JPS6058810B2 - Infrared spectroscopy method - Google Patents

Infrared spectroscopy method

Info

Publication number
JPS6058810B2
JPS6058810B2 JP6591878A JP6591878A JPS6058810B2 JP S6058810 B2 JPS6058810 B2 JP S6058810B2 JP 6591878 A JP6591878 A JP 6591878A JP 6591878 A JP6591878 A JP 6591878A JP S6058810 B2 JPS6058810 B2 JP S6058810B2
Authority
JP
Japan
Prior art keywords
laser
light
frequency
absorption
differential coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6591878A
Other languages
Japanese (ja)
Other versions
JPS54156688A (en
Inventor
宏爾 篠原
満男 吉河
道春 伊藤
隆一 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6591878A priority Critical patent/JPS6058810B2/en
Publication of JPS54156688A publication Critical patent/JPS54156688A/en
Publication of JPS6058810B2 publication Critical patent/JPS6058810B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 本発明は赤外分光分析方法、とくに気体中の微量成分
の検出に適する分析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared spectroscopic analysis method, particularly an analysis method suitable for detecting trace components in a gas.

大気汚染の原因となる有害ガスたとえば一酸化炭素(
Co)、亜硫酸ガス(SO0)等の検出に赤外線吸収を
利用した分光分析法が便利であることはすでに周知であ
る。
Harmful gases that cause air pollution, such as carbon monoxide (
It is already well known that spectroscopic analysis using infrared absorption is convenient for detecting substances such as Co) and sulfur dioxide gas (SO0).

そこで本発明者らは以前に特願昭52−128465号
により、半導体赤外線レーザを光源とする分光分析装置
を提案した。この装置は半導体の波長可変レーザ(tu
na反1aser)を光源とし、該レーザに供給する電
流を徐々に変化せしめて発光波長を掃引し、各波長に対
する供試気体の吸収を測定しで得た吸収曲線から特定成
分たとえばCoの存否の判別および濃度の測定を行い得
るよう構成されている。しかしこの先願に係る装置は所
定波長範囲の赤外光に対する供試気体の吸収を直接測定
する方法てあるため、大気中に1pμm以下というよう
な微量含まれるCo等を検出しなければならない場合に
は大気の温度変化、気流等に基因する吸収の不規則な時
間的変動によつて測定値が乱される不利がある。 上述
した大気の状態による擾乱を軽減するために、半導体レ
ーザ素子に流す電流を10KH2程度の周波数て変調し
、大気通過後のレーザ光電変換して得た交流信号を同期
検波することにより分光吸収曲線の1次導関数に該当す
る信号を得、さらにこの導関数を原始関数で正規化する
測定方法が提案された。
Therefore, the present inventors previously proposed a spectroscopic analyzer using a semiconductor infrared laser as a light source in Japanese Patent Application No. 52-128465. This device is a semiconductor tunable laser (TU).
The presence or absence of a specific component, such as Co, can be determined from the absorption curve obtained by sweeping the emission wavelength by gradually changing the current supplied to the laser and measuring the absorption of the sample gas at each wavelength. The device is configured to perform discrimination and concentration measurement. However, since the device according to this prior application directly measures the absorption of the sample gas to infrared light in a predetermined wavelength range, it is useful when detecting trace amounts of Co, etc. contained in the atmosphere, such as 1 pμm or less. has the disadvantage that measured values are disturbed by irregular temporal fluctuations in absorption due to atmospheric temperature changes, air currents, etc. In order to reduce the disturbance caused by the above-mentioned atmospheric conditions, the current flowing through the semiconductor laser element is modulated at a frequency of about 10KH2, and the spectral absorption curve is obtained by synchronously detecting the AC signal obtained by laser photoelectric conversion after passing through the atmosphere. A measurement method has been proposed in which a signal corresponding to the first derivative of is obtained and this derivative is further normalized by a primitive function.

