivered from a position command output part 5, and the difference between this shift amount and the output of the counter 4 is delivered by an integration counter 6. This difference is supplied to a speed control part 9 through an amplifier 7 and an A/D converter 8, and the value of the counter 6 is controlled to zero. The position command values V2 and V1 are extracted from the part 5 by a position command part 10. Then V2/V1 is calculated by an arithmetic unit 11, and the gain of the amplifier 7 is switched at the place near a passing point. The gain of the amplifier 7 is reset to the original amplification factor after passing the point. Thus it is possible to perform smooth control of speed when an object passes through points between two specific points and to avoid an evil effect to a machine system.

Description

【発明の詳細な説明】 し発明の技術分野〕 本発明はザーボモータを有するロボット、自動機の位置
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for controlling the position of a robot or automatic machine having a servo motor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ロボット等において、第1図のようにA点からB点へp
’rp方式(指定された点と点を結び経路を問わない)
でアーム先端を移動させようとする時、2点間の経路を
擬似的に指定したい場合、A点とB点の間に経由点とし
て0点を指定する方法がある。この時、0点において高
い位置め精度が必要とされず、0点での位置決め完了範
囲(以下インポジションゾゴンとする)を広くとり、時
間の短縮とアーム先端の動作の円滑化を計っている。し
かし精度をある程度の高さに保つためにはインポジショ
ンゾーンの大きさには限度があり、アーム先端がインポ
ジションに入る時点において、速度は減少しており、B
点に向う速度まで再び加速しなければならない。すなわ
ちX方向Iこついて考えると、第2図に示しだ、A点か
ら0点へ移動するだめの第1指令と、ツールが0点のイ
ポジションゾーンに入った後に出力される0点からB点
へ移動するだめの第2指令に対して、第3図のように前
述の2つの指令間で一旦速度が減少し、その後再び増加
することになる。したがって第3図1.付近における速
度変化が大となる。
In a robot, etc., p from point A to point B as shown in Figure 1.
'rp method (connect specified points and do not care about the route)
If you want to specify a pseudo route between two points when trying to move the tip of the arm, there is a method of specifying point 0 as a waypoint between points A and B. At this time, high positioning accuracy at the 0 point is not required, and the positioning completion range at the 0 point (hereinafter referred to as in-position zogon) is widened in order to shorten the time and smooth the movement of the arm tip. There is. However, in order to maintain accuracy at a certain level, there is a limit to the size of the in-position zone, and when the arm tip enters in-position, the speed decreases, and B
It must accelerate again to the speed towards the point. That is, the X direction.If you think about it, the first command to move from point A to point 0, as shown in Figure 2, and the command from point 0 to B, which is output after the tool enters the 0 point position zone, are shown in Figure 2. In response to the second command to move to a point, the speed decreases once between the two commands, as shown in FIG. 3, and then increases again. Therefore, Fig. 3 1. The speed change in the vicinity becomes large.

[発明の目的〕 本発明は、前述の欠点を改善し、第1図C点のような経
由点における速度の変化を小さくシ、ア−ムの動作を円
滑にした位置制御方法を提供することを目的とする。
[Object of the Invention] It is an object of the present invention to provide a position control method that improves the above-mentioned drawbacks, minimizes changes in speed at waypoints such as point C in Figure 1, and smoothes the movement of the arm. With the goal.

し発明の概要〕 本発明は、前述の目的を達するために、経由点付近で、
速度変化率を小さくするように位置制御ループのゲイン
を調整するようにした位置制御方法である。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides, in the vicinity of a waypoint,
This is a position control method in which the gain of the position control loop is adjusted so as to reduce the speed change rate.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を添付図面の一実施例に基づいて説明する。 The present invention will be explained below based on one embodiment of the accompanying drawings.

X方向に動く■軸とX方向に動く■軸とでxy平面内の
位置決めを行う装置で第1図のA−、C−、Bの経路を
制御する。この時2つの軸は同時に始動し、同時に停止
するように制御(同期制御)されている。
The paths A-, C-, and B in FIG. 1 are controlled by a device that performs positioning within the xy plane using the ``2'' axis that moves in the X direction and the ``2'' axis that moves in the X direction. At this time, the two axes are controlled to start and stop at the same time (synchronous control).

