JPS6058832B2 - Magnetic susceptibility measuring device - Google Patents

Magnetic susceptibility measuring device

Info

Publication number
JPS6058832B2
JPS6058832B2 JP2173678A JP2173678A JPS6058832B2 JP S6058832 B2 JPS6058832 B2 JP S6058832B2 JP 2173678 A JP2173678 A JP 2173678A JP 2173678 A JP2173678 A JP 2173678A JP S6058832 B2 JPS6058832 B2 JP S6058832B2
Authority
JP
Japan
Prior art keywords
magnetic field
sample
magnetic
nmr
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2173678A
Other languages
Japanese (ja)
Other versions
JPS54114273A (en
Inventor
勝重 津野
誠 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP2173678A priority Critical patent/JPS6058832B2/en
Publication of JPS54114273A publication Critical patent/JPS54114273A/en
Publication of JPS6058832B2 publication Critical patent/JPS6058832B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 本発明は、常磁性物質や反磁性物質等の磁化率を測定
する装置に関し、特に磁化率の著しく小さい物質の反磁
性か常磁性かを識別する場合に用いて有利な装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the magnetic susceptibility of paramagnetic substances, diamagnetic substances, etc., and is particularly advantageous when identifying whether a substance with extremely low magnetic susceptibility is diamagnetic or paramagnetic. It is related to the equipment.

従来より、磁化率を測定するための方法は原理的に以
下に示す3種類あつた。
Conventionally, there have been three types of methods for measuring magnetic susceptibility as shown below in principle.

1不均一磁場中に置かれた試料の受ける力を測定する。1. Measure the force exerted on a sample placed in a non-uniform magnetic field.

2均一磁場中で試料を動カルた時に、試料の近くに置か
れたコイルに誘導される起電力を測定する。3外部磁場
によつて試料に誘導された磁化のために外部磁場が変化
するのでこの外部磁場の変化を測定する。
2.Measure the electromotive force induced in a coil placed near the sample when the sample is moved in a uniform magnetic field. 3. The external magnetic field changes due to the magnetization induced in the sample by the external magnetic field, and the change in this external magnetic field is measured.

1の原理に基づく装置としては磁気天秤、2の原理に基
づく装置としては、振動試料型磁力計がある。
A device based on the first principle is a magnetic balance, and a device based on the second principle is a vibrating sample magnetometer.

本発明は、3の原理に基づくものである。この原理に基
づく装置としては、岩石磁気の分野で広く用いられてい
る無定位磁力計がある。ところが従来の無定位磁力計(
その他のフラック スゲート磁力計、光ポンピング磁力
計、SQ庫T磁力計等も同様であるが)は、微少な磁場
の大きさと、その変化を測定することはできるが、強い
磁場の中に置いて強い磁場の微少な変化を測定すること
はできない。従つて、磁化率の測定にあたつても、極微
弱な外部磁場を与えて、それによつて誘起されたさらに
微少な磁場の変化を検知しなければならないため、測定
精度が充分高くとれないという欠点があつた。一方、他
の磁場測定装’置、例えば、ホール素子を用いたガウス
メータやピックアップコイルを用いた積分型磁束計等は
、強い磁場を測定することはできるが、外部磁場に対し
て10−0〜10−0といつた微少な変動を測定できる
だけの精度を持たない。ために、これら磁化率の測定に
は用いられなかつた。 この発明は、核磁気共鳴(NM
R)を利用したガウスメータを用いることによつて、数
千から数万ガウスの磁場中において、数ミリガウス程度
の微少な磁場変化を精度よく測定し、強磁場中において
3の原理に基づく磁化率測定を行うことを目的としてい
る。
The present invention is based on three principles. An example of a device based on this principle is a positionless magnetometer, which is widely used in the field of rock magnetism. However, the conventional positionless magnetometer (
Other types of magnetometers (such as fluxgate magnetometers, optical pumping magnetometers, and SQ magnetometers) can measure the magnitude of minute magnetic fields and their changes, but they cannot be placed in strong magnetic fields. It is not possible to measure minute changes in strong magnetic fields. Therefore, when measuring magnetic susceptibility, it is necessary to apply an extremely weak external magnetic field and detect the even more minute changes in the magnetic field induced by it, which makes it difficult to obtain sufficiently high measurement accuracy. There were flaws. On the other hand, other magnetic field measurement devices, such as a Gaussmeter using a Hall element or an integral type magnetometer using a pickup coil, can measure strong magnetic fields, but they are less sensitive to external magnetic fields than 10-0. It does not have enough precision to measure fluctuations as small as 10-0. Therefore, they could not be used to measure magnetic susceptibility. This invention is based on nuclear magnetic resonance (NM).
By using a Gauss meter using R), minute changes in the magnetic field of several milli Gauss can be accurately measured in a magnetic field of several thousand to tens of thousands of Gauss, and magnetic susceptibility can be measured based on the principle 3 in a strong magnetic field. The purpose is to do the following.