この方法によれば前記の大気による攪J乱を除去して直
接有毒ガスの濃度に比例する測定値が得られる。しかし
この方法によれば500等の大気中に低濃度で存在する
汚染ガスに対しては信号レベルが小さくなつて測定が困
難になる欠点がある。また、一般に波長可変の半導体レ
ーザの出ゝ力パワーは出力光の波長に依存する性質があ
るため、吸収の有無にかかわらす導関数の値は零となら
ないので基準値(零点)が不明確となる不利がある。本
発明は前述の問題点を解消し、波長可変レーザを光源と
し、大気および汚染ガス等により吸収される以前のレー
ザ光のパワーと吸収後のレザ光のそれとの差をとること
により導関数の基準値すなわち測定器の零点を設定し、
さらに分光吸収曲線の2次導関数を求めることをも可能
とした新規なる赤外分光分析方法を提供せんとするもの
である。
According to this method, the above-mentioned atmospheric disturbance can be removed and a measured value directly proportional to the concentration of toxic gas can be obtained. However, this method has the disadvantage that the signal level becomes low and measurement becomes difficult for pollutant gases such as 500, which exist at low concentrations in the atmosphere. In addition, since the output power of a wavelength-tunable semiconductor laser generally depends on the wavelength of the output light, the value of the derivative is not zero regardless of the presence or absence of absorption, so the reference value (zero point) may be unclear. There is a disadvantage. The present invention solves the above-mentioned problems, uses a wavelength tunable laser as a light source, and calculates the derivative by taking the difference between the power of laser light before it is absorbed by the atmosphere or pollutant gas, and that of the laser light after absorption. Set the reference value, that is, the zero point of the measuring instrument,
Furthermore, it is an object of the present invention to provide a novel infrared spectroscopic analysis method that also makes it possible to obtain the second derivative of a spectral absorption curve.

以下図面を用いて本発明に係る分析方法の実施例につき
詳細に説明する。
Embodiments of the analysis method according to the present invention will be described in detail below with reference to the drawings.

本発明の構成原理を説明するにあたり、この種の測定に
ついての一般的な背景説明を施す。
In explaining the principle of construction of the present invention, a general background explanation about this type of measurement will be provided.

ガス中を赤外線が通ると、吸収を受け、その強度は減少
する。しかし、すべての赤外線で吸収されるわけではな
く、ガス分子の振動エネルギーと共鳴する赤外線のみ吸
収される。従つて、分子ごとに吸収をうける赤外線の波
長は異なる。
When infrared rays pass through a gas, they are absorbed and their intensity decreases. However, not all infrared rays are absorbed; only the infrared rays that resonate with the vibrational energy of gas molecules are absorbed. Therefore, the wavelength of infrared rays absorbed by each molecule is different.

例えばCO.(5N0はC(5Nの質量が違う−ため、
振動エネルギーが異なり、COは4.7μMlNOは5
.7pmの赤外線と共鳴して吸収される。ます本発明に
係る分析方法の実施例の説明に先立ち、本発明の測定原
理を説明する。検出すべきガスたとえば一酸化炭素の大
気中に;おける濃度をC1大気中の光路長をL1測定用
光源としたレーザの発光の振動数をυ、該レーザの出力
パワーをPOl吸収後に受光素子の受光面上に集められ
た光パワーをPrとするとが成立つ。
For example, CO. (5N0 is C (the mass of 5N is different - so,
The vibration energy is different, CO is 4.7 μM, NO is 5
.. It is absorbed in resonance with infrared rays at 7 pm. Before explaining the embodiments of the analysis method according to the present invention, the measurement principle of the present invention will be explained. The concentration of the gas to be detected, such as carbon monoxide, in the atmosphere is C1, the optical path length in the atmosphere is L1, the frequency of the laser emission used as the measurement light source is υ, and the output power of the laser is determined by the light receiving element after absorbing PO1. Let Pr be the optical power collected on the light receiving surface.

