JPS6059257B2 - Glass fiber reinforced resin composition - Google Patents

Glass fiber reinforced resin composition

Info

Publication number
JPS6059257B2
JPS6059257B2 JP54146506A JP14650679A JPS6059257B2 JP S6059257 B2 JPS6059257 B2 JP S6059257B2 JP 54146506 A JP54146506 A JP 54146506A JP 14650679 A JP14650679 A JP 14650679A JP S6059257 B2 JPS6059257 B2 JP S6059257B2
Authority
JP
Japan
Prior art keywords
glass fiber
styrene
copolymer
resin composition
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54146506A
Other languages
Japanese (ja)
Other versions
JPS5670055A (en
Inventor
秀夫 笠原
吉弥 田崎
邦雄 福田
啓示 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP54146506A priority Critical patent/JPS6059257B2/en
Priority to GB8030196A priority patent/GB2060649B/en
Priority to IT25108/80A priority patent/IT1132912B/en
Priority to FR8021263A priority patent/FR2466482A1/en
Priority to DE19803037520 priority patent/DE3037520A1/en
Publication of JPS5670055A publication Critical patent/JPS5670055A/en
Priority to US06/375,685 priority patent/US4421892A/en
Publication of JPS6059257B2 publication Critical patent/JPS6059257B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、ガラス繊維強化樹脂組成物に関する。[Detailed description of the invention] The present invention relates to a glass fiber reinforced resin composition.

更に詳細には、α、β一不飽和カルボン酸無水物を共重
合成分として含有するスチレン共重合体鎖部分とポリア
ミド鎖部分が化学的に結合してなる共重合体又はそれを
含有してなる樹脂組成物に対してガラス繊維を5〜5踵
量%となるように添加してなる。塗装性が良好で耐熱性
の高いガラス繊維強化樹脂組成物に関するものてある。
従来より、ガラス繊維強化スチレン系樹脂は寸法精度
、寸法安定性、剛性に優れ、さらに廉価であるという利
点をもつているため有用な成形材料として広く使用され
ている。しカル成型品に塗装をした場合、良好な外観が
得られないという欠点があり、更に熱的性質にも劣つて
いる。 また、ガラス繊維強化ポリアミド樹脂は耐熱性
に優れ、成型品の外観は良好であるが、吸湿による著し
い物性低下と寸法変化が大きな欠点てある。
More specifically, a copolymer formed by chemically bonding a styrene copolymer chain portion containing α,β monounsaturated carboxylic acid anhydride as a copolymerization component and a polyamide chain portion, or a copolymer containing the same. Glass fibers are added to the resin composition in an amount of 5 to 5%. This article relates to a glass fiber reinforced resin composition that has good paintability and high heat resistance.
Conventionally, glass fiber reinforced styrene resins have been widely used as useful molding materials because they have excellent dimensional accuracy, dimensional stability, and rigidity, and are also inexpensive. When a cal molded product is painted, it has the disadvantage that a good appearance cannot be obtained, and furthermore, it has poor thermal properties. Furthermore, although glass fiber reinforced polyamide resin has excellent heat resistance and the appearance of molded products is good, it has major drawbacks such as significant deterioration of physical properties and dimensional changes due to moisture absorption.

またガラス繊維を混入したポリアミドに10〜40%
の熱可塑性樹脂を含有させ、ポリアミドの吸湿による寸
法変化を改良した例が特公昭48−13944号に述べ
られている。
In addition, 10 to 40% of polyamide mixed with glass fiber
Japanese Patent Publication No. 48-13944 describes an example in which dimensional change due to moisture absorption of polyamide is improved by incorporating a thermoplastic resin.

