JPS6059270B2 - Planar chemiluminescent material - Google Patents

Planar chemiluminescent material

Info

Publication number
JPS6059270B2
JPS6059270B2 JP11039282A JP11039282A JPS6059270B2 JP S6059270 B2 JPS6059270 B2 JP S6059270B2 JP 11039282 A JP11039282 A JP 11039282A JP 11039282 A JP11039282 A JP 11039282A JP S6059270 B2 JPS6059270 B2 JP S6059270B2
Authority
JP
Japan
Prior art keywords
liquid
brightness
chemiluminescence
planar
chemiluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11039282A
Other languages
Japanese (ja)
Other versions
JPS591588A (en
Inventor
健次郎 柳ケ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11039282A priority Critical patent/JPS6059270B2/en
Publication of JPS591588A publication Critical patent/JPS591588A/en
Publication of JPS6059270B2 publication Critical patent/JPS6059270B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 本発明は化学発光現象を面状シート上で活発に行なわ
せ得る発光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a luminescent material capable of actively causing a chemiluminescent phenomenon on a planar sheet.

化学発光とは化学反応によつて物質の構成分子に励起
状態を生ぜしめ、これが基底状態に遷移する際に可視部
等の光線を発生する事であり、例えばビスー9、10−
フェニルエチレンアントラセンをジブチルフタレートに
溶カルた溶液と、過酸化−水素をジメチルフタレートに
溶カルた溶液の如き液体−液体を用いるものや、テトラ
キシンーN−ジメチル−アミノ−エチレンと酸素の如き
液体一気体を用いるものが各種開発されている。
Chemiluminescence is a chemical reaction that produces an excited state in the constituent molecules of a substance, and when this transitions to the ground state, it generates light in the visible region.For example, bis-9, 10-
Liquid-liquid solutions such as a solution of phenylethylene anthracene in dibutyl phthalate and a solution of peroxide-hydrogen in dimethyl phthalate, and liquid-gas solutions such as tetraxin-N-dimethyl-amino-ethylene and oxygen. A variety of devices have been developed that use .

これらを実用化したものとして米国製のサイリユーム
、日本製のケミホタル、スターリツトなる商品が市販さ
れている。
Practical versions of these products are commercially available, such as Sirium made in the United States, Kemihotaru, and Starlit made in Japan.

しかるにこれら市販されているものはいずれも相当大き
な直径を持つ筒状体内で二液を混合させる形態のもので
あり、反応にあずかる液量が少ない即ち観察者が見る方
向に存在する液の厚さが薄い場合にあつてはその輝度は
非常に弱いものであるという事を実験的に確めた。 即
ち現在市販されているスターリツトなる商品に使用され
ている二液を混合させて発光現象を起こした後、それを
透明プラスチック製封筒状の袋の中に入れ、観察方向の
厚さを変化させたところその厚さがO、5wgn/ w
gnになれは殆んど発光輝度は得られす、2Wr!n/
Twt以上にしてはじめてある程度の発光輝度が得ら
れるに過ぎなかつたのである。
However, all of these commercially available products mix two liquids in a cylindrical body with a fairly large diameter, and the amount of liquid participating in the reaction is small, i.e., the thickness of the liquid in the direction viewed by the observer is small. It was experimentally confirmed that when the light is thin, the brightness is very weak. In other words, the two liquids used in the Starrit product currently on the market were mixed to create a luminescent phenomenon, and then placed in a transparent plastic envelope-like bag to change the thickness in the viewing direction. However, its thickness is O, 5wgn/w
If you become a gn, you can almost get the luminance, 2Wr! n/
A certain level of luminance could only be obtained at Twt or higher.

従つてこれら現在市販のものては、棒状発光体(それ
もある程度容積が大なる)は可能てあるが、面積が大で
厚さが薄い面状発光体への応用は実用上困難であるとい
える。 本発明は上述の欠点を解消し、薄い面状であつ
ても十分なる輝度を、しかも均一な輝度を得る事が出来
る面状化学発光体を提供せんとするものであり、その要
旨は化学発光輝度を増加させる機能を有する物質から成
る多孔性体、又は該化学発光輝度を増加させる物質を付
着させた多孔性体の面状シートを透光性の密閉容器に封
入したことを特徴とする面状化学発光体であり、この面
状シートに予め化学発光を呈する液体の一方が含浸せし
められている場合もある。
Therefore, although it is possible to use these currently commercially available rod-shaped light emitters (which also have a somewhat large volume), it is practically difficult to apply them to planar light emitters that have a large area and are thin. I can say that. The present invention aims to eliminate the above-mentioned drawbacks and provide a planar chemiluminescent material that can obtain sufficient brightness and uniform brightness even in a thin planar shape. A surface characterized by a porous body made of a substance having the function of increasing luminance, or a planar sheet of a porous body to which a substance that increases chemiluminescence luminance is attached, sealed in a light-transmitting airtight container. In some cases, this planar sheet is impregnated in advance with one of the liquids that exhibit chemiluminescence.