ただしα(υ)はCOの吸収係数をυの関数の形で表し
たもので、f(t)は大気による擾乱の影響を時間の関
数として表したものてある。またKは比例常数である。
,上式(1)の両辺をυで微分する
ととなる。
However, α(υ) represents the CO absorption coefficient in the form of a function of υ, and f(t) represents the influence of atmospheric disturbance as a function of time. Further, K is a proportional constant.
, by differentiating both sides of the above equation (1) with respect to υ.

ここでPO(レーザ出力パワー)は、波長可変半導体レ
ーザを光源として用い、供給電流を可変制御した場合に
は振動数υの関数として取扱う必要がある6なぜならぼ
一般に卜記レーザの発光パワーは供給電流によつて変化
するからである。いま(2)式の両辺を(1)式で割れ
ば が得られ、大気による攪乱の影響を表す項f(t)は消
去される。
Here, PO (laser output power) needs to be treated as a function of the frequency υ when a wavelength tunable semiconductor laser is used as the light source and the supply current is variably controlled. This is because it changes depending on the current. Now, dividing both sides of equation (2) by equation (1) yields, and the term f(t) representing the influence of atmospheric disturbance is eliminated.

なお(3)式において導関数にはダツシユ(″)を付し
た。上記(3)式の結果から、右辺の第2項は汚染ガス
の濃度に比例している。したがつてもしレーザ出力パワ
ーPOが振動数υに無関係に一定ならば導関数P″Oは
零となるので、(3)式の左辺は汚染ガスたとえば一酸
化炭素の濃度Cに比例するしかし前述したように発光パ
ワーPOはvに依存するので、導関数POは一般に零と
ならず、零点(C=0の点)を決定することが困難とな
る。そこで(3)式においてL=0とおけば となる。
In Equation (3), a dash ('') is added to the derivative. From the result of Equation (3) above, the second term on the right side is proportional to the concentration of contaminant gas. Therefore, if the laser output power If PO is constant regardless of the frequency υ, the derivative P″O will be zero, so the left side of equation (3) is proportional to the concentration C of a pollutant gas, for example carbon monoxide.However, as mentioned above, the emission power PO is Since it depends on v, the derivative PO generally does not become zero, making it difficult to determine the zero point (the point where C=0). Therefore, if we set L=0 in equation (3), we get the following.

(3),(4)両式を比較すればただちに明らかなよう
に、L=0またはC=0の条件で求めたP″o/Pの値
を(3)式から差引けば、汚染ガスの濃度Cに直接比例
し、かつ濃度零のときに零に帰る測定値がただちに得ら
れる。こうすれば測定結果が見易く、汚染ガスの濃度の
評価も容易になる。ここで、本発明の構成原理を説明す
る式(1)〜(7)で用いられるα,Cについて説明を
施す。αo:吸収中心での吸収係数 r:吸収半値幅 υo:観測振動数(レーザの振動数) C:ガス濃度 L:光路長 PO(v):レーザのパワー P:(υ):受信パワー とすると、 ここに、 これらの測定方法としては、次のようなものがある。
As is immediately clear by comparing both equations (3) and (4), if the value of P″o/P obtained under the condition of L=0 or C=0 is subtracted from equation (3), the amount of pollutant gas A measurement value that is directly proportional to the concentration C of the gas and returns to zero when the concentration is zero can be immediately obtained.This makes it easy to see the measurement results and makes it easy to evaluate the concentration of the pollutant gas.Here, the configuration of the present invention We will explain α and C used in equations (1) to (7) to explain the principle. αo: Absorption coefficient at absorption center r: Absorption half-width υo: Observed frequency (laser frequency) C: Gas Concentration L: Optical path length PO (v): Laser power P: (υ): Received power, where: The following measurement methods are available.

レーザに鋸歯状電流を加えると、本発明において用いら
れるのは波長可変レーザであるので、波長掃引され、吸
収特性が得られる。
When a sawtooth current is applied to the laser, since the wavelength tunable laser is used in the present invention, the wavelength is swept and an absorption characteristic is obtained.