しかしここに述べられているように40%以上熱可塑性
樹脂を混入すると強靭さが低下することが大きな欠点で
ある。本発明者らは、耐熱性が高く、塗装後の外観が良
好でかつ装膜の密着性にすぐれたガラス繊維強化樹脂を
得るべく検討した結果、α,β一不飽和カルボン酸無水
物を共重合成分として含有するスチレン共重合体とポリ
アミドとの樹脂40−95重量%とガラス繊維60−5
重量%とを溶融混合して得られたガラス繊維強化樹脂組
成物が非常に好ましい結果を与えることを見出した。
However, as stated herein, a major drawback is that when 40% or more of thermoplastic resin is mixed in, the toughness decreases. The present inventors investigated to obtain a glass fiber-reinforced resin that has high heat resistance, good appearance after painting, and excellent coating adhesion, and found that α,β-monounsaturated carboxylic acid anhydride Resin of styrene copolymer and polyamide contained as polymerization components 40-95% by weight and glass fiber 60-5%
It has been found that a glass fiber-reinforced resin composition obtained by melt-mixing % by weight gives very favorable results.

本発明で用いるスチレン共重合体は共重合成分としてα
,β一不飽和カルホン酸無水物を含有していることが必
須てある。
The styrene copolymer used in the present invention has α as a copolymer component.
, β-monounsaturated carbonic acid anhydride.

特願昭54−127298号及ひ54−129467号
に示した如く、α,β一不飽和カルボン酸無水物とポリ
アミドを溶融混練下に反応させることにより、スチレン
共重合体鎖とポリアミド鎖が化学結合した新規な共重合
体が生成し、機械的性質、耐熱性などの性能がすぐれた
成形材料が得られる。このスチレン共重合体鎖とポリア
ミド鎖が化学結合した新規な共重合体とガラス繊維を複
合化することによつて本発明の目的は達成される。更に
は、上記せる新規な共重合体とα,β一不飽和カルボン
酸を含有するスチレン共重合体及び/またはポリアミド
とからなる樹脂組成物をガラス繊維と複合化することに
よつても本発明の目的が達成されることを見出した。α
,β一不飽和カルボン酸無水物を含有するスチレン共重
合体鎖部分とポリアミド鎖部分からなる共重合体又はそ
の共重合体を含有してなる樹脂組成物をベースとする本
発明のガラス繊維強化樹.脂組成物は、成型品外観が良
好となり、塗装を行つた場合に好ましい外観が得られる
As shown in Japanese Patent Application No. 54-127298 and No. 54-129467, styrene copolymer chains and polyamide chains are chemically bonded by reacting α,β monounsaturated carboxylic acid anhydride with polyamide while melt-kneading. A new bonded copolymer is produced, resulting in a molding material with excellent mechanical properties, heat resistance, and other performance. The object of the present invention is achieved by combining glass fiber with a novel copolymer in which styrene copolymer chains and polyamide chains are chemically bonded. Furthermore, the present invention can also be achieved by compounding a resin composition comprising the novel copolymer described above and a styrene copolymer and/or polyamide containing α,β monounsaturated carboxylic acid with glass fiber. It was found that the objective was achieved. α
, a copolymer consisting of a styrene copolymer chain portion containing a β-unsaturated carboxylic acid anhydride and a polyamide chain portion, or a resin composition containing the copolymer. Tree. The fat composition gives a molded product a good appearance, and when painted, a desirable appearance can be obtained.

またガラス繊維強化により耐熱性の向上および機械的物
性の向上が著しく、スチレン共重合体の含有量が増加し
ても機械的物性の大きな低下がない。これに対.して、
A,β一不飽和カルボン酸無水物を含まないポリスチレ
ン又はスチレン−メタクリル酸メチル共重合体とポリア
ミドからなる樹脂組成物を用いた場合には、成型品に剥
離状態が生じ、好ましい外観が得られないし、また機械
的物性の点でも−劣る。本発明のスチレン共重合体鎖部
分を形成する共重合体はスチレン系単量体とα,β一不
飽和カルボン酸無水物を、また必要であれば両者と共重
合させることが可能な単量体を加えて、共重合させるこ
とにより得ることができる。
Further, the glass fiber reinforcement significantly improves heat resistance and mechanical properties, and even if the content of the styrene copolymer increases, the mechanical properties do not deteriorate significantly. Against this. do,
When using a resin composition consisting of polystyrene or styrene-methyl methacrylate copolymer and polyamide that does not contain A, β-monounsaturated carboxylic acid anhydride, a peeling state occurs in the molded product and a desirable appearance cannot be obtained. Moreover, it is also inferior in terms of mechanical properties. The copolymer forming the styrene copolymer chain portion of the present invention is a monomer that can be copolymerized with a styrene monomer and an α,β monounsaturated carboxylic acid anhydride, or if necessary with both. It can be obtained by copolymerizing with the addition of