本発明の面状化学発光体は、例えば第1図に示す様に、
透明又は半透明な透光性プラスチック容器1に、ガラス
繊維等上述の化学発光輝度増加作用を有する物質の一種
以上から成るか又はそれらの化学発光輝度増加作用を有
する物質の一種以上を付着させた面状シート2が封入さ
れており、該面状シート2には液体一液体式化学発光の
場合はその一方の液が、又液体一気体式化学発光の場合
はその液体が含浸せしめられている場合もある。
The planar chemiluminescent material of the present invention, for example, as shown in FIG.
A transparent or semi-transparent translucent plastic container 1 is made of one or more of the above-mentioned substances having an effect of increasing chemiluminescence brightness, such as glass fiber, or has one or more of these substances having an effect of increasing chemiluminescence brightness attached thereto. A planar sheet 2 is enclosed, and the planar sheet 2 is impregnated with one of the liquids in the case of liquid-liquid chemiluminescence, or with the liquid in the case of liquid-gas chemiluminescence. In some cases.

上記透光性プラスチック容器1には栓体3が取付けられ
ており、該栓体3から別所で混合されて既に化学発光を
起こしつつある液体を、又は化学発光を呈すべき液体の
一方が面状シートに予め含浸されている場合には他方の
液体あるいは空気等の気体を容器1内へ流入させる場合
あるいはその様な栓体は無く、注射器等て容器1内へ注
入する場合、更には第2図に示す様に容器1内に一方の
液体を含浸させた面状シート2と共にガラス等破割自在
なアンプル4に他方の液体あるいは酸素等を封入したも
のを組み込んでおき使用に際してそのアンプル4を容器
1の外から破割しアンプル4内の液体あるいは酸素を流
出せしめる様にする場合等がある。上述のいずれかの方
法により化学発光を呈すべき二液あるいは液体と気体と
を面状シート2の面上て接触させるとそこで化学発光現
象を生起する。
A stopper 3 is attached to the translucent plastic container 1, and from the stopper 3 a liquid that has been mixed elsewhere and is already causing chemiluminescence, or one of the liquids that are to exhibit chemiluminescence is passed through the stopper 3. If the sheet is pre-impregnated, the other liquid or gas such as air may be allowed to flow into the container 1, or if there is no such stopper and the sheet is injected into the container 1 with a syringe, etc. As shown in the figure, a planar sheet 2 impregnated with one liquid and a breakable ampoule 4, such as glass, filled with the other liquid or oxygen, etc. are assembled in a container 1, and when used, the ampoule 4 is There are cases where the container 1 is broken from the outside and the liquid or oxygen inside the ampoule 4 is made to flow out. When two liquids or a liquid and a gas that are to exhibit chemiluminescence are brought into contact with each other on the surface of the planar sheet 2 by any of the methods described above, a chemiluminescence phenomenon occurs there.

又本発明の面状シートとは第1図、第2図に示す様な形
態のもののみならず、ワイヤー状のものでもよく例えば
第3図に示す様に密閉容器1をチューブ状のものとし、
その中にワイヤー状の面状シート2を内装するが如き形
態等各種考えられる。ここで化学発光輝度を増加させる
物質について述べると、上述のガラス繊維、シリカガラ
ス繊維、アスベスト、ゼオライト(商品名モレキユラー
シーブスなる人工ゼオライトを用いた)は化学発光輝度
を大きく増加せしめるが、その他に実験的に確めた天然
産紙バルブ繊維及びその製品、ナイロン、サラン、レー
ヨン、羊毛、木綿、絹繊維については殆んど輝度増加は
認められなかつた。
Furthermore, the planar sheet of the present invention is not limited to those shown in FIGS. 1 and 2, but may also be wire-shaped. For example, as shown in FIG. ,
Various configurations are conceivable, such as one in which a wire-like planar sheet 2 is placed inside. Regarding substances that increase the brightness of chemiluminescence, the above-mentioned glass fibers, silica glass fibers, asbestos, and zeolite (using artificial zeolite with the trade name Molecular Sieves) greatly increase the brightness of chemiluminescence, but others Almost no increase in brightness was observed for naturally produced paper bulb fibers and their products, nylon, saran, rayon, wool, cotton, and silk fibers, which were experimentally confirmed.