これがαである。鋸歯状電流に微小な変調電流を重ね、
検知器番号のうちこの変調周波数と同期する信号をロツ
クノインアンプを通して検出すれば、α″が得られる。
This is α. By superimposing a minute modulated current on the sawtooth current,
If a signal synchronized with this modulation frequency among the detector numbers is detected through a lock noise amplifier, α'' can be obtained.

変調周波数の二倍の周波数に同期する信号を検出すれば
α″が得られる。
α'' can be obtained by detecting a signal synchronized to a frequency twice the modulation frequency.

Cはガス濃度を示すが、前述したように、レー、ザによ
り吸収波長は異なり、レーザの発振波長によつて測定の
対象となるガスが決まる。
C indicates the gas concentration, and as mentioned above, the absorption wavelength differs depending on the laser, and the gas to be measured is determined by the oscillation wavelength of the laser.

よつて、例えば4.7μm(7)COの吸収に一致する
赤外線を出力した楊合は、COという特定物質の濃度を
示す。
Therefore, for example, a beam that outputs infrared rays that match the absorption of 4.7 μm (7) CO indicates the concentration of a specific substance called CO.

このように、分子の振動モデルからすでに吸収スペクト
ルのある位置は理論解析されており、測定対象とする物
質の吸収波長にレーザの波長を設定する。
In this way, certain positions in the absorption spectrum have already been theoretically analyzed from the molecular vibration model, and the wavelength of the laser is set to the absorption wavelength of the substance to be measured.

以上説明した原理に基づき、光源すなわち半導体レーザ
の近傍で吸収前におけるP″o/POの値を求め、この
値と、汚染ガスを含む大気通路後のレーザ光パワーでそ
の導関数を正規化した値P″r/Prとの差を差動増幅
器等によつて求めればこれが汚染ガスの濃度に比例する
所望の測定値となる。
Based on the principle explained above, the value of P″o/PO before absorption was determined in the vicinity of the light source, that is, the semiconductor laser, and its derivative was normalized by this value and the laser light power after passing through the atmosphere containing pollutant gas. If the difference from the value P″r/Pr is determined using a differential amplifier or the like, this becomes a desired measurement value that is proportional to the concentration of the pollutant gas.

大気中の一酸化炭素による検出可能な程度の吸収を観測
するには通常100〜数百m程度の光路長が必要である
から、半導体レーザから1m程度の距離でレーザ光パワ
ーを観測すればその値は実質的に汚染ガスの吸収を全く
受けない値と言うことができるし、また光路長L=0の
ときの値と見なすこともできいずれにしても(3)式右
辺の第2項が零に等しい場合に該当する。また光パワー
の導関数すなわち微分を求めるには、とくに光源として
波長可変型の半導体レーザを用いる場合にはジャーナル
、オブ、アプライド、フィジックス(JOurnalO
fAppejedPhysics)第1倦第4号の第8
54〜861頁に掲載されている論文中に説明されてい
る、レーザ入の供給電流に若干の交流分を重畳する方法
が便利である。すなわち、半導体波長可変型レーザは供
給電流によつて発光波長が変化するから、供給電流を単
なる直流でなく振幅および周波数の一定な交流分を重畳
させた直流とすれば、該レーザの出力光の波長(したが
つて振動数)は上記交流分の瞬時振幅に応じて変化する
Normally, an optical path length of about 100 to several hundred meters is required to observe detectable absorption by carbon monoxide in the atmosphere, so if you observe the laser light power at a distance of about 1 meter from the semiconductor laser, you can This value can be said to be a value in which there is virtually no absorption of contaminant gas, and it can also be regarded as a value when the optical path length L = 0. In any case, the second term on the right side of equation (3) is This applies if it is equal to zero. In addition, in order to obtain the derivative, or differential, of optical power, especially when a wavelength tunable semiconductor laser is used as a light source, it is necessary to use the Journal of Applied Physics.
fAppjedPhysics) No. 1, No. 4, No. 8
A convenient method is to superimpose some alternating current on the laser input current, as described in the paper published on pages 54-861. In other words, since the emission wavelength of a semiconductor wavelength tunable laser changes depending on the supplied current, if the supplied current is not just a direct current but a direct current with a constant amplitude and frequency alternating current superimposed, the output light of the laser will change. The wavelength (and therefore the frequency) changes depending on the instantaneous amplitude of the alternating current component.