本発明を実施した位置制御系のブロック線図を第5図に
示す。同図において、モータ1と同期するレゾルバ2の
信号を変換器3によってパルスに変換し、カウンタ4に
よってカウントする。このカウンタ4はサンプリング時
間△を毎に読み出され、クリアされる。位置指令出力部
5より△を間の移動量を出力し、カウンタ4の出力との
差を積分カウンタ6に入力する。積分カウンタ6の出力
を増幅器7によって増幅し、D/A変換器8を通して速
度制御部9に入力し、積分カウンタ6の値が0になるよ
うに制御する。以上の制御を■軸、 II軸の両軸につ
いて行う。さらに位置指令出力部5で積分カウンタ6の
出力を監視し、インポジションに入った後火の位置指令
を出力開始する。したがって第1図の動作を制御する場
合、A−、C,C−Bの2つの指令は第2図のようにな
る。そこで本発明においては、位置指令読出部10によ
って位置指令出力部5より位置指令値V、と■、と取り
出し、演算器11によってv2/vIを演祈し、ゲイン
調整器12によって第6図のように増幅器7のゲインを
時間t、において切り換える。そして時間t3において
元の増幅率GOにもどす。
FIG. 5 shows a block diagram of a position control system embodying the present invention. In the figure, a signal from a resolver 2 synchronized with a motor 1 is converted into pulses by a converter 3, and counted by a counter 4. This counter 4 is read out and cleared every sampling time Δ. The position command output unit 5 outputs the amount of movement between Δ and the difference from the output of the counter 4 is input to the integral counter 6. The output of the integral counter 6 is amplified by an amplifier 7 and inputted to a speed control section 9 through a D/A converter 8, and is controlled so that the value of the integral counter 6 becomes 0. The above control is performed for both the ■ and II axes. Further, the position command output section 5 monitors the output of the integral counter 6, and starts outputting a position command for the flame after entering the in-position. Therefore, when controlling the operation shown in FIG. 1, the two commands A-, C, and CB become as shown in FIG. Therefore, in the present invention, the position command reading unit 10 extracts the position command values V and ■ from the position command output unit 5, the arithmetic unit 11 calculates v2/vI, and the gain adjuster 12 calculates the value shown in FIG. The gain of the amplifier 7 is switched at time t, as shown in FIG. Then, at time t3, the amplification factor is returned to the original amplification factor GO.

し実施例の作用効果〕 以上説明した制御方法を用いると、第1図の動作の制御
において、経由点C付近における速度応答が第4図のよ
うになり、C点通加時の速度変化が少なくなる。当実施
例においては第2図のようにV2/V14−Plの場合
について述べたが、vv/V1が負の値になる場合にお
いても、第6図に示すように位置ループのゲインが高く
なるため、第1の指令(A→C)から第2の指令(C,
B)に速かに移行できる。GOは通常のループゲインを
示す。
[Operations and Effects of the Embodiment] When the control method described above is used, in controlling the operation shown in Fig. 1, the speed response near the way point C becomes as shown in Fig. 4, and the speed change when applying force at the C point becomes as shown in Fig. 4. It becomes less. In this embodiment, the case of V2/V14-Pl was described as shown in Fig. 2, but even when vv/V1 becomes a negative value, the gain of the position loop becomes high as shown in Fig. 6. Therefore, from the first command (A → C) to the second command (C,
You can quickly move to B). GO indicates normal loop gain.

このことはロボット、自動機自体や、作業対象物に悪影
響を及すことを防ぐことができる。また経由点を多数接
近させて設け、各点において本制御方法を適用すること
により、2点間の経路を擬似的に制御することができる
This can prevent adverse effects on the robot, automatic machine itself, or workpiece. Further, by providing a large number of route points close to each other and applying the present control method to each point, the route between two points can be controlled in a pseudo manner.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明には次のような効果があ
る。
As explained above, the present invention has the following effects.