スチレン系単量体としてはスチレン、α−メチルスチレ
ン、p−メチルスチレンなどが単独又は混合して使用出
来、α,β一不飽和カルボン酸無水物としては無水マレ
イン酸、メチル無水マレイン酸、クロロ無水マレイン酸
などが用いられる。両者と共重合可能な単量体としては
、メタアクリル酸エステル、アクリル酸エステル、アク
リロニトリルなどが用・いられる。好ましいスチレン共
重合体としては、スチレンー無水マレイン酸共重合体、
スチレンー無水マレイン酸−メタアクリル酸メチル共重
合体などである。スチレン共重合体中の組成については
、共重合体中のα,β一不飽和カルボン酸無水物の含有
量が2〜30モル%であることが好ましく、その含有量
が少なすぎる場合には、耐熱性、機械的強度、成型品外
観の点で好ましくなく、含有量が多すぎる場合には成形
加工性の点て好ましくない。
As the styrene monomer, styrene, α-methylstyrene, p-methylstyrene, etc. can be used alone or in combination, and as the α,β monounsaturated carboxylic acid anhydride, maleic anhydride, methylmaleic anhydride, chloro Maleic anhydride and the like are used. Examples of monomers that can be copolymerized with both include methacrylic ester, acrylic ester, acrylonitrile, and the like. Preferred styrene copolymers include styrene-maleic anhydride copolymers,
Examples include styrene-maleic anhydride-methyl methacrylate copolymer. Regarding the composition in the styrene copolymer, it is preferable that the content of α,β monounsaturated carboxylic acid anhydride in the copolymer is 2 to 30 mol%, and if the content is too small, It is unfavorable in terms of heat resistance, mechanical strength, and appearance of the molded product, and if the content is too large, it is unfavorable in terms of moldability.

更にスチレン共重合体中にメタアクリル酸メチルを導入
することにより、得られたガラス繊維強化樹脂組成物の
成形加工性、成型品の外観において好ましい効果が得ら
れるが、メタアクリル酸メチルの含有量が多くなりすぎ
るとポリスチレンの好ましい性質が失われ、またコスト
が高くなり好ましくない。特に好ましい例としては、無
水マレイン酸含有量が2〜15モル%のスチレンー無水
マレイン酸共重合体、スチレン40〜95モル%、無水
マレイン酸2〜30モル%およびメタアクリル酸メチル
2〜58モル%よりなるスチレンー無水マレイン酸一メ
タアクリル酸メチル共重合体がある。本発明に用いる好
適なポリアミドとしては、ポリカプロラクタム(ナイロ
ンー6)、ポリヘキサメチレンアジパミド(ナイロンー
6,6)、ポリヘキサメチレンセバサミド(ナイロンー
6,10)などてある。
Furthermore, by introducing methyl methacrylate into the styrene copolymer, favorable effects can be obtained on the moldability of the resulting glass fiber reinforced resin composition and the appearance of the molded product, but the content of methyl methacrylate If the amount is too large, the desirable properties of polystyrene will be lost and the cost will increase, which is not preferable. Particularly preferred examples include a styrene-maleic anhydride copolymer with a maleic anhydride content of 2 to 15 mol%, styrene 40 to 95 mol%, maleic anhydride 2 to 30 mol%, and methyl methacrylate 2 to 58 mol%. % styrene-maleic anhydride-methyl methacrylate copolymer. Suitable polyamides for use in the present invention include polycaprolactam (nylon-6), polyhexamethylene adipamide (nylon-6,6), and polyhexamethylene sebaamide (nylon-6,10).