但し空気等ガス体を酸化剤とする化学発光反応について
は後述する様に、紙、布の多孔性により浸潤した液体化
学発光薬剤が空気等ガスと接触する面積が大となる事に
よる発光輝度の増加があるので液:液反応よりも上記天
然繊維類も輝度増加作用は認められた。特に増輝度作用
は繊維が細く1〜2ミクロン(直径)以下の極細繊維及
びその紙、布等か強い。
However, in the case of chemiluminescent reactions in which air or other gases are used as oxidizing agents, as will be explained later, the porosity of paper or cloth increases the area where the infiltrated liquid chemiluminescent agent comes into contact with air or other gases, resulting in a decrease in luminance. Because of the increase in brightness, the above-mentioned natural fibers were also recognized to have a brightness increasing effect compared to the liquid:liquid reaction. The brightness enhancement effect is particularly strong in ultrafine fibers of 1 to 2 microns (diameter) or less, as well as paper, cloth, etc. made using such fibers.

田本無機繊維(株)製品FM紙等)直径が5〜8ミクロ
ンのガラス繊維及び紙、布、紐等は1〜2ミクロンに比
較してその作用は若干弱くなる。
Glass fibers, paper, cloth, strings, etc. with a diameter of 5 to 8 microns (manufactured by Tamoto Inorganic Fibers Co., Ltd., FM paper, etc.) have a slightly weaker effect than those with a diameter of 1 to 2 microns.

シリカ(SiO2を主成分とする)繊維も1〜2ミクロ
ンに比較して6〜7ミクロンのものは作用が弱くなる。
Silica fibers (based on SiO2) having a diameter of 6 to 7 microns are less effective than those of 1 to 2 microns.

天然産海綿、合成スポンジ、発泡スチロール等多孔性物
質については若干の増加傾向は認められたが顕著ではな
い。但し、市販の軽石に発水性を持たせた排油処理用商
品名フイルトンは液:液化学発光でも効果はすぐれてい
たが、ガラス繊維類には及ばない。酸化剤を空気とする
薬液の場合は、いずれの多孔体も液:液と比較して材質
を問わす若干の増加作用は認めたが、この場合もガラス
繊維の効果が著しい。
For porous materials such as natural sponges, synthetic sponges, and expanded polystyrene, a slight upward trend was observed, but it was not significant. However, the product name Filton, a commercially available pumice stone with water-repelling properties for waste oil treatment, was highly effective even with liquid:liquid chemiluminescence, but it was not as effective as glass fibers. In the case of chemical liquids using air as the oxidizing agent, a slight increase was observed in all porous bodies, regardless of the material, compared to liquid:liquid, but in this case too, the effect of glass fibers was remarkable.

2酸化マンガン、シリカゲルやアルミナ乾燥剤等は作用
は殆んど認められない。
Manganese dioxide, silica gel, alumina desiccant, etc. have almost no effect.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

〈実施例1〉 市販化学発光体商品名ケミホタル(外径4.5?/順、
長さ羽顛/順)を1本とり、これをその棒のほぼ中心よ
り軽く折り曲げて内部に封入されたガラス管を破断し、
よく振つて両液を混合すれば直ちに化学発光が開始され
る。
<Example 1> Commercially available chemiluminescent substance, trade name: Kemifirefly (outer diameter 4.5?/order,
Take one rod of length (length), bend it slightly from approximately the center of the rod, and break the glass tube sealed inside.
Shake well to mix both solutions and chemiluminescence will start immediately.

ここで直ちに外部棒状プラスチック容器の上部を切断し
、発光中の液体物質をマイクロシリンダーを用いて吸引
し、すぐ内径11.―/顛の平底透明高さ1−/顛円筒
プラスチック容器中へ0.15ccを注入する。そして
発光体を折り曲けて化学発光を開始してよりの時間が1
20秒を経過した時、第1表にあける材料を手早く容器
内に挿入し、発光液中に浸漬した状態として、すぐ底部
平面よりの発光を測光する(底部平面に光電光度計をあ
てて測光する)。この結果は第1表に示す通りである。
ここに発光輝度の相対強度の基準としてはケミホタルを
折り曲げてそのままの状態で発光開始後3鰍後の輝度メ
ーターの目盛の読みを300とした。
Immediately, the upper part of the external rod-shaped plastic container was cut off, and the luminescent liquid substance was sucked in using a micro cylinder. -/Flat bottom transparent height 1-/Front Pour 0.15 cc into a cylindrical plastic container. Then, it takes 1 time to bend the luminescent body and start chemiluminescence.
When 20 seconds have elapsed, quickly insert the materials listed in Table 1 into the container, immerse them in the luminescent liquid, and immediately measure the luminescence from the bottom plane (measure the light by placing a photoelectric photometer on the bottom plane). do). The results are shown in Table 1.
Here, as a reference for the relative intensity of the luminescence brightness, the reading on the scale of the luminance meter after 3 elapses after the firefly started to emit light was set at 300 while the firefly was bent.