2点間に設けたl又は複数の経由点通過時の速度を円滑
に制御できるため、機械系への悪影響を防ぎ、2点間の
経路を制御する必要のある作業にも対応できる。
Since it is possible to smoothly control the speed when passing through a point or a plurality of waypoints provided between two points, it is possible to prevent adverse effects on the mechanical system and to cope with work that requires controlling the route between two points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインポジションゾーンを示t 図、第2図は第
1図の経路を通る場合のX方向(■軸)の移動量指令を
示す図、第3図は移動量指令に対する従来の応答を示す
特性図、第4図は第2図に対する本発明を実施した場合
の応答を示す特性図、第5図は本発明の制御方法を示す
ブロック線図、第6図はv、/v、とゲインの関係を示
す図である。 1・・・サーボモータ 2・・・レゾルバ3・・・パル
ス変換i 4・・・パルスカウンタ5・・・位置指令出
力部 6・・・積分カウンタ7・・・増幅器 8・・・
D/A変換器9・・・速度制御部 1o−・・位置指令
読出部11・・・演算器 12・・・ゲイン調整器(7
317) 代理人 弁理士 則 近 憲 佑 (ほか1
名)第2図 →FJ!tP硝 t2 ′3 t□fl)間 第5図 第6図
Figure 1 shows the in-position zone, Figure 2 shows the movement amount command in the X direction (■ axis) when passing through the route shown in Figure 1, and Figure 3 shows the conventional response to the movement amount command. FIG. 4 is a characteristic diagram showing the response when the present invention is applied to FIG. 2, FIG. 5 is a block diagram showing the control method of the present invention, and FIG. 6 is a characteristic diagram showing v, /v, FIG. 3 is a diagram showing the relationship between gain and gain. 1... Servo motor 2... Resolver 3... Pulse conversion i 4... Pulse counter 5... Position command output section 6... Integral counter 7... Amplifier 8...
D/A converter 9...Speed control unit 1o-...Position command reading unit 11...Arithmetic unit 12...Gain adjuster (7
317) Agent: Patent Attorney Noriyuki Chika (and 1 others)
Name) Figure 2 → FJ! tP t2 '3 t□fl) Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 一連の位置データに基いて動作するロボット、自動機等
の位置制御するものにおいて、現在地から次の目標地点
に移動する間に指定された経由点を通るような場合、前
記経由点付近にて位置ループのゲインを調整することに
より制御対象物の動作を滑かに制御することを特徴とし
た位置制御方法。
When a device that controls the position of a robot, automatic machine, etc. that operates based on a series of position data passes through a specified waypoint while moving from the current location to the next target point, the position is determined near the waypoint. A position control method characterized by smoothly controlling the motion of a controlled object by adjusting the gain of a loop.
JP16648483A 1983-09-12 1983-09-12 Position control method Pending JPS6059407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16648483A JPS6059407A (en) 1983-09-12 1983-09-12 Position control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16648483A JPS6059407A (en) 1983-09-12 1983-09-12 Position control method

Publications (1)

Publication Number Publication Date
JPS6059407A true JPS6059407A (en) 1985-04-05

Family

ID=15832246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16648483A Pending JPS6059407A (en) 1983-09-12 1983-09-12 Position control method

Country Status (1)

Country Link
JP (1) JPS6059407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316981A (en) * 1986-07-04 1988-01-23 株式会社日立製作所 Control system of manipulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316981A (en) * 1986-07-04 1988-01-23 株式会社日立製作所 Control system of manipulator

Similar Documents

Publication Publication Date Title
JPH05118302A (en) Controller for servomotor
JP3322826B2 (en) Pressurization control method and apparatus by servo motor
JPS6059407A (en) Position control method
JPH0424198B2 (en)
JPH1039932A (en) Method for controlling servo motor
WO1994019731A1 (en) Numeric controller
JP2003044102A (en) Learning control method
JPS63167912A (en) Servo controller
JPH0792702B2 (en) Control device
JP3435828B2 (en) Automatic lead angle determination method for phase controlled servo system
JP3214514B2 (en) Positioning control method and device
JPH08132369A (en) Robot controller
JPS6015718A (en) Speed servo control method
JP3301190B2 (en) Spindle operation switching method
JP2845595B2 (en) Moving stage for drawing equipment
JP2518342B2 (en) Speed control device
JPH02137006A (en) Speed controller
JPS5652408A (en) Automatic position control unit
JPH07104855A (en) Phase control method for electronic cam
JPH02144606A (en) Quick access control system
JPS61164496A (en) Drive device for servo motor
JPH0227409A (en) Control device for servo motor
JP2709056B2 (en) Position control method
JPH081557A (en) Control device for industrial robot
JPH03246605A (en) Method for controlling feeding speed in numerical controller