この発明を図面にもとづいて説明すると、第1図にお
いて電磁石の磁極片1にはさまれた空隙内にNMRプロ
ーブ2と、試料3及び試料を磁極片1の面に平行に移動
させるための移動台4及び固定台5とが納められる。
To explain this invention based on the drawings, in FIG. 1, an NMR probe 2, a sample 3, and a movement for moving the sample parallel to the surface of the magnetic pole piece 1 are shown in FIG. A stand 4 and a fixed stand 5 are housed.

磁化率が一定で、それのみを空隙内で5〜10cm移動
させても空隙中の磁場の強さはいささかも変化しないよ
うな合成樹脂の板でできた移動台4を固定台5の上です
べらせることによつて、該移動台4の上に乗せられた試
料3は、プローブ2より離れた位置からプローブの真下
にまで持ち来たすことができる。NMRプローブ2は銅
の板をくりぬいて作つた容器6とこの中におさめられた
帰還コイル7,基準試料(例えばクロムを添加した水)
8を封じ込んだガラス管9とこのガラス管のまわりに巻
いたサンプルコイル10及び容器6を保持するための銅
バイブ11と、サンプルコイルとNMRガウスメータ本
体を結ふ導線12とより成る。NMRガウスメータ全体
の構成を第2図に示す。NMRガウスメータは第1図に
おいて説明したプローブ2と、このプローブに高周波磁
場を印加すると共に、試料より発生した核磁気共鳴信号
を受信する信号送受信部14と、NMRの吸収シグナル
をエラー信号としてプローブの帰還コイルに送り負帰還
を行なわせるための積分増巾器15及び負帰還電流に比
例した電圧を記録するためのレコーダ16より成る。上
述の如き構成において、NMRプローブ中のガラス管内
に封入された基準試料は磁極片間に形成される数千乃至
数万ガウスの直流強磁場及びサンプルコイル10からの
高周波磁場により核磁気共鳴状態となる。核磁気共鳴の
共鳴条件はhν=γH(h:プランク定数,ν:高周波
磁場の周波数,γ:磁気回転比,H:直流磁場)であり
、従つて基準試料によつてγが知られていればνを測定
することによりHを知ることができる。これがNMRガ
ウスメータの基本原理である。而して今、磁極片間に形
成された強磁場により試料内に磁場が誘導され、その誘
導された磁場のために試料近傍の強磁場には変化が生ず
る。
A movable base 4 made of a synthetic resin plate whose magnetic susceptibility is constant and whose magnetic field strength in the gap does not change even if it is moved 5 to 10 cm within the gap is placed on a fixed base 5. By sliding, the sample 3 placed on the moving table 4 can be brought from a position away from the probe 2 to directly below the probe. The NMR probe 2 includes a container 6 made by hollowing out a copper plate, a feedback coil 7 housed in the container, and a reference sample (for example, water added with chromium).
8, a sample coil 10 wound around the glass tube, a copper vibe 11 for holding the container 6, and a conducting wire 12 connecting the sample coil to the NMR Gaussmeter body. FIG. 2 shows the overall configuration of the NMR Gaussmeter. The NMR Gaussmeter includes the probe 2 described in FIG. 1, a signal transmitting/receiving section 14 that applies a high-frequency magnetic field to the probe and receives nuclear magnetic resonance signals generated from a sample, and a signal transmitting/receiving section 14 that receives a nuclear magnetic resonance signal generated from a sample and uses an NMR absorption signal as an error signal. It consists of an integral amplifier 15 for causing the feedback coil to perform negative feedback, and a recorder 16 for recording a voltage proportional to the negative feedback current. In the above configuration, the reference sample sealed in the glass tube of the NMR probe is brought into a nuclear magnetic resonance state by a strong DC magnetic field of several thousand to tens of thousands of Gauss formed between the magnetic pole pieces and a high frequency magnetic field from the sample coil 10. Become. The resonance condition of nuclear magnetic resonance is hν = γH (h: Planck's constant, ν: frequency of high-frequency magnetic field, γ: gyromagnetic ratio, H: DC magnetic field), and therefore γ is not known from the reference sample. H can be found by measuring ν. This is the basic principle of the NMR Gaussmeter. Now, a magnetic field is induced within the sample by the strong magnetic field formed between the magnetic pole pieces, and the induced magnetic field causes a change in the strong magnetic field near the sample.