上記交流分の振幅が小さいときには当然出力光の振動数
υの変動幅も小さい。そこでこの変動幅をΔυと表記し
、Δυに対応するレーザ出力光のパワーの微小な変化分
をΔPOと表記すれば、パワーの変動率ΔPO/Δυは
実質的にPO(υ)の微分すなわち導関数P″0(υ)
に等しくなる。よつて振動数υの変化分でレーザ出力パ
ワーの変化分を除算することにより目的とする導関数P
″o(υ)が得られることになる。
When the amplitude of the alternating current component is small, naturally the fluctuation range of the frequency υ of the output light is also small. Therefore, if this variation range is expressed as Δυ, and the minute change in the power of the laser output light corresponding to Δυ is expressed as ΔPO, then the power variation rate ΔPO/Δυ is essentially the derivative of PO(υ), that is, the derivative of PO(υ). Function P″0(υ)
is equal to Therefore, the desired derivative P can be obtained by dividing the change in laser output power by the change in frequency υ.
″o(υ) will be obtained.

つぎに、以前に掲げた(1)式の2次導関数は次式のよ
うになる。
Next, the second derivative of the equation (1) given earlier is as follows.

10′ 上式を整理し、微分符号としてダツシユを用いて表記す
るととなる。
10' Rearrange the above equation and write it using a dash as the differential sign.

吸収の極大点(または極小点)においては″α″=0と
なるから、上記(6)式右辺の第3項および第4項は無
くなる。このとき(6)式の両辺を(1)式で割ればと
なり、(3)式と酷似した形となる。
At the maximum point (or minimum point) of absorption, "α"=0, so the third and fourth terms on the right side of equation (6) disappear. In this case, dividing both sides of equation (6) by equation (1) yields a form that is very similar to equation (3).

ゆえに前に(3)式および(4)式について述べたと同
様にL=0のとき(レーザの近傍)におけるP″″/P
Oの値を求めて(7)式との差をとれば汚染ガスの濃度
Cに比例する測定値が得られる。2次導関数P″rまた
はP″″0の値はレーザに対する供給電流を変調する交
流の)周波数Fmの2倍の周波数2fmとして現れるか
ら、2fmの成分の振幅の測定により2次導関数P″r
およびP″Oを知ることができる。
Therefore, as described above for equations (3) and (4), P″″/P when L=0 (near the laser)
By determining the value of O and taking the difference from equation (7), a measured value proportional to the concentration C of the contaminant gas can be obtained. Since the value of the second derivative P″r or P″″0 appears as a frequency 2fm which is twice the frequency Fm (of the alternating current that modulates the supply current to the laser), measuring the amplitude of the component of 2fm yields the second derivative P ″r
and P″O can be known.

一般に測定出力は直線の傾きをもつことが多く、直線的
傾きては曲率はゼロになることから、二次微分により曲
率を求めると、変化部分のみ抽出され、結果的に感度が
良くなる。本発明の方法に使用する装置の一例を系統図
として添付図面に示した。
Generally, the measured output often has a straight line slope, and a straight line slope means that the curvature is zero. Therefore, when the curvature is determined by second-order differentiation, only the changing part is extracted, resulting in improved sensitivity. An example of the apparatus used in the method of the present invention is shown in the accompanying drawings as a system diagram.

