JPS605927A - Reinforcement for concrete structure to be affected by sea water - Google Patents

Reinforcement for concrete structure to be affected by sea water

Info

Publication number
JPS605927A
JPS605927A JP58111882A JP11188283A JPS605927A JP S605927 A JPS605927 A JP S605927A JP 58111882 A JP58111882 A JP 58111882A JP 11188283 A JP11188283 A JP 11188283A JP S605927 A JPS605927 A JP S605927A
Authority
JP
Japan
Prior art keywords
concrete
reinforcement
layer
reinforcing member
sea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58111882A
Other languages
Japanese (ja)
Other versions
JPS6353259B2 (en
Inventor
Masaaki Sakuta
昌昭 佐久田
Shogo Izumi
泉 昌吾
Akira Taniguchi
旭 谷口
Akira Minamibayashi
南林 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP58111882A priority Critical patent/JPS605927A/en
Publication of JPS605927A publication Critical patent/JPS605927A/en
Publication of JPS6353259B2 publication Critical patent/JPS6353259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/06Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against corrosion by soil or water

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Artificial Fish Reefs (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

PURPOSE:To raise corrosion resistance to sea water of a concrete structure by providing the agglutination layer of an Fe alloy with at least one of Al, Zn, Si, Zr, Ti, Mo and Ni on the surface of a round steel bar material and also an aluminium diffusion-impregnation layer in the inside of the round steel bar material. CONSTITUTION:The agglutination layer of an Fe alloy with at least one of Al, Zn, Si, Zr, Ti, Mo and Ni is provided on the surface of a reinforcement, e.g., round steel bar, etc., for concrete by powder method, gas method, salt bath method, paste method, etc. Also, an aluminium-diffusion-impregnated layer in the Fe base of the reinforcement. A high corrosion resistance as well as a high wear resistance, a high delaminating and breaking resistance, and a high sea water resistance can be endowed to the reinforcement.

Description

【発明の詳細な説明】 本発明は、海水の影響を受けΣコンクリート構方塊状論
岸構造物体9人工魚−9橋桁、化学工場。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a Σconcrete structure blocky rock structure object 9 artificial fish - 9 bridge girder, chemical factory under the influence of seawater.

における海水貯留槽等があシ、これらの−コンクリート
構築物にはコンクリート強度の補強のためにコンクリー
トの丸棒鋼、異形鉄筋、組鉄筋、鉄片。
Seawater storage tanks, etc. are used in these concrete structures, and concrete round steel bars, deformed reinforcing bars, set reinforcing bars, and iron pieces are used to reinforce the concrete strength.

鉄棒及び吊り金具等のコンクリート用補強部材及びボル
ト、ナツト等のコンクリートブロック同士を連結するた
めコンクリート中に埋設および又は付設される連結部材
〈以下前記コンクリート用補強部材と連結部材を総称し
て単に補強部材と称す)が用いられている。
Reinforcing members for concrete such as iron bars and hanging metal fittings, and connecting members buried in and/or attached to concrete to connect concrete blocks such as bolts and nuts (hereinafter, the above-mentioned reinforcing members for concrete and connecting members are collectively referred to simply as reinforcement) (referred to as members) are used.

しかしながら、補強部材が用いられているコンクリート
は海水に接触している間、ちるいは海水の飛沫を含む潮
風にさらされている間に、波浪。
However, the concrete in which the reinforcing members are used is exposed to sea waves while in contact with seawater or exposed to sea breezes containing seawater spray.

潮流、風力あるいはコンクリート製橋梁上を通過する車
輌等による。振動を受けて亀裂が発生し、この亀裂から
塩水が浸入するのでコンクリート用補強部材は発紡する
に至る。また海水とコンクリート表面材との化学反応に
よりコンクリート表器が劣化し海水が浸入し易くなり同
様の結果に至る場合が多いとされている。
Caused by tidal currents, wind power, or vehicles passing over concrete bridges. Cracks occur due to the vibrations, and salt water infiltrates through the cracks, causing the concrete reinforcing member to spin. It is also said that the chemical reaction between seawater and the concrete surface material deteriorates the concrete surface, making it easier for seawater to enter, leading to similar results in many cases.

さらにまた、かかる発銹は体積膨張を伴うので初めに発
生した微細な亀裂は徐々に拡大されて遂にはコンクリー
ト構築物が崩壊されるに至る。
Furthermore, since such rusting is accompanied by volumetric expansion, the minute cracks that initially occur are gradually enlarged and eventually lead to the collapse of the concrete structure.