また、本発明のベースとなる新規共重合体又はその共重
合体を含有する樹脂組成物においてスチレン共重合体と
ポリアミドの混合割合いは、1〜99:99〜1と広い
範囲で用いることができるが、塗装品の外観、塗膜の密
着性、などの点からスチレン共重合体20〜8唾量%と
ポリアミド80〜2鍾量%が好ましい。
In addition, in the new copolymer or the resin composition containing the copolymer, which is the base of the present invention, the mixing ratio of the styrene copolymer and polyamide can be varied over a wide range from 1 to 99:99 to 1. However, from the viewpoint of the appearance of the coated product, the adhesion of the coating film, etc., styrene copolymer content of 20 to 8% and polyamide content of 80 to 2% are preferred.

本発明で用いるガラス繊維の長さは補強効果が現われる
限界長さ以上てあれば可能な限り長い方が望ましいが、
混合時の作業性、成形過程での切断等を考慮して0.4
〜6.0TIU!t程度のものが好ましく、最終成形物
中のガラス繊維の長さが0.2〜2.0順程度てあれば
よい。
The length of the glass fiber used in the present invention is desirably as long as possible, as long as it is longer than the critical length at which the reinforcing effect appears.
0.4 considering workability during mixing, cutting during molding process, etc.
~6.0TIU! It is preferable that the length of the glass fiber in the final molded product be about 0.2 to 2.0.

ガラス繊維の表面処理を限定する必要はなく、各種の処
理が行なわれている市販品がそのまま使用される。更に
ガラス繊維の含有量はガラス繊維強化樹脂組成物に対し
て5〜6呼量%がよく、それ以上になると成形加工性が
低下し、5重量%以下では充分な補強効果が得られない
。本発明のガラス繊維強化樹脂組成物は、耐熱性が高く
、塗装に好適な材料であると共に、ガラス繊維強化によ
る機械的性質の向上も著しく、また成形加工性、寸法精
度にすぐれることから、大型成形品として自動車部品、
家庭電器部品などに広く用いることができる。
There is no need to limit the surface treatment of the glass fibers, and commercially available products that have been subjected to various treatments can be used as they are. Further, the content of glass fiber is preferably 5 to 6% by weight based on the glass fiber reinforced resin composition; if it is more than that, the molding processability decreases, and if it is less than 5% by weight, a sufficient reinforcing effect cannot be obtained. The glass fiber-reinforced resin composition of the present invention has high heat resistance and is a material suitable for painting, and also has remarkable improvement in mechanical properties due to glass fiber reinforcement, and has excellent moldability and dimensional accuracy. Auto parts as large molded products,
It can be widely used in home appliance parts.

本発明を実施するに際しては、たとえばペレット状のス
チレン共重合体とポリアミドをブレンダーて混合後、押
出機を通して溶融混合しペレット状の樹脂を得る。
In carrying out the present invention, for example, pelletized styrene copolymer and polyamide are mixed in a blender and then melt-mixed through an extruder to obtain pelletized resin.