この輝度は5分後に26へ2α庁後には230となつた
。6紛後には170となつた。
The brightness increased to 26 after 5 minutes and to 230 after 2α. After the 6th conflict, the number rose to 170.

なお表に示す通りプラスチック(Fllm/Wm内径)
透明容器に発光中の液体を入れて、各種材料を挿入しな
い発光液体ままのものはそれが発光反応開始後1208
経過した所で輝度60であつた。
As shown in the table, plastic (Fllm/Wm inner diameter)
If you put a luminescent liquid in a transparent container and do not insert any materials, it will remain as a luminescent liquid until 1208 days after the luminescence reaction starts.
After a while, the brightness was 60.

この表かられかる通りガラス繊維とアスベスト繊維の発
光輝度はそれが無い場合の4〜5倍にも達することがわ
かつた。(何も入れない場合は60、市販品棒状発光体
そのままの輝度は300である)ガラス繊維の輝度増加
作用の原理の解明は今後に待つとしても現象そのものは
特異なものと考えられる。シリカ繊維では輝度増加作用
は少ない(特にQR8O,.QR2OO)、QRlOO
刻まかなりの輝度増加が認められるが、理由はQR8へ
200はアルミナバインダーを使用して紙となるが、Q
RlOO水は全くアルミナを含まない事によると考えら
れる。
As can be seen from this table, it was found that the luminance of glass fiber and asbestos fiber reached 4 to 5 times that of the case without glass fiber and asbestos fiber. (If nothing is added, the brightness is 60, and the brightness of the commercially available rod-shaped light emitter as it is is 300.) Even if the principle of the brightness increasing effect of glass fibers has to be clarified in the future, the phenomenon itself is considered to be unique. Silica fibers have little brightness increasing effect (especially QR8O, .QR2OO), QRlOO
A considerable increase in brightness is observed after engraving, but the reason is that QR8 and 200 are made of paper using an alumina binder, but Q
This is thought to be due to the fact that RlOO water does not contain any alumina.

な、おガラス,繊維紙でも商品によつて若干の発光特性
に差が認められるが、これはガラス繊維自体の直径の大
小やバインダーの有無が関係すると考えられる。
There are slight differences in the luminescent properties of glass and fiber paper depending on the product, but this is thought to be related to the diameter of the glass fiber itself and the presence or absence of a binder.

ちなみにGBlOOR..GC−50は直径が小さく約
0.3ミクロンでありGC−90、GS−25は有機バ
インダーを少量含んでいる。く実施例2〉 市販ケミホタル、サイリーユーム4インチ、6インチ等
の発光体を内部の封入管を傷つけないように注意深く外
容器をナイフて切断し、有機着色液体てある化学発光剤
をとり出し、これを0.5〜6%の過酸化水素水(H2
O2のみで他の成分はない)と接触させると、この2液
は混合する事なくH2O2水を下に、発光剤を上に2相
に分離する。
By the way, GBlOOR. .. GC-50 has a small diameter of about 0.3 microns, and GC-90 and GS-25 contain a small amount of organic binder. Example 2: Carefully cut the outer container of a commercially available Chemifirefly, Sailyum 4-inch, 6-inch, etc. luminescent body with a knife so as not to damage the internal encapsulation tube, take out the chemiluminescent agent, which is an organic colored liquid, and with 0.5-6% hydrogen peroxide (H2
When brought into contact with O2 (only O2 and no other components), these two liquids separate into two phases, with H2O2 water on the bottom and the luminescent agent on top, without mixing.

そしてこの境界面でのみ弱く化学発光している事が暗所
でわずかに認められる。つまり市販の化学発光剤と過酸
化水素水ては実用的な発光輝度は得られぬ事がわかる。
ここにガラス繊維質紙又は布及びその他の材質に市販の
化学発光薬剤を含浸させてしかる後、これを過酸化水素
水溶液中に浸漬した時の化学発光輝度を調べたこの結果
を第2表に示す。
A weak chemiluminescence can be observed only at this interface in the dark. In other words, it is clear that commercially available chemiluminescent agents and hydrogen peroxide solutions cannot provide practical luminescence brightness.
Table 2 shows the results of examining the chemiluminescence brightness when glass fiber paper or cloth or other materials were impregnated with a commercially available chemiluminescent agent and then immersed in an aqueous hydrogen peroxide solution. show.