このため大気中において使用される鉄筋コンクリート用
鋼材は3゛0〜50年の耐用年数があるが、海面近辺の
大気中の部分、常時海中の部分、その中間の飛沫帯の部
分各々において使用される鉄筋コンクリート用鋼材は耐
久年数が通常大気中の耐用年数に比較し短いとされてい
る。特に飛沫帯においては、海水中の酸素溶存量が高く
塩分と酸素によシ上記劣化の過程が促進され、結果とし
てコンクリート中に埋設される鉄鋼部材の酸化腐食が甚
しく、特に魚礁用コンクリートに用いるアンカーボルト
及びナツトは2〜3年で使用に耐えなくなる。
For this reason, steel for reinforced concrete used in the atmosphere has a service life of 30 to 50 years, but it is used in the atmosphere near the sea surface, in the sea at all times, and in the splash zone in between. Steel materials for reinforced concrete are said to have a shorter lifespan than normal in the atmosphere. Particularly in the splash zone, the amount of dissolved oxygen in seawater is high, and the above deterioration process is accelerated by salt and oxygen, resulting in severe oxidation corrosion of steel parts buried in concrete, especially in concrete for fish reefs. The anchor bolts and nuts used become unusable after two to three years.

ところで補強部材として耐海水性に優れる材料例えばス
テンレス鋼等を用いることは経済的に困難であるので、
At+ Zn等の溶融金属に普通鋼材を浸漬してAt、
 Zn等のメッキ層を形成したアルミナイズドスチール
、シエラダイズドスチール等が試用されたが、前記メッ
キ層は鋼基地との接着力が弱くかつ硬度が低いので、か
かる金属被覆鋼材を補強部材としてコンクリート中に予
め埋設あるいは付設し、コンクリート打設振動施工中に
アルミニウム、亜鉛のメッキ層が剥離あるいは傷損する
部分が生じ、またたとえ振動施工時に剥離。
However, it is economically difficult to use materials with excellent seawater resistance, such as stainless steel, as reinforcing members.
At
Aluminized steel, sierra-dized steel, etc. with a plating layer of Zn or the like have been tried, but since the plating layer has weak adhesion to the steel base and low hardness, such metal-coated steel is used as a reinforcing material in concrete. The aluminum and zinc plating layers may be peeled off or damaged during concrete pouring or vibrating construction, and even if they are peeled off during vibrating construction.

傷損な免れたとしても海水の浸入を受けたときメツキネ
十分のところから腐食を開始しメッキ層は剥離摩耗する
という欠点があった。また波浪や潮流による長年の振動
により同様の結果となる欠点があった。
Even if they were spared from damage, they still had the drawback that when seawater entered, corrosion would begin at the surface and the plating layer would peel off and wear out. Another disadvantage was that long-term vibrations caused by waves and currents caused similar results.

本発明は、上記従来の海水の影響を受けるコンクリート
構築物用補強材にみられる欠点を除去。
The present invention eliminates the drawbacks of conventional reinforcing materials for concrete structures that are affected by seawater.

改善した補強部材を提供することを目的とするものであ
シ、特許請求の範囲記載の補強部材を提供することによ
って前記目的を達成することができる。すなわち本発明
は海水の影響を受けるコンクリート構築物用補強部材に
おいて、前記補強部材はその表面がAz+ Zn+ O
rr 8L Tit Zr+ Mo+ Niのなかから
選ばれる何れか少なくとも1種からなる金属によシ鋼材
が拡散被覆されてなる海水の影響を受けるコンクリート
構築物用補強部材であって、長年にわたってコンクリー
ト構築物を海水の影響から保護し得る補強部材である。
It is an object of the present invention to provide an improved reinforcing member, and this object can be achieved by providing a reinforcing member as described in the claims. That is, the present invention provides a reinforcing member for concrete structures that is affected by seawater, and the reinforcing member has a surface of Az+Zn+O.
rr 8L Tit This is a reinforcing member for concrete structures that is affected by seawater and is made by diffusion coating a steel material made of at least one metal selected from Zr+Mo+Ni. It is a reinforcing member that can protect against influences.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明の補強部材は前記金属が葉材部の表面に拡散被覆
されるもので、例えばMを拡散被覆させた部材はその表
面にFe−Alからなる合金の膠着層が5〜200μ電
の厚さで形成され、さらにその下層にはFe基地中に肚
が拡散浸透した浸透層が3〜50μmの厚さで形成され
ている。上記AtのほかZn+ Or、Si、Tiなど
の金属またはkl−8LAI。
The reinforcing member of the present invention is one in which the metal is diffused and coated on the surface of the leaf part. For example, a member diffused and coated with M has an adhesion layer of an alloy made of Fe-Al on the surface with a thickness of 5 to 200 μm. Further, a permeation layer with a thickness of 3 to 50 μm is formed in which the Fe matrix is diffused into the Fe matrix. In addition to the above At, metals such as Zn+ Or, Si, Ti, or kl-8LAI.