しかしながら試料内に誘導される磁化は極めて小さいた
め外部強磁場に与える影響も極めて小さく、試料周辺の
外部磁場が数ミリガウス程度変化するのみである。従つ
て試料3をNMRプローブ2から遠く離れた例えば3a
の位置に置いた時と、NMRプローブ2に極く接近した
頷の位置に置いた時の2回NMRガウスメータによつて
磁場強度を測定し、夫々の測定値の差を求めれは試料に
よる外部磁場の微小変化を知ることができる。第3図は
上述したNMRガウスメータを用いた測定例を示してい
る。試料としては直径157wt,厚さ3顛の円板状に
形成したエポキシ樹脂を用い、樹脂の磁化率を変化させ
るために二酸化マンガンが添加されている。試料は二酸
化マンガンの添加量によつて3種類(0.75%,1.
5%,3.0%)用意した。第3図から磁場強度は二酸
化マンガンの添加量に応じて−6×10−6〜+8×1
0−6(Wb/r!l)程度変化したことがわかる。二
酸化マンガンの添加量を横軸にとり、縦軸に磁場の変化
量をとると、第4図のようになる。
However, since the magnetization induced within the sample is extremely small, the effect on the external strong magnetic field is also extremely small, and the external magnetic field around the sample changes only by a few milli Gauss. Therefore, the sample 3 is placed far away from the NMR probe 2, for example 3a.
Measure the magnetic field strength twice with the NMR Gaussmeter, once when the probe is placed at the position of It is possible to detect minute changes in FIG. 3 shows an example of measurement using the above-mentioned NMR Gaussmeter. The sample used was an epoxy resin formed into a disk shape with a diameter of 157 wt and a thickness of 3 layers, and manganese dioxide was added to change the magnetic susceptibility of the resin. There were three types of samples depending on the amount of manganese dioxide added (0.75%, 1.
5%, 3.0%) were prepared. From Figure 3, the magnetic field strength varies from -6 x 10-6 to +8 x 1 depending on the amount of manganese dioxide added.
It can be seen that there was a change of about 0-6 (Wb/r!l). If the amount of manganese dioxide added is plotted on the horizontal axis and the amount of change in the magnetic field is plotted on the vertical axis, the result will be as shown in FIG.

外部磁場が減少するのは、試料が反磁性物質であること
を示しており、空隙磁場の増加は試料が常磁性物質であ
ることを示している。この図から、磁化率を零にするM
nO2の添加量は、1.8%程度であることがわかる。
ここて磁場の変化量から磁化率を求めるために更に次に
示す様な測定を行つた。
A decrease in the external magnetic field indicates that the sample is a diamagnetic material, and an increase in the air gap field indicates that the sample is a paramagnetic material. From this figure, M
It can be seen that the amount of nO2 added is about 1.8%.
In order to determine the magnetic susceptibility from the amount of change in the magnetic field, we further performed the following measurements.

即ち磁化率が既に0.85x10−6CGSemuと知
られている無酸素銅線(4).23T!Unφ)を巻い
て直径15wn厚さ3=の円板を作成し、これを前記エ
ポキシ樹脂と全く同様に2.35Wb/イの磁場中て測
定したところ、4.93×10−6Wb/dだけ磁場が
減少した。従つて2.35Wb/dの外部磁場中で試料
として直径1577!77!,厚さ3WLの円板を用い
、これを第1図に示す様に配置するという条件ては、磁
場の変化量を磁化率に換算するためには磁場の変化量に
0.85×10−6/4.93X10−6=0.172
を乗ずればよいことになる。以上詳述した如く本発明に
よれば、試料を強磁場中に置くため磁場の変化量が従来
に比べ大きく、その大きく変化する磁場をNMRガウス
メータにより極めて高精度(1刈伊〜1×1σ)に測定
できるため磁化率が小さい場合でも極めて高精度で測定
することができる。
That is, an oxygen-free copper wire (4) whose magnetic susceptibility is already known to be 0.85x10-6 CGSemu. 23T! Unφ) was wound to create a disk with a diameter of 15wn and a thickness of 3=, and when this was measured in a magnetic field of 2.35 Wb/a in exactly the same way as the epoxy resin, it was found that it was only 4.93 x 10-6 Wb/d. The magnetic field decreased. Therefore, the diameter of the sample in an external magnetic field of 2.35 Wb/d is 1577!77! , using a disk with a thickness of 3WL and arranging it as shown in Fig. 1, in order to convert the amount of change in the magnetic field to magnetic susceptibility, the amount of change in the magnetic field must be 0.85 x 10- 6/4.93X10-6=0.172
All you have to do is multiply by . As detailed above, according to the present invention, since the sample is placed in a strong magnetic field, the amount of change in the magnetic field is larger than in the past, and the greatly changing magnetic field is measured with extremely high accuracy (1 Kariichi ~ 1 x 1σ) using an NMR Gaussmeter. Even when the magnetic susceptibility is small, it can be measured with extremely high accuracy.