測定容器は実施例1と同じプラスチック円筒透明平底容
器を用いこれに0.5cc0)H2O。水をあらかじめ
入れておいて、これにガラス繊維戸紙等に含浸させた発
光剤を挿入した。第2表かられかるように、ここでもガ
ラス繊維の効果が著しい。
The measurement container used was the same plastic cylindrical transparent flat bottom container as in Example 1, and 0.5 cc of H2O was added thereto. Water was filled in advance, and a luminescent agent impregnated with glass fiber door paper was inserted into the water. As can be seen from Table 2, the effect of glass fiber is remarkable here as well.

又別にガラス繊維枦紙に過酸化水素水を含浸させたもの
を市販発光液体に挿入浸漬しても同様の輝度増加が認め
られた。
A similar increase in brightness was also observed when glass fiber paper impregnated with hydrogen peroxide solution was inserted and immersed in a commercially available luminescent liquid.

く実施例3〉 空気により酸化化学発光をする薬剤として、テトラキシ
ーN−ジメチルーアミノーエチレン(Tetrakis
−N−Dimethyl−AmirlO−Ethyle
ne)を用い、この薬剤を含浸させる材料として第3表
に示すガラス繊維等を用いた。
Example 3 Tetraxy N-dimethyl-aminoethylene (Tetrakis
-N-Dimethyl-AmirlO-Ethyle
ne), and the glass fibers shown in Table 3 were used as materials to be impregnated with this drug.

いずれもF22m/7n1厚み0.5〜0.67n,/
mとし、予めF25m/TrL透明平底プラスチック容
器の底面に前記材料を平らに置いた。
Both F22m/7n1 thickness 0.5~0.67n,/
m, and the material was previously placed flat on the bottom of a F25m/TrL transparent flat-bottomed plastic container.

そしてこれを窒素ガス雰囲気中に置き、この中であらか
じめ窒素気流中て採取した前記化学発光剤0.15cc
をガラス繊維紙等の材料上に滴下ししめらせた。次にこ
の容器を空気中に置くと共に底部の化学発光輝度を測定
した。空気中に置くと共にメーターを読み30〜印秒後
に最大値に達する化学発光輝度の最大値の読みをデータ
ーとした。これは最大値に達するまでの所要時間が材料
によつて若干異つたためである。なお測光器メーターの
読みの基準は実施例1、2と同様に市販ケミホタルの化
学発光開始直後の輝度を300とした。
Then, this was placed in a nitrogen gas atmosphere, in which 0.15 cc of the chemiluminescent agent previously collected in a nitrogen stream was
was dropped onto a material such as glass fiber paper and allowed to stand. Next, this container was placed in the air and the chemiluminescence brightness at the bottom was measured. While placing it in the air, the meter was read, and the maximum value of the chemiluminescence brightness, which reached the maximum value after 30 seconds, was taken as data. This is because the time required to reach the maximum value differs slightly depending on the material. Note that, as in Examples 1 and 2, the standard for reading the photometer meter was the luminance of 300 immediately after the start of chemiluminescence of the commercially available Chemifirefly.

又参考比較用として紙等を全く置かないプラスチック容
器に薬剤のみ0.15ccを入れて後、空気中に持ち来
し発光を測光した。得ォ2られた結果は第3表の通りで
ある。なおテフロン薄膜は空気中の酸素を通過させる性
質があるのでテフロン薄膜の一方に実施例3の化学発光
剤を接触させて、別の面を空気中に置けば酸素がテフロ
ン膜を通して化学発光剤の方に来り化学発光を起す。
Also, for reference and comparison, 0.15 cc of the drug was placed in a plastic container without any paper or the like placed therein, and the container was then brought into the air and the luminescence was measured. The results obtained are shown in Table 3. Note that the Teflon thin film has the property of allowing oxygen in the air to pass through it, so if one side of the Teflon thin film is brought into contact with the chemiluminescent agent of Example 3 and the other side is placed in the air, oxygen will pass through the Teflon film and cause the chemiluminescent agent to pass through. It moves toward the direction and emits chemiluminescence.

この応用として次の通り本発明の効果を認めた。使用し
たテフロン膜:厚さ6ミクロン テフロン 日本中興化成製造 内寸法107n/Wl.×807n/7T1,の封筒状
の型の袋。
In this application, the following effects of the present invention were recognized. Teflon membrane used: 6 microns thick Teflon manufactured by Nippon Chukoh Kasei Internal dimensions 107n/Wl. ×807n/7T1, envelope-shaped bag.