−Zn、Cr−8i、Cr−Tiなどの金属混合粉末又
は合金を用いて拡散被覆させて補強部材とすることもで
き、旭の場合と同様に豚着層、浸透層がそれぞれの金属
によシ形成される。
- It is also possible to make a reinforcing member by diffusion coating using metal mixed powder or alloy such as Zn, Cr-8i, Cr-Ti, etc. As in the case of Asahi, the bonding layer and the penetration layer are made of each metal. Formed.

本発明の補強部材において浸透拡散させる金属としてA
t、+ Zn+ Cr、 st、 Zr+ Tit M
o+ Ni ノなかから選ばれる何れか少なくとも1種
を用いる理由は、それら金属からなる膠着層および浸透
層は高度の耐食性を有し、硬度は拡散被覆が施されてい
ない索部材と比較して2〜6倍高く、コンクリート打込
みの際の耐摩耗性および耐剥離性に優れているばかりで
なく海水浸入時にも容易には剥離傷損しないし、また、
長年の使用中に受ける波浪。
A as the metal to be permeated and diffused in the reinforcing member of the present invention
t, + Zn+ Cr, st, Zr+ Tit M
The reason for using at least one selected from o+Ni is that the adhesion layer and permeation layer made of these metals have a high degree of corrosion resistance, and have a hardness of 2.0% compared to a cable member not coated with a diffusion coating. ~6 times higher, not only has excellent abrasion resistance and peeling resistance during concrete pouring, but also does not easily peel off and damage when seawater enters.
Waves received during long-term use.

潮流、車輌等による振動によっても容易には剥離傷損し
ないからである。
This is because it is not easily peeled off or damaged by vibrations caused by tidal currents, vehicles, etc.

本発明の補強部材において、使用中に仮シに膠着層が一
部剥w侮損したとしても素地表面には浸透層が形成され
ており、これは耐食性、耐摩耗性に優れているので長年
の使用に十分に耐えることができる。
In the reinforcing member of the present invention, even if the adhesive layer on the temporary sheet is partially peeled off during use, a permeable layer is formed on the surface of the base material, and this has excellent corrosion resistance and abrasion resistance, so it will last for many years. can withstand use.

次に本発明の補強部材を製造する拡散被覆方法を説明す
る。
Next, a diffusion coating method for manufacturing the reinforcing member of the present invention will be explained.

拡散被覆法は大別して4種の処理方法があり、粉末法、
ガス法、塩浴法及びペースト法である。
Diffusion coating methods can be roughly divided into four types: powder method,
They are gas method, salt bath method and paste method.

粉末法は所期の金属を単体で粉末にするか、それが困難
な際にはFeとの溶融合金をつ〈シその後粉砕して粉末
にする。その粉末は合金剤或は浸透剤と呼ばれ、フラッ
クスとしてハロゲン化物と共に熱処理を施して拡散被覆
を完了する。ガス法は無酸化雰囲気の炉中に所期の金属
をハロゲンガス化して流入し、炉中で加熱して拡散被覆
を施す。
In the powder method, the desired metal is made into a powder by itself, or if this is difficult, it is made into a molten alloy with Fe, and then pulverized to make a powder. The powder is called an alloying agent or a penetrating agent, and is heat treated with a halide as a flux to complete the diffusion coating. In the gas method, the desired metal is turned into a halogen gas and flows into a furnace in a non-oxidizing atmosphere, and is heated in the furnace to form a diffusion coating.

塩浴法は所期の金属塩類をつくシ加熱溶融し、そのルツ
ボ中へ被加工物を挿入して拡散させる。
In the salt bath method, the desired metal salts are applied, heated and melted, and the workpiece is inserted into the crucible and diffused.

ペースト法は所期の金属を粉末とした後、粘結剤例えば
CMCと混合してペースト状にし被加工品表面に塗布し
た後、炉中で加熱して拡散させる。
In the paste method, the desired metal is powdered, mixed with a binder such as CMC to form a paste, applied to the surface of the workpiece, and then heated and diffused in a furnace.