得た樹脂とガラス繊維をブレンダーで混合し、押出機に
て溶融混合してガラス繊維強化樹脂組成物を得る。また
、ペレット状のスチレン共重合体、ポリアミドとガラス
繊維の混合物を直接射出成形機のホッパーに入れ、溶融
混合と同時に成形物を得てもよいし、上記3者混合物を
押出機にて溶融混練を行いガラス繊維強化樹脂組成物を
得ることもてきる。樹脂組成物又は成形物をつくる場合
の溶融混練は剪断力のかかつた状態て混合を行うことが
好ましく、温度は220〜3300C1好ましくは25
0〜300′Cてある。本発明の組成物は、必要に応じ
て熱又は光に対する安定剤、染料、顔料、難燃化剤、可
塑剤等の〜添加物を加えて用いることが出来る。更に本
発明の樹脂組成物の性能を著しく阻害しない範囲で、本
発明の樹脂組成物と混合が可能な熱可塑性樹脂、たとえ
ばポリスチレン、スチレン−アクリロニトリル共重合体
、スチレン−メタアクリル酸メチル共重合体、ABS樹
脂、ポリカーボネート、ポリフェニレンエーテルなどを
ブレンドすることもてきる。また、本発明の樹脂組成物
中のガラス繊維の一部を、アスベスト、炭素繊維、芳香
族ポリアミド繊維、チタン酸カリウム繊維などの繊維状
補強剤又は炭酸カルシウム、タルク、酸化チタン、酸化
亜鉛、水酸化マグネシウムなどの無機質充填剤でおきか
えることも出来る。
The obtained resin and glass fibers are mixed in a blender and melt-mixed in an extruder to obtain a glass fiber reinforced resin composition. Alternatively, a pellet-like mixture of styrene copolymer, polyamide and glass fiber may be directly put into the hopper of an injection molding machine to obtain a molded product at the same time as melt-mixing, or the above-mentioned mixture of the three components may be melt-kneaded using an extruder. It is also possible to obtain a glass fiber-reinforced resin composition by carrying out this process. When making a resin composition or a molded article, it is preferable to perform the melt kneading under shearing force, and the temperature is 220 to 3300 C1, preferably 25 C.
0~300'C. The composition of the present invention may be used with additives such as heat or light stabilizers, dyes, pigments, flame retardants, plasticizers, etc., as required. Furthermore, thermoplastic resins that can be mixed with the resin composition of the present invention, such as polystyrene, styrene-acrylonitrile copolymer, and styrene-methyl methacrylate copolymer, to the extent that the performance of the resin composition of the present invention is not significantly impaired. , ABS resin, polycarbonate, polyphenylene ether, etc. can also be blended. In addition, some of the glass fibers in the resin composition of the present invention may be substituted with fibrous reinforcing agents such as asbestos, carbon fibers, aromatic polyamide fibers, potassium titanate fibers, calcium carbonate, talc, titanium oxide, zinc oxide, water, etc. It can also be replaced with an inorganic filler such as magnesium oxide.

更に前記せる繊維状補強剤の場合には全量ガラス繊維と
おきかえて用いても好ましい性能の成形材料が得られる
。次に本発明をより詳しく説明するために実施例を示す
Furthermore, in the case of the above-mentioned fibrous reinforcing agent, a molding material with preferable performance can be obtained even if the entire amount is used in place of glass fiber. Next, examples will be shown to explain the present invention in more detail.

部は重量部を示す。実施例1〜3、比較例1 よく乾燥したナイロンー6(東レ製アミランCMlOl
7)ペレットとスチレンー無水マレイン酸−メタアクリ
ル酸メチル共重合体(無水マレイン酸含有量9モル%、
メタアクリル酸メチル含有量8モル%)ペレット〔実施
例〕又はポリスチレン(旭タウ製スタイロン633)ペ
レット 〔比較例1〕を第1表に示す割合いで混合し、
260℃の温度で2軸押出機を通してペレット状の反応
物又は重合体混合物を得た。
Parts indicate parts by weight. Examples 1 to 3, Comparative Example 1 Well-dried nylon-6 (Amiran CMlOl manufactured by Toray)
7) Pellets and styrene-maleic anhydride-methyl methacrylate copolymer (maleic anhydride content 9 mol%,
Methyl methacrylate content 8 mol%) pellets [Example] or polystyrene (Asahi Tau Styron 633) pellets [Comparative Example 1] were mixed in the proportions shown in Table 1,
A pelletized reactant or polymer mixture was obtained through a twin-screw extruder at a temperature of 260°C.