一方の袋には幅87TL/Trl.、長さ507n/7
nのGB一100Rガラス繊維戸紙を入れる。これに0
.3ccの化学発光剤(実施例5を同じ)を含浸させて
から封入し密封する。又別の一方は比較用としてテフロ
ン袋に0.3ccの化学発光剤を単身て入れて密封した
One bag has a width of 87TL/Trl. , length 507n/7
Insert GB-100R glass fiber door paper. 0 for this
.. It is impregnated with 3 cc of chemiluminescent agent (same as in Example 5), then sealed and sealed. In the other bag for comparison, 0.3 cc of chemiluminescent agent was placed alone in a Teflon bag and sealed.

これらの操作はすべて窒素気流中で行つた。All these operations were performed in a nitrogen stream.

そして同時にこの二つのテフロン袋を空気中に放置し2
時間後に両方の化学発光輝度を測定した結果、ガラス繊
維戸紙を入れた方が発光剤単身を入れた場合の25倍の
輝度を示した。〈実施例4〉 市販のガラス製広口ピン、実内容積的260cc(内径
57m/m、内面の高さ98wL/mをとり、この内側
面を内底面にすべてにガラス繊維p紙GB−100Rを
切断しクリップ及びステンレスワイヤを用い、まず内側
面へ190W1,/7n×907n,/mのものをセッ
トし内側面に密着した状態とし、次に底部には直径55
W1./Trl,の枦紙をセットした。
At the same time, leave these two Teflon bags in the air.
As a result of measuring the chemiluminescence brightness of both after a period of time, it was found that the brightness with the glass fiber door paper was 25 times that of the case with the luminescent agent alone. <Example 4> A commercially available glass wide-mouth pin, with an actual internal volume of 260 cc (inner diameter 57 m/m, inner surface height 98 wL/m), was coated with glass fiber p paper GB-100R on the inner bottom surface. Using cutting clips and stainless steel wire, first set a piece of 190W1,/7n x 907n,/m on the inside surface so that it adheres tightly to the inside surface, then set a piece with a diameter of 55mm on the bottom.
W1. /Trl, was set.

このように底、側面をガラス繊維戸紙で内張りした状態
にした後窒素ガスを通して枦紙中の空気を完全に追い出
した後、実施例3に用いた化学発光剤を10ccを注入
しほぼ均一にガラス繊維?紙内に含浸させてから密栓保
存する。窒素気流中で行つたので発光しない。10日後
に開栓し内部空間に空気を充分に吹き込んてから再び密
栓する。
After the bottom and sides were lined with glass fiber door paper in this way, nitrogen gas was passed through the door to completely drive out the air in the paper, and then 10 cc of the chemiluminescent agent used in Example 3 was injected almost uniformly. Glass fiber? Impregnate the paper and store in a tightly capped container. Since it was carried out in a nitrogen stream, no light was emitted. After 10 days, open the bottle, blow enough air into the internal space, and then close the bottle again.

3〜5分後には広口ピンの側面底面が強く発光した。After 3 to 5 minutes, the side and bottom surfaces of the wide-mouthed pins emitted strong light.

〈実施例5〉ガラス平板上にGB−100R..GS−
25のF22m/m(7)P紙及びゼオラニ込粉末を厚
さ0.5m/7TL1f227n/mlこ成型したもの
を用意し、これを窒素ガス気流中に置き全く酸素がなく
なつてから実施例3と同じ化学発光剤を0.2ccずつ
含浸させる。
<Example 5> GB-100R. .. GS-
A molded product of F22m/m(7)P paper and zeolani-containing powder with a thickness of 0.5m/7TL1f227n/ml was prepared, and this was placed in a nitrogen gas stream and after the oxygen was completely removed, Example 3 Impregnate 0.2 cc of the same chemiluminescent agent as above.

これ等を暗所に置き発光がない事を確めた後、窒素ガス
中0.1%容積の酸素を含むガスを過過させた。その結
果、上記3種の平板は暗所て発光を内眼で認めた。別に
プラスチック円筒容器に入れた化学発光剤のみは発光を
認めなかつた。く実施例6〉 透明ポリエチレン箔(厚さ0.27TL/7TL)を用
いて封筒状(寸法幅607TL/m×707T1,/T
rL)平面入れ物を製作する。
After placing these in a dark place and confirming that no light was emitted, a gas containing 0.1% volume of oxygen in nitrogen gas was passed through. As a result, luminescence was observed in the inner eye of the three types of plates mentioned above in the dark. Separately, no luminescence was observed for the chemiluminescent agent placed in a plastic cylindrical container. Example 6〉 Transparent polyethylene foil (thickness 0.27TL/7TL) was used to make an envelope shape (dimensions: width 607TL/m x 707T1,/T
rL) Make a flat container.