上記4種類の拡散被覆法のうち本発明の補強部材を製造
するのには、部材の形状および寸法等の点から粉末法に
よることが多くの場合好適である。
Among the four types of diffusion coating methods described above, in many cases, the powder method is suitable for manufacturing the reinforcing member of the present invention from the viewpoint of the shape and dimensions of the member.

この方法によれば拡散浸透させようとする金属あるいは
合金の粉末と少量の塩化アンモニウムおよび焼結防止剤
を鉄製ケース内に素部材と共に前記素部材が互に接触し
ない様に間隔を置いて装入し、ケース内部に空気ができ
るだけ残存しないようにつき固めた後加熱することによ
って前記金属あるいは合金が素部材上にへ着層、拡散層
となって被覆付着する。
According to this method, powder of the metal or alloy to be diffused, a small amount of ammonium chloride, and an anti-sintering agent are placed in an iron case along with the raw materials at intervals so that the raw materials do not come into contact with each other. By hardening and heating the case so that as little air as possible remains inside the case, the metal or alloy is coated and adhered to the raw material as an adhesion layer and a diffusion layer.

次に粉末法により製造した補強部材の実施例を説明する
Next, an example of a reinforcing member manufactured by a powder method will be described.

実施例1 長さin、直径38謡の硬度1(v (2009) 1
22の丸棒鋼をZn、 Cr+ A−tのそれぞれの粉
末を8027 :13の重量比で配合した金属粉末10
0重量部中にNH4C1を3重量部を添加した処理剤中
に、埋設した鉄ケースを670Cで1.5時間熱処理を
施した結果1表面硬度Hv (2009) 510の補
強部材を得た。
Example 1 Length in, diameter 38 mm hardness 1 (v (2009) 1
Metal powder 10 is made by blending Zn, Cr+A-t powders with 22 round steel bars at a weight ratio of 8027:13.
The buried iron case was heat-treated at 670C for 1.5 hours in a treatment agent containing 3 parts by weight of NH4C1 in 0 parts by weight to obtain a reinforcing member with a surface hardness of Hv (2009) 510.

この補強部材にコンクリートを振動させて打込み一辺が
20儒X20CI+!角、長さ1mのコンクリート構築
物を製作した。かかる構築部材を破壊して補強部材を点
検したととる何らの異常も認められなかった。また同様
にして製作されたコンクリート構築物を100時間振動
機によって振動させた結果コンクリートにひび割れが入
っていたが、内部に埋設された部材のバ着層は剥離傷損
していなかった。
The concrete is vibrated on this reinforcing member and one side of the concrete is 20cm x 20CI+! A concrete structure with a corner and a length of 1m was manufactured. No abnormalities were found when the structural members were destroyed and the reinforcing members were inspected. Furthermore, a concrete structure manufactured in the same manner was vibrated with a vibrator for 100 hours, and as a result, cracks appeared in the concrete, but the bonding layer of the members buried inside was not peeled off or damaged.

比較のため前記丸棒鋼に溶融アルミニウムメッキした部
材を上記と同様にコンクリートを打込み振動試験を行っ
た結果、メッキ層が部分的に剥離していた。
For comparison, a vibration test was conducted on the round steel bar plated with hot-dip aluminum and concrete was placed in the same manner as above, and the plated layer was found to have partially peeled off.

実施例2 長すIWL、直径32酩ノ硬度Hv(2009> 12
2の丸棒鋼を重量比でZn 80 : Fe 20の合
金粉末と重量比でFe 50ζ5150の合金粉末とを
配合比80電20で配合した配合物100重量部にNH
4Ct 3重量部を添加し、640C,1,5時間熱処
理を行った結果、硬度Hv (200〕)280の補強
部材を得た。
Example 2 Length IWL, diameter 32mm hardness Hv (2009>12
NH was added to 100 parts by weight of a compound prepared by blending Zn 80:Fe 20 alloy powder and Fe 50ζ 5150 alloy powder in a weight ratio of 80 to 20.
As a result of adding 3 parts by weight of 4Ct and performing heat treatment at 640C for 1.5 hours, a reinforcing member with a hardness of Hv (200) 280 was obtained.

この様にして得た補強部材を5%塩水中に24時間浸漬
し、次いで大気中にmMする試験を60日間連続して行
ったが全く発銹しなかった。
The reinforcing member thus obtained was immersed in 5% salt water for 24 hours and then exposed to the atmosphere in mM for 60 consecutive days, but no rusting occurred.