ここに得た樹脂ペレットとガラス繊維を第1表に示すガ
ラス繊維含有量となるような割合いで混合し、この混合
物をベント型押出機に投入し、250〜270℃でペレ
ット状のガラス繊維強化樹脂組成物を得た。この組成物
から射出成形機にて試験用の成形品を成形した。JIS
試験法K687lに記載の方法にて、引張強度、アイゾ
ツト衝撃強度、加熱変形温度を、ASTM試験法D79
Oに記載の方法にて曲げ強さ、曲げ弾性率を測定した。
塗装性については、成形品をア・クリル系塗料て塗装し
た後、その外観を肉眼て判定し、また塗膜の密着性試験
は、50゜C198%RH以上て7満間耐湿試験を行つ
た後の成形品で実施した。得られた結果を、ガラス繊維
強化ポリスチレン、ガラス繊維強化ナイロンー6ととも
に第1表に示した。本発明のガラス繊維強化樹脂組成物
は、耐熱性が高く、塗装性が良好で、しかも機械的物性
もすぐれていることがわかる。実施例4,5 よく乾燥したナイロンー6(東レ製アミランCMlOl
7)ペレット5娼とスチレンー無水マレイン酸−メタア
クリル酸メチル共重合体(無水マレイン酸含有量9モル
%、メタアクリル酸メチル含有量8モル%)ペレット(
イ)部を混合し、260℃で2軸押出機を通してペレッ
ト状の樹脂を得た。
The resin pellets and glass fibers obtained here are mixed in a ratio that will give the glass fiber content shown in Table 1, and this mixture is put into a vented extruder and heated to 250 to 270°C to form glass fiber reinforced pellets. A resin composition was obtained. A test molded article was molded from this composition using an injection molding machine. JIS
Tensile strength, Izod impact strength, and heat deformation temperature were measured according to ASTM test method D79 using the method described in Test method K687l.
Bending strength and bending elastic modulus were measured by the method described in Section 2.
Regarding paintability, after painting the molded product with acrylic paint, its appearance was judged with the naked eye, and the adhesion test of the paint film was conducted at 50°C, 198% RH or higher, and a moisture resistance test for 7 days. This was carried out on a later molded product. The results obtained are shown in Table 1 together with glass fiber reinforced polystyrene and glass fiber reinforced nylon-6. It can be seen that the glass fiber reinforced resin composition of the present invention has high heat resistance, good paintability, and excellent mechanical properties. Examples 4 and 5 Well-dried nylon-6 (Amiran CMlOl manufactured by Toray)
7) Pellets 5 and styrene-maleic anhydride-methyl methacrylate copolymer (maleic anhydride content 9 mol%, methyl methacrylate content 8 mol%) pellets (
Part (a) was mixed and passed through a twin-screw extruder at 260°C to obtain resin pellets.

ここに得たペレット状の樹脂とガラス繊維を第2表に示
すガラス繊維含有量となるような割合いで混合し、この
混合物をベント型押出機に投入し、250〜270′C
でペレット状のガラス繊維強化樹脂組成物を得た。実施
例1と同様に物性試験を行つた。結果を第2表に示す。
ガラス繊維含有量の増加とともに物性の向上が著しい。
実施例6 実施例2におけるスチレンー無水マレイン酸一メタアク
リル酸メチル共重合体の代りに、スチレンー無水マレイ
ン酸共重合体(無水マレイン酸含有量10モル%)を用
いて、同様にガラス繊維強化樹脂組成物を製造し、物性
試験を行つた。
The pelletized resin and glass fiber obtained here were mixed in a proportion that would give the glass fiber content shown in Table 2, and this mixture was put into a vented extruder and heated at 250 to 270'C.
A pelletized glass fiber reinforced resin composition was obtained. Physical property tests were conducted in the same manner as in Example 1. The results are shown in Table 2.
As the glass fiber content increases, the physical properties significantly improve.
Example 6 In place of the styrene-maleic anhydride-methyl methacrylate copolymer in Example 2, a styrene-maleic anhydride copolymer (maleic anhydride content: 10 mol%) was used, and a glass fiber reinforced resin was similarly prepared. A composition was manufactured and physical property tests were conducted.

結果を第2表に示す。実施例7 実施例2におけるナイロンー6の代りに、ナイロンー6
,6(旭化成製:レオナ1300S)を用いて、同様の
試験を行つた。
The results are shown in Table 2. Example 7 Nylon-6 was used instead of nylon-6 in Example 2.
, 6 (manufactured by Asahi Kasei: Leona 1300S), a similar test was conducted.