図面において波長可変半導体レーザ1から出るレーザ光
は凸レンズ2で集束され、さらに凹面鏡3で反射されて
平行光となり、汚染ガスを含む大気4を通過し、さらに
折曲げ反射鏡5で反射されて光路長を吸収スペクトル観
測に適する長さとされ、カセグレン鏡6でふたたび集束
され、カセグレン鏡中の凹面鏡6aの孔を通つて赤外線
用の光電変換系(本実施例では光量子型赤外線検知器)
7の受光面上に集められる。しかして、本実施例では凸
レンズ2一凹面鏡3の間の光路中に、チョッパ8および
光分岐装置9が設けられている。
In the drawing, laser light emitted from a wavelength tunable semiconductor laser 1 is focused by a convex lens 2, further reflected by a concave mirror 3 to become parallel light, passes through an atmosphere 4 containing pollutant gas, and is further reflected by a bending reflector 5 to form an optical path. The length is set to a length suitable for absorption spectrum observation, is focused again by the Cassegrain mirror 6, and passes through the hole of the concave mirror 6a in the Cassegrain mirror to an infrared photoelectric conversion system (in this example, a photon type infrared detector).
The light is collected on the light-receiving surface of 7. Therefore, in this embodiment, a chopper 8 and a light branching device 9 are provided in the optical path between the convex lens 2 and the concave mirror 3.

チョッパ8は赤外線測定系に常用されるものであるが、
光分岐装置9は従来の装置にはない場合が多い。本実施
例においては該光分岐装置9により分岐された光を用い
て吸収前のレーザ出力光パワーPOおよびその導関数P
OまたはP″2を測定する。このために分岐光を受けて
電気信号に変換する光量子型赤外線検知器10を具えて
いる。以後区別のために吸収後の光を受ける赤外線検知
器7を第1検知器、分岐光を受ける赤外線検知器10を
第2検知器という。第1検知器7の出力は1対の位相拘
束増幅器11および12に入力され該両増幅器11,1
2の出力は除算器13に加えられる。除算器13の出力
は(3)式のP″r/Prまたは(7)式のP″″r/
Prに該当する。一方、第2検知器10の出力は別の位
相拘束増.幅器14および15にともに入力されてその
出力は除算回路16に印加され、除算回路16は(3)
式右辺のP″o/Pまたは(7)式右辺のP″o/PO
に該当する出力を生する。以後除算回路13を第1除算
回路、除算回路16を第2除算回路という。上記.両除
算回路13および16の出力は差動増幅器17に加えら
れ、該両除算回路13および16の出力の差に該当する
出力、すなわち汚染ガスの濃度Cに比例し、汚染ガスが
まつたく存在しないとき零となる出力を生じさせる。こ
の出力を自動記録器18に与えて分析結果を記録させる
。以上の動作中、半導体レーザ1に供給する電流の制御
は電流制御回路19により行われる。
Chopper 8 is commonly used in infrared measurement systems,
The optical branching device 9 is often not present in conventional devices. In this embodiment, using the light branched by the optical branching device 9, the laser output light power PO before absorption and its derivative P
O or P″2 is measured.For this purpose, a photon-type infrared detector 10 that receives the branched light and converts it into an electrical signal is provided.Hereafter, for the purpose of differentiation, an infrared detector 7 that receives the absorbed light will be used as the third infrared detector. The infrared detector 10 receiving the branched light is called the second detector.The output of the first detector 7 is input to a pair of phase-locked amplifiers 11 and 12.
The output of 2 is added to the divider 13. The output of the divider 13 is P″r/Pr in equation (3) or P″″r/ in equation (7).
This corresponds to Pr. On the other hand, the output of the second detector 10 is generated by another phase constraint increase. They are both input to width amplifiers 14 and 15, and their outputs are applied to a divider circuit 16, and the divider circuit 16 receives (3)
P″o/P on the right side of equation (7) or P″o/PO on the right side of equation (7)
produces the corresponding output. Hereinafter, the division circuit 13 will be referred to as a first division circuit, and the division circuit 16 will be referred to as a second division circuit. the above. The outputs of both divider circuits 13 and 16 are applied to a differential amplifier 17, and the output corresponding to the difference between the outputs of both divider circuits 13 and 16 is proportional to the concentration C of the contaminant gas, and no contaminant gas is present at all. produces an output that becomes zero when This output is given to the automatic recorder 18 to record the analysis results. During the above operation, the current control circuit 19 controls the current supplied to the semiconductor laser 1.