以上本発明の補強部材はアルミナイズドスチール、シエ
ラダイズドスチールに比べて硬度が高く、耐摩耗性も良
好でib、かつ耐食性に優れておシ、コンクリート打込
みの際の振動施工によっても膠着層、浸透層の剥離がみ
られないので、海水の影響を受けるコンクリート構築物
に埋設すれば、コンクリート構築物を長年にわたって保
護することができることが期待される。
As described above, the reinforcing member of the present invention has higher hardness than aluminized steel and Sierra-dized steel, has good wear resistance, and has excellent corrosion resistance. Since no peeling of the permeable layer has been observed, it is expected that if buried in concrete structures that are affected by seawater, it will be possible to protect concrete structures for many years.

特許出願人 日本重化学工業株式会社Patent applicant: Japan Heavy and Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、海水の影響を受けるコンクリート構築物用補強部材
において、前記補強部材はその表面がAz+ Zn+ 
Cr+ Si+ TL Zr+ Mo+ Ni のなか
から選ばれる何れか少なくとも1種からなる金属によシ
鋼材が拡散波−されてなる海水の影響を受けるコンクリ
ート構築物用補強部材。
1. In a reinforcing member for concrete structures that is affected by seawater, the surface of the reinforcing member is Az+Zn+
A reinforcing member for concrete structures that is affected by seawater and is made of a steel material made of at least one metal selected from Cr+Si+TL, Zr+Mo+Ni, and diffused by diffusion waves.
JP58111882A 1983-06-23 1983-06-23 Reinforcement for concrete structure to be affected by sea water Granted JPS605927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58111882A JPS605927A (en) 1983-06-23 1983-06-23 Reinforcement for concrete structure to be affected by sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111882A JPS605927A (en) 1983-06-23 1983-06-23 Reinforcement for concrete structure to be affected by sea water

Publications (2)

Publication Number Publication Date
JPS605927A true JPS605927A (en) 1985-01-12
JPS6353259B2 JPS6353259B2 (en) 1988-10-21

Family

ID=14572513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111882A Granted JPS605927A (en) 1983-06-23 1983-06-23 Reinforcement for concrete structure to be affected by sea water

Country Status (1)

Country Link
JP (1) JPS605927A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182409A (en) * 1988-01-15 1989-07-20 Sumitomo Metal Ind Ltd Method of retaining soil using decorative steel material
WO1997041275A1 (en) * 1996-04-30 1997-11-06 Westaim Technologies Inc. Surface alloyed high temperature alloys
FR2804130A1 (en) * 2000-01-26 2001-07-27 Usui Kokusai Sangyo Kk Steel material includes layer formed by diffusion of nickel in hot-worked material containing non-metallic inclusions
US6503347B1 (en) 1996-04-30 2003-01-07 Surface Engineered Products Corporation Surface alloyed high temperature alloys
KR100385115B1 (en) * 2002-04-18 2003-05-22 Sam Ju Co Ltd Composition containing metal mixture for inhibiting salt damage and neutralization of concrete and waterproofing concrete, and method for adhering aluminum oxide coating by using the same
JP2006509105A (en) * 2002-12-03 2006-03-16 スメット ハイ−テック コーティングズ リミテッド Corrosion-resistant composite metal diffusion coating and its construction method
CN103787603A (en) * 2012-11-02 2014-05-14 苏州科技学院 Corrosion protection method of steel fibers
CN105839047A (en) * 2016-06-16 2016-08-10 福建大统铁路精密装备股份有限公司 Zincizing infiltrated layer corrosion resistance process for metal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399925B (en) * 2016-08-19 2021-08-13 重庆大有表面技术有限公司 Steel surface modification structure formed by utilizing zinc-nickel infiltration layer and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211135A (en) * 1975-07-18 1977-01-27 Seikosha Kk Siliconizinggtitanizing process for steel
JPS5490030A (en) * 1977-12-28 1979-07-17 Seikosha Kk Method of aluminummsilicon complex diffusion into iron and steel
JPS563913A (en) * 1979-06-20 1981-01-16 Matsushita Electric Ind Co Ltd Flexible printed circuit board switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211135A (en) * 1975-07-18 1977-01-27 Seikosha Kk Siliconizinggtitanizing process for steel
JPS5490030A (en) * 1977-12-28 1979-07-17 Seikosha Kk Method of aluminummsilicon complex diffusion into iron and steel
JPS563913A (en) * 1979-06-20 1981-01-16 Matsushita Electric Ind Co Ltd Flexible printed circuit board switch