結果を第2表に示す。更に実施例4〜8て得たガラス繊
維強化樹脂組成物の射出成形による成形品の塗装性を実
施例1におけるのと同様に試験した結果、塗装品の外観
、塗膜の密着性ともにすぐれた結果を得た。
The results are shown in Table 2. Furthermore, the paintability of the molded products obtained by injection molding of the glass fiber reinforced resin compositions obtained in Examples 4 to 8 was tested in the same manner as in Example 1. As a result, both the appearance of the painted products and the adhesion of the coating film were excellent. Got the results.

また本発明の実施例2の組成物の吸湿性、吸湿による寸
法変化、成形収縮率、成形品のそりについて測定した。
吸湿性および吸湿による寸法変化は60゜C温水に72
I寺間、試験片を浸漬した後の重量増加と寸法の変化を
測定することによつた。
The composition of Example 2 of the present invention was also measured for hygroscopicity, dimensional change due to moisture absorption, molding shrinkage rate, and warpage of the molded product.
Hygroscopicity and dimensional changes due to moisture absorption are 72% when heated to 60°C water.
I Terama, by measuring the weight increase and dimensional change after immersing the test piece.

Claims (1)

【特許請求の範囲】 1 α,β−不飽和カルボン酸無水物を共重合成分とし
て含有するスチレン共重合体とポリアミドとの樹脂40
−95重量%とガラス繊維60−5重量%とを溶融混合
して得られたガラス繊維強化樹脂組成物。 2 樹脂成分がスチレン共重合体20−80重量%とポ
リアミド80−20重量%とからなる特許請求の範囲第
1項記載のガラス繊維強化樹脂組成物。 3 スチレン共重合体が共重合体成分としてα,β−不
飽和カルボン酸無水物を2〜30モル%含有するスチレ
ン共重合体である特許請求の範囲第1項記載のガラス繊
維強化樹脂組成物。 4 スチレン共重合体が85〜98モル%のスチレンと
2〜15モル%の無水マレイン酸からなるスチレン−無
水マレイン酸共重合体である特許請求の範囲第1項記載
のガラス繊維強化樹脂組成物。 5 スチレン共重合体が40〜96モル%のスチレン、
2〜30モル%の無水マレイン酸および2〜58モル%
のメタアクリル酸アルキルエステルからなるスチレン−
無水マレイン酸−メタアクリル酸アルキルエステル共重
合体である特許請求の範囲第1項記載のガラス繊維強化
樹脂組成物。
[Claims] 1. Resin 40 of styrene copolymer and polyamide containing α,β-unsaturated carboxylic acid anhydride as a copolymerization component
A glass fiber reinforced resin composition obtained by melt-mixing -95% by weight and 60-5% by weight of glass fibers. 2. The glass fiber reinforced resin composition according to claim 1, wherein the resin component comprises 20-80% by weight of styrene copolymer and 80-20% by weight of polyamide. 3. The glass fiber reinforced resin composition according to claim 1, wherein the styrene copolymer is a styrene copolymer containing 2 to 30 mol% of α,β-unsaturated carboxylic acid anhydride as a copolymer component. . 4. The glass fiber reinforced resin composition according to claim 1, wherein the styrene copolymer is a styrene-maleic anhydride copolymer consisting of 85 to 98 mol% styrene and 2 to 15 mol% maleic anhydride. . 5 Styrene containing 40 to 96 mol% of styrene copolymer,
2-30 mol% maleic anhydride and 2-58 mol%
Styrene consisting of methacrylic acid alkyl ester of
The glass fiber reinforced resin composition according to claim 1, which is a maleic anhydride-methacrylic acid alkyl ester copolymer.
JP54146506A 1979-10-04 1979-11-14 Glass fiber reinforced resin composition Expired JPS6059257B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP54146506A JPS6059257B2 (en) 1979-11-14 1979-11-14 Glass fiber reinforced resin composition
GB8030196A GB2060649B (en) 1979-10-04 1980-09-18 Co-grafted polymers
IT25108/80A IT1132912B (en) 1979-10-04 1980-10-03 THERMOPLASTIC POLYMERIC MATERIAL AND METHOD TO PREPARE IT
FR8021263A FR2466482A1 (en) 1979-10-04 1980-10-03 THERMOPLASTIC POLYMERIC MATERIAL AND PROCESS FOR PREPARING THE SAME
DE19803037520 DE3037520A1 (en) 1979-10-04 1980-10-03 THERMOPLASTIC POLYMER MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
US06/375,685 US4421892A (en) 1979-10-04 1982-05-06 Thermoplastic polymeric material and method for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54146506A JPS6059257B2 (en) 1979-11-14 1979-11-14 Glass fiber reinforced resin composition