該電流制御回路19は小振幅の交流分を重畳した直流電
流を半導体レーザ1に供給し、かつ直流分を所要の測定
範囲に対応して徐々に変化させてゆく。”このような電
流のプログラミングによつて第1除算回路13および第
2除算回路16からそれぞれP″r/PrおよびP″o
/POに比例する出力信号が得られる。以上説明した本
発明に係る分光分析方法によれば、出力光のパワーが振
動数に依存する半導体レーザを光源として用いても測定
値の零点が安定化し、直接分析の対象となる汚染ガスの
濃度に比例して該濃度が零のときに帰零する測定値を得
ることが可能となる利点がある。
The current control circuit 19 supplies a direct current with a small amplitude alternating current component superimposed thereon to the semiconductor laser 1, and gradually changes the direct current component in accordance with a required measurement range. ``By programming the currents in this manner, P''r/Pr and P''o from the first divider circuit 13 and the second divider circuit 16, respectively.
An output signal proportional to /PO is obtained. According to the spectroscopic analysis method according to the present invention described above, even if a semiconductor laser whose output light power depends on the frequency is used as a light source, the zero point of the measured value is stabilized, and the concentration of the pollutant gas that is the target of direct analysis is stabilized. There is an advantage in that it is possible to obtain a measurement value that returns to zero when the concentration is zero in proportion to.

とくに最も重要な吸収曲線のピーク付近では2次導関数
を利用することにより1次導関数を用いた場合よりもさ
らに精度の良い測定が可能となる。ゆえに本発明は大気
汚染の観測のみならず、赤外領域に吸収を有する物質全
般の分光分析に適用してきわめて有利である。
In particular, near the most important peak of the absorption curve, the use of the second derivative allows for more accurate measurements than when the first derivative is used. Therefore, the present invention is extremely advantageous when applied not only to the observation of air pollution but also to the spectroscopic analysis of all substances having absorption in the infrared region.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明に係る分光分析方法の一実施例に使用
する装置の構成を示す概略系統図てある。 1:波長可変型半導体レーザ、2:凸レンズ、3:凹面
鏡、4:大気、5:折曲げ反射鏡、6:カセグレン鏡、
6a:孔明き凹面鏡、7:第1検知器、8:チヨツパ、
9:光分岐装置、10:第2検知器、11および12:
位相拘束増幅器、13:第1除算器、14および15:
位相拘束増幅器、16:第2除算器、17:差動増幅器
、18:自動記録器、19:電流制御回路。
The accompanying drawing is a schematic system diagram showing the configuration of an apparatus used in an embodiment of the spectroscopic analysis method according to the present invention. 1: wavelength tunable semiconductor laser, 2: convex lens, 3: concave mirror, 4: atmosphere, 5: bending reflector, 6: Cassegrain mirror,
6a: Concave mirror with hole, 7: First detector, 8: Chiyotsupa,
9: Optical branching device, 10: Second detector, 11 and 12:
Phase-locked amplifier, 13: first divider, 14 and 15:
Phase-locked amplifier, 16: second divider, 17: differential amplifier, 18: automatic recorder, 19: current control circuit.