そしてガラス繊維紙である東洋戸紙GS−25を1枚と
り、これを50W1./7TL×50TrL/mの寸法
に切断する。化学発光液としては市販サイリユームの内
容物を使用した。内容物1.8ccを上記GS−25.
泗×5CrRに含浸させて封筒状ポリエチレン袋(平板
)に挿入し次いでサイリユーム中のガラス管内酸化物を
添加すれば直ちに平面全体が強く発光する事が認められ
た。
Then, take a sheet of Toyo Togashi GS-25, which is glass fiber paper, and wrap it with 50W1. Cut into dimensions of /7TL x 50TrL/m. The contents of commercially available psyllium were used as the chemiluminescent liquid. 1.8cc of the contents was transferred to the above GS-25.
It was observed that if the glass tube was impregnated with 5CrR and inserted into an envelope-shaped polyethylene bag (flat plate), and then the oxide in the glass tube in Cylium was added, the entire flat surface immediately emitted strong light.

輝度は310〜320(初期輝度)に達した。ちなみに
比較用としてガラス繊維紙の代りにいの枦紙を用いた場
合、及びポリエチレン袋内に発光体のみ3ccを入れて
発光させた場合は室内は殆んど目立つた平面発光は認め
られなかつた。なお、市販の発光体中の酸化剤の代りに
過酸化水素水を使用しても実用性ある平面発光が得られ
た。この場合H2O2は1〜2%以上が望ましい。0.
5%H2O2の液ては発光輝度は弱くなるが、発光時間
が極めて長くなり10日経過しても暗所て肉眼て発光を
認める事が出来た。
The brightness reached 310-320 (initial brightness). By the way, for comparison purposes, when we used Ninomashi paper instead of glass fiber paper, and when we placed only 3cc of the luminous material in a polyethylene bag and caused it to emit light, there was almost no noticeable planar luminescence in the room. . In addition, practical planar light emission was obtained even when hydrogen peroxide solution was used instead of the oxidizing agent in the commercially available light emitter. In this case, H2O2 is desirably 1 to 2% or more. 0.
Although the luminance of the 5% H2O2 liquid was weak, the luminescence time was extremely long, and luminescence could be seen with the naked eye in the dark even after 10 days had passed.

市販の発光体の薬剤を用い、ガラス繊維紙で平面発光を
実施するには、ガラス繊維紙さえ反応中に存在すればよ
いのであつて、ます発光させてからその液中に挿入され
ても、又はあらかじめ酸化液をガラス繊維紙に含浸させ
ておいてもいずれも同様の輝度が得られる。酸化剤とし
てH2O2を使用する場合も同様てある。
In order to perform plane luminescence with glass fiber paper using a commercially available luminescent agent, it is only necessary that the glass fiber paper be present during the reaction, and even if it is inserted into the liquid after emitting light, Alternatively, similar brightness can be obtained by impregnating glass fiber paper with an oxidizing liquid in advance. The same applies to the case where H2O2 is used as an oxidizing agent.

サイリユーム6インチの発光特性はサイリユーム4イン
チ、スターリツト7飄ケミホタルと異なり初期輝度が強
いが、この場合もケミホタルの場合と同様に平板状袋に
入れた液体そのものの発光輝度(薄い層)は弱いがガラ
ス繊維紙を入れる事により(GB−100R1枚)39
0となつた(初期輝度)。ケミホタル300であり、サ
イリユーム6インチの正規発光をケミホタル容器に移し
て輝度を測定したら初期380てあつた。以上述べて来
た様に、本発明によれば現在市販されている化学発光薬
剤を用い、その発光輝度を大幅に増大させる事が可能で
あると共に、その化学発光は面状シート上で起こるので
、該面状シートを各種形態としておけばそれに応じて広
い面状体でも細長い面状体(ワイヤー状)にでも任意の
形態の発光体を得る事が出来、しかも外側の密閉容器の
形態あるいは可撓性等の性質にかかわりなく所望する任
意の形態の面状シートを均一に発光させる事が出来ると
いう効果がある。
The luminescence characteristics of the Sylium 6 inch differ from the Sairium 4 inch and the Starlit 7 Airy Firefly, and the initial brightness is strong, but in this case as well, the luminance of the liquid itself contained in the flat bag (thin layer) is weak, as in the case of the Sylium 6 inch. By inserting glass fiber paper (1 piece of GB-100R) 39
It became 0 (initial brightness). It was a Chemifirefly 300, and when I transferred the regular luminescence of a 6-inch psyllium into a Chemifirefly container and measured the brightness, the initial brightness was 380. As described above, according to the present invention, it is possible to significantly increase the luminescence brightness using currently commercially available chemiluminescent agents, and since the chemiluminescence occurs on a planar sheet, If the planar sheet is made into various shapes, it is possible to obtain a light emitting body of any shape, whether it is a wide sheet or a long and narrow sheet (wire shape). This has the effect that a planar sheet of any desired form can be made to emit light uniformly regardless of its properties such as flexibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれ本発明発光体の各種形態を示
す説明図。 図中、1:密閉容器、2:面状シート。
FIGS. 1 to 3 are explanatory views showing various forms of the light-emitting body of the present invention, respectively. In the figure, 1: airtight container, 2: planar sheet.