更に又本発明ては機械的に動かす部分が極めて少ないた
め機構が簡単・となり、従来より広く用いられてきた磁
気天秤等のような複雑な機構が不要となる。
Furthermore, since the present invention has extremely few mechanically moving parts, the mechanism is simple, and complicated mechanisms such as magnetic balances, which have been widely used in the past, are not required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を示す構成図であ
り、第3図及ひ第4図は上記実施例を用ノいた測定結果
を示す図である。 1:磁極片、2:NMRプローブ、3:試料、4:移動
台、5:固定台、8:基準試料、14:信号送受信部、
16:レコーダ。
1 and 2 are block diagrams showing one embodiment of the present invention, and FIGS. 3 and 4 are diagrams showing measurement results using the above embodiment. 1: Magnetic pole piece, 2: NMR probe, 3: Sample, 4: Moving table, 5: Fixed table, 8: Reference sample, 14: Signal transmitting/receiving section,
16: Recorder.

Claims (1)

【特許請求の範囲】[Claims] 1 磁場を発生するための磁石装置と該磁場内に配置さ
れるNMRプローブとを備えたNMRガウスメータと、
測定用試料を前記NMRプローブから遠く離れた位置か
らその近傍にまで移動させるための試料移動手段とから
成り、測定用試料が前記NMRプローブに接近した時に
発生するプローブ周辺の磁場の強さの変化を検出するよ
うに構成したことを特徴とする磁化率測定装置。
1. An NMR Gaussmeter comprising a magnet device for generating a magnetic field and an NMR probe disposed within the magnetic field;
A sample moving means for moving a measurement sample from a position far away from the NMR probe to a position close to the NMR probe, and a change in the strength of the magnetic field around the probe that occurs when the measurement sample approaches the NMR probe. A magnetic susceptibility measuring device characterized by being configured to detect.
JP2173678A 1978-02-27 1978-02-27 Magnetic susceptibility measuring device Expired JPS6058832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2173678A JPS6058832B2 (en) 1978-02-27 1978-02-27 Magnetic susceptibility measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2173678A JPS6058832B2 (en) 1978-02-27 1978-02-27 Magnetic susceptibility measuring device

Publications (2)

Publication Number Publication Date
JPS54114273A JPS54114273A (en) 1979-09-06
JPS6058832B2 true JPS6058832B2 (en) 1985-12-21

Family

ID=12063354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2173678A Expired JPS6058832B2 (en) 1978-02-27 1978-02-27 Magnetic susceptibility measuring device

Country Status (1)

Country Link
JP (1) JPS6058832B2 (en)

Also Published As

Publication number Publication date
JPS54114273A (en) 1979-09-06

Similar Documents

Publication Publication Date Title
Foner Versatile and sensitive vibrating‐sample magnetometer
Foner Review of magnetometry
Zijlstra A vibrating reed magnetometer for microscopic particles
CN112782624B (en) Device and method for measuring coercivity of soft magnetic material
US2975360A (en) Magnetoabsorption flux meter and gradiometer
US20020024337A1 (en) Barkhausen noise measurement probe
US6586930B1 (en) Material thickness measurement using magnetic information
Krishnan et al. Harmonic detection of multipole moments and absolute calibration in a simple, low-cost vibrating sample magnetometer
US2946948A (en) Magnetic test apparatus
Van Oosterhout A rapid method for measuring coercive force and other ferromagnetic properties of very small samples
CN105974336B (en) A kind of detection method of powder core saturation induction density
US3904956A (en) Alternating force magnetometer
JPS6058832B2 (en) Magnetic susceptibility measuring device
US5574363A (en) Stability method and apparatus for nondestructive measure of magnetic saturation flux density in magnetic materials
Doan et al. Magnetization measurement system with giant magnetoresistance zero-field detector
Ricodeau et al. Apparatus for the measurement of magnetostriction in pulsed magnetic fields
Dwight Experimental techniques with general applicability for the study of magnetic phenomena
Watson et al. Techniques of magnetic-field measurement
RU2024889C1 (en) Method of measuring coercive force of ferrous rod specimen
RU2298202C1 (en) Method of measurement of magnetic field strength
SU901959A1 (en) Device for measuring ferromagnetic material static magnetic characteristics
Drake Traceable magnetic measurements
RU2739730C1 (en) Method of measuring magnetization of a substance by nuclear magnetic resonance
Sievert et al. The magnetic metrology of materials—A review
Fischer Development of a device for the determination of local magnetic properties of thin films on whole wafers: Entwicklung eines Geräts zur Bestimmung lokaler magnetischer Eigenschaften von Dünnschichten auf ganzen Wafern