Claims (1)

【特許請求の範囲】 1 波長可変型赤外線レーザを光源とし、該光源の出力
するレーザ光を被分析物体内を透過せしめ、該波長可変
型レーザへの供給電流を振幅及び周波数の一定な交流分
を重畳させた直流とし、該一定の周波数に対応するレー
ザ出力光の変化分から透過光のパワーの上記レーザ光の
振動数に対する微分係数を求め、該微分係数をその原子
関数で除した商を算出し、これと別に上記物体による吸
収を受けないときの出力光のスペクトルの微分係数をそ
の原子関数で除した商を求め、上記二種の商の差から上
記被分析物体内に存する所定吸収物質の濃度を求めるこ
とを特徴とする赤外分光分析方法。 2 微分係数が二次微分係数であることを特徴とする特
許請求の範囲第1項に記載の赤外分光分析方法。
[Claims] 1. A wavelength tunable infrared laser is used as a light source, the laser light output from the light source is transmitted through an object to be analyzed, and the current supplied to the wavelength tunable laser is divided into alternating current components with constant amplitude and frequency. The differential coefficient of the power of the transmitted light with respect to the frequency of the laser beam is calculated from the change in the laser output light corresponding to the certain frequency, and the quotient is calculated by dividing the differential coefficient by the atomic function. Separately, the quotient of the differential coefficient of the spectrum of the output light when it is not absorbed by the object is divided by its atomic function is calculated, and from the difference between the two quotients, the predetermined absorbing substance present in the object to be analyzed is determined. An infrared spectroscopic analysis method characterized by determining the concentration of. 2. The infrared spectroscopic analysis method according to claim 1, wherein the differential coefficient is a second-order differential coefficient.
JP6591878A 1978-05-31 1978-05-31 Infrared spectroscopy method Expired JPS6058810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6591878A JPS6058810B2 (en) 1978-05-31 1978-05-31 Infrared spectroscopy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6591878A JPS6058810B2 (en) 1978-05-31 1978-05-31 Infrared spectroscopy method

Publications (2)

Publication Number Publication Date
JPS54156688A JPS54156688A (en) 1979-12-10
JPS6058810B2 true JPS6058810B2 (en) 1985-12-21

Family

ID=13300823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6591878A Expired JPS6058810B2 (en) 1978-05-31 1978-05-31 Infrared spectroscopy method

Country Status (1)

Country Link
JP (1) JPS6058810B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540250Y2 (en) * 1985-06-28 1993-10-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540250Y2 (en) * 1985-06-28 1993-10-13

Also Published As

Publication number Publication date
JPS54156688A (en) 1979-12-10

Similar Documents

Publication Publication Date Title
US5026991A (en) Gaseous species absorption monitor
US4061918A (en) Measurement of low concentration gases
KR100747768B1 (en) Apparatus for measuring exhaust gas using wavelength modulation spectroscopy
JP3450938B2 (en) Gas concentration measuring method and apparatus
US7957001B2 (en) Wavelength-modulation spectroscopy method and apparatus
US7251034B2 (en) Wavelength modulation spectroscopy method
US5502558A (en) Laser doppler velocimeter
JP4467674B2 (en) Gas concentration measuring device
US5202560A (en) System for measuring the concentration of a gaseous component by detecting positions of mode jumps in a laser diode
US4518861A (en) Method for the continuous measurement of the mass of aerosol particles in gaseous samples and a device for the implementation of the method
US3843258A (en) Dual beam absorption type optical spectrometer
US5640245A (en) Spectroscopic method with double modulation
JP2744742B2 (en) Gas concentration measuring method and its measuring device
US3994592A (en) Method of determining the concentration ratio of two substances
US4383181A (en) Method and apparatus for analyzing a gaseous mixture
JPH04364442A (en) Carbon-isotope analyzing apparatus
US5155545A (en) Method and apparatus for the spectroscopic concentration measurement of components in a gas mixture
JP2744728B2 (en) Gas concentration measuring method and its measuring device
KR20010005783A (en) Method of spectrochemical analysis of impurity in gas
JPH04326041A (en) Gas concentration measuring method and device
US3549260A (en) Spatially dispersive correlation interferometer
JPH03277945A (en) Gas detecting apparatus
Werle et al. High-frequency-modulation spectroscopy: phase noise and refractive index fluctuations in optical multipass cells
JPS6058810B2 (en) Infrared spectroscopy method
JPH10142148A (en) Concentration measuring device