Claims (1)

【特許請求の範囲】 1 ガラス繊維、シリカガラス繊維、アスベスト、ゼオ
ライトの中から選ばれた一種以上から成る化学発光輝度
を増加させる機能を有する物質の多孔性体、又は該化学
発光輝度を増加させる物質を付着させた多孔性体の面状
シートを透光性の密閉容器に封入したことを特徴とする
面状化学発光体。 2 面状シートに予め、化学発光を呈す物質が液体−液
体の場合には片方の液体を又液体−気体の場合にはその
液体を含浸させておくことを特徴とする特許請求の範囲
第1項記載の面状化学発光体。 3 化学発光を呈す物質が液−酸素の場合に於いて密閉
容器内を非酸化性雰囲気とすることを特徴とする特許請
求の範囲第2項記載の面状化学発光体。
[Scope of Claims] 1. A porous body of a substance having the function of increasing chemiluminescence brightness, which is made of one or more selected from glass fiber, silica glass fiber, asbestos, and zeolite, or increasing the chemiluminescence brightness. A planar chemiluminescent material characterized in that a planar sheet of a porous material to which a substance is attached is sealed in a translucent airtight container. 2. Claim 1, characterized in that the planar sheet is impregnated in advance with one of the liquids when the chemiluminescent substance is liquid-liquid, or with that liquid when it is liquid-gas. The planar chemiluminescent material described in . 3. The planar chemiluminescent material according to claim 2, characterized in that when the substance exhibiting chemiluminescence is liquid oxygen, a non-oxidizing atmosphere is provided in the closed container.
JP11039282A 1982-06-26 1982-06-26 Planar chemiluminescent material Expired JPS6059270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11039282A JPS6059270B2 (en) 1982-06-26 1982-06-26 Planar chemiluminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11039282A JPS6059270B2 (en) 1982-06-26 1982-06-26 Planar chemiluminescent material

Publications (2)

Publication Number Publication Date
JPS591588A JPS591588A (en) 1984-01-06
JPS6059270B2 true JPS6059270B2 (en) 1985-12-24

Family

ID=14534642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11039282A Expired JPS6059270B2 (en) 1982-06-26 1982-06-26 Planar chemiluminescent material

Country Status (1)

Country Link
JP (1) JPS6059270B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150956A (en) * 2015-02-16 2016-08-22 株式会社ルミカ Flat luminous body using chemical composition
JP7233675B2 (en) * 2018-05-31 2023-03-07 株式会社ルミカ Pouch-shaped chemiluminescent material

Also Published As

Publication number Publication date
JPS591588A (en) 1984-01-06

Similar Documents

Publication Publication Date Title
ES2328379T3 (en) INDICATOR SYSTEM OF EXPIRATION OF VOLATILE MATERIALS.
KR890001248B1 (en) Chemical lighting device
KR890008213A (en) Chemiluminescence
US4196899A (en) Contemplation device
JPS6059270B2 (en) Planar chemiluminescent material
JPH0759555A (en) Package
ATE354059T1 (en) CHEMILUMINESCENT LIGHT ELEMENT
JPS6058275B2 (en) How to increase chemiluminescence brightness
KR20140039142A (en) Viscous chemiluminescent components and dispensing means
JP2004265809A (en) Flattened chemiluminescence implement
JP2018116124A (en) Perfume presentation tool and perfume presentation method
JPS5566985A (en) Structure of chemiluminescent unit
JPH0134801Y2 (en)
KR910015815A (en) Actinic devices that produce non-visible light
JPS642906B2 (en)
JPS643003B2 (en)
JP2591034B2 (en) Period elapsed display
JPS59169001A (en) Chemical light emitting unit
JPH08133336A (en) Container for reagent which is used for chemiluminescence measuring device
JPS58183023A (en) Fish gathering apparatus
JPS60124681A (en) Time indicator
JPH0644046B2 (en) Period elapsed display
JPH01141974A (en) Device for indicating lapse of time
JP2019208642A (en) Bag-shaped chemical light emitter
JPS6111202Y2 (en)