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182409A (en) * 1988-01-15 1989-07-20 Sumitomo Metal Ind Ltd Method of retaining soil using decorative steel material
JPH0477082B2 (en) * 1988-01-15 1992-12-07 Sumitomo Kinzoku Kogyo Kk
WO1997041275A1 (en) * 1996-04-30 1997-11-06 Westaim Technologies Inc. Surface alloyed high temperature alloys
US6093260A (en) * 1996-04-30 2000-07-25 Surface Engineered Products Corp. Surface alloyed high temperature alloys
US6503347B1 (en) 1996-04-30 2003-01-07 Surface Engineered Products Corporation Surface alloyed high temperature alloys
US6268067B1 (en) 1996-04-30 2001-07-31 Surface Engineered Products Corporation Surfaced alloyed high temperature alloys
GB2361013A (en) * 2000-01-26 2001-10-10 Usui Kokusai Sangyo Kk Nickel diffusion layer in hot worked steel
FR2804130A1 (en) * 2000-01-26 2001-07-27 Usui Kokusai Sangyo Kk Steel material includes layer formed by diffusion of nickel in hot-worked material containing non-metallic inclusions
GB2361013B (en) * 2000-01-26 2004-06-16 Usui Kokusai Sangyo Kk Steel material of high fatigue strength and a process for manufacturing the same
KR100385115B1 (en) * 2002-04-18 2003-05-22 Sam Ju Co Ltd Composition containing metal mixture for inhibiting salt damage and neutralization of concrete and waterproofing concrete, and method for adhering aluminum oxide coating by using the same
JP2006509105A (en) * 2002-12-03 2006-03-16 スメット ハイ−テック コーティングズ リミテッド Corrosion-resistant composite metal diffusion coating and its construction method
CN103787603A (en) * 2012-11-02 2014-05-14 苏州科技学院 Corrosion protection method of steel fibers
CN105839047A (en) * 2016-06-16 2016-08-10 福建大统铁路精密装备股份有限公司 Zincizing infiltrated layer corrosion resistance process for metal

Also Published As

Publication number Publication date
JPS6353259B2 (en) 1988-10-21

Similar Documents

Publication Publication Date Title
JPS605927A (en) Reinforcement for concrete structure to be affected by sea water
JP2002275611A (en) Columnar material plated with zinc alloy, method for producing the same and flux used in the production method
JP4153631B2 (en) Molten Al-Mg-Si alloy-plated steel wire with excellent corrosion resistance and method for producing the same
US20050252165A1 (en) Fiber reinforced metal construct for reduced fatigue and metal embrittlement in susceptible structural applications
JPS62230961A (en) Improved method for forming protective film
JP3403263B2 (en) Heat-resistant and corrosion-resistant plated steel with excellent workability and corrosion resistance uniformity
JPS604902B2 (en) Metal substrate with adhesive anti-corrosion coating and method for manufacturing the same
WO2020213680A1 (en) Plated steel material
JP2002371343A (en) Hot-dip plated steel cable superior in workability with high corrosion resistance
JP4564361B2 (en) Flux composition for hot dip Zn-Al-Mg alloy plating and method for producing hot dip Zn-Al-Mg alloy plating steel using the same
JP2002030405A (en) Plated steel having high corrosion resistance and excellent in workability and its production method
Sequeira et al. Formation of diffusion coatings on iron and steel: 3 aluminium, chromium, and zinc coatings
JPS63243295A (en) Rust preventive steel sheet having superior corrosion resistance
JP2004244650A (en) METHOD OF PRODUCING Zn-Al-Mg BASED ALLOY PLATED STEEL
JP2918422B2 (en) Manufacturing method of corrosion resistant tough cast iron pipe
JP2002020850A (en) Plated steel material having high corrosion resistance and excellent in workability, and its manufacturing method
JP3106702B2 (en) Alloyed hot-dip galvanized steel sheet with excellent adhesive bonding properties
JP2004353022A (en) HOT-DIP Zn-Al ALLOY PLATED STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
JP3460086B2 (en) Cast member and method of galvanizing cast member
JPH0586455A (en) Manufacture of high salt resistant steel for reinforcing concrete whose surface is coated with al alloy layer
JPS63179735A (en) Coated steel material having excellent corrosion resistance after coating
JPH11200070A (en) Hot dip zn alloy coated steel wire
JPH05311372A (en) Galvannealed steel sheet for adhesive structure
JPS59173449A (en) Steel bar material for concrete
JPH0426753A (en) Steel material coated with ni-ti intermetallic compound