Publications (2)

Publication Number Publication Date
JPS5670055A JPS5670055A (en) 1981-06-11
JPS6059257B2 true JPS6059257B2 (en) 1985-12-24

Family

ID=15409162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54146506A Expired JPS6059257B2 (en) 1979-10-04 1979-11-14 Glass fiber reinforced resin composition

Country Status (1)

Country Link
JP (1) JPS6059257B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778452A (en) * 1980-11-04 1982-05-17 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JPS5894887A (en) * 1981-12-02 1983-06-06 蛇の目ミシン工業株式会社 Inner hook of sewing machine
JPS58168654A (en) * 1982-03-30 1983-10-05 Nippon Denso Co Ltd Plastic molding for automobile
JPS6044535A (en) * 1983-08-23 1985-03-09 Asahi Fiber Glass Co Ltd Reinforced thermoplastic resin
JPS6060158A (en) * 1983-09-13 1985-04-06 Asahi Chem Ind Co Ltd Polyamide resin composition
JPS60210660A (en) * 1984-04-05 1985-10-23 Asahi Chem Ind Co Ltd Impact-resistant polyamide resin composition
JPS60238360A (en) * 1984-05-11 1985-11-27 Asahi Chem Ind Co Ltd Glass fiber reinforced, impact-resistant polyamide resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143061A (en) * 1975-05-23 1976-12-09 Du Pont Reinforced multiiphase thermoplastic compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51143061A (en) * 1975-05-23 1976-12-09 Du Pont Reinforced multiiphase thermoplastic compound

Also Published As

Publication number Publication date
JPS5670055A (en) 1981-06-11

Similar Documents

Publication Publication Date Title
US4421892A (en) Thermoplastic polymeric material and method for the preparation thereof
JPS5871952A (en) Novel thermoplastic resin composition
EP0049103B2 (en) Polymeric materials and thermoplastic resin compositions
JPS6059257B2 (en) Glass fiber reinforced resin composition
JPS6386706A (en) Diels-alder graft polymer
JPS61171751A (en) Thermoplastic resin composition
JPH02105822A (en) Preparation of graft copolymer
JPS634564B2 (en)
JPS5933348A (en) Novel thermoplastic polymer composition
JPS6160098B2 (en)
JPH0128781B2 (en)
JPH0347814A (en) Imidated copolymer and resin modifier and resin compatibilizing agent produced by using the same
JPS6047304B2 (en) New thermoplastic resin composition
JPS6259647A (en) Thermoplastic resin composition
CA2005726A1 (en) Thermoplastic resin composition
JPS5846218B2 (en) Glass fiber reinforced thermoplastic resin composition
JPS6034986B2 (en) Polymer blend composition
JPH04173863A (en) Resin composition
JPH0352952A (en) Polyamide resin composition
JPS5927940A (en) Novel polymer composition
JPH04266965A (en) Thermoplastic resin composition
JPS60195157A (en) Polyamide resin composition
JPS6086162A (en) Polyamide resin composition
JPH04255756A (en) Polyamide resin composition excellent in impact resistance
JPS60120734A (en) Transparent, heat- and impact-resistant resin composition