JPS6058298A - Anaerobic digestion treatment - Google Patents

Anaerobic digestion treatment

Info

Publication number
JPS6058298A
JPS6058298A JP58166487A JP16648783A JPS6058298A JP S6058298 A JPS6058298 A JP S6058298A JP 58166487 A JP58166487 A JP 58166487A JP 16648783 A JP16648783 A JP 16648783A JP S6058298 A JPS6058298 A JP S6058298A
Authority
JP
Japan
Prior art keywords
carrier
digestion
anaerobic digestion
sludge
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58166487A
Other languages
Japanese (ja)
Inventor
Kazuo Shibazaki
柴崎 和夫
Ryosuke Miura
良輔 三浦
Itaru Takase
高瀬 格
Yukio Toya
遠矢 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58166487A priority Critical patent/JPS6058298A/en
Publication of JPS6058298A publication Critical patent/JPS6058298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To contrive to accelerate sludge reaction speed in anaerobic digestion treatment by removing a bad influence due to a minute amount of oxygenm by adding a carrier preliminarily deoxygenated to a digestion tank to perform anaerobic digestion treatment. CONSTITUTION:In an anaerobic digestion treatment method wherein a carrier such as activated carbon is added to enhance the reaction speed of sludge, the above-mentioned carrier is preliminarily deoxygenated by 90% or more while the treated carrier is added to a digestion tank and a bad influence due to a minute amount of oxygen adsorbed with the carrier is prevented to enhance reaction accelerating effect due to the carrier. By this method, the number of days stayed in the digestion tank are shortened and good treatment is enabled even if the amount of a charged org. substance is excessive load.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は嫌気性消化処理方法に係り、その反応促進方法
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an anaerobic digestion treatment method, and relates to an improvement in a reaction promotion method thereof.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

尿あるいは下水処理場で発生する下水汚泥などの有機性
廃棄物の処理方法として、嫌気性消化法は広く行なわれ
ている。
Anaerobic digestion is widely used as a method for treating organic wastes such as urine or sewage sludge generated at sewage treatment plants.

嫌気性消化法は、まず通性嫌気性菌である酸生成菌によ
って有機性廃棄物中の炭水化物、脂肪、タンパク質など
の高分子有機物が低分子化され、主に■旨肪酔に4+解
六れ入−次に一拾対旙偵什藺〒あるメタン菌によって、
脂肪酸などがメタン、炭酸ガスなどに分解される。
In the anaerobic digestion method, high-molecular organic substances such as carbohydrates, fats, and proteins in organic waste are first reduced to low molecules by acid-producing bacteria, which are facultative anaerobes. Then, by a certain methane bacteria,
Fatty acids are decomposed into methane, carbon dioxide, etc.

このような嫌気性消化法は好気性処理に比較しテ、 (
13111気が不要であるため、ランニングコストが安
い、(11)汚泥の発生量が少ない、 +no生成する
メタンをエネルギー源として有効に利用できる、などの
利点がある。一方、反応速度が非常に遅く、消化槽での
滞留時間が20〜30日も要するため大容量の消化槽が
必要であるという欠点を有している。
This type of anaerobic digestion method is more efficient than aerobic treatment.
Since no 13111 air is required, there are advantages such as low running costs, (11) less sludge generation, and the ability to effectively use the generated methane as an energy source. On the other hand, it has the disadvantage that the reaction rate is very slow and the residence time in the digester requires 20 to 30 days, so a large-capacity digester is required.

このような欠点を解消する方法として、活性炭ゼオライ
ト、バーミキュライトなどの担体を消化槽へ添加し、反
応速度を高める方法が知られている。これらの担体が反
応促進剤として作用するのは、前述した酸生成菌および
メタン菌をこれら担体に付着させることにより菌体密度
が高められたためであると考えられている。
As a method to overcome these drawbacks, a method is known in which a carrier such as activated carbon zeolite or vermiculite is added to the digestion tank to increase the reaction rate. It is believed that the reason why these carriers act as reaction accelerators is that the density of bacterial cells is increased by attaching the aforementioned acid-producing bacteria and methane bacteria to these carriers.

しかし、これらの従来方法による反応促進効果は十分で
はなく、より大きな促進効果をもたらす方法がめられて
いた。
However, the effect of promoting the reaction by these conventional methods is not sufficient, and a method that provides a greater effect of promoting the reaction has been sought.

これら従来方法で十分な反応促進効果が得られなかった
最大の原因は、発明者らの研究によれば添加する担体に
吸着している酸素が消化反応に悪影響を及はすためであ
ることが判明した。
According to research by the inventors, the main reason why these conventional methods were not able to obtain a sufficient reaction promotion effect was that oxygen adsorbed on the added carrier adversely affected the digestion reaction. found.

すなわち、上記結果は、次の3つの実験により確認され
た。
That is, the above results were confirmed by the following three experiments.

第1の実験は、有効容積10 l (IJットル)の小
形消化#J2基を用い、下水処理場から入手した原料汚
泥と種汚泥(消化槽から引抜いた消化汚泥)とを、等量
分均一に混合して封入し、その後毎日所定の時刻にそれ
ぞれの小形消化槽から11.同時にllの原料汚泥を投
入するという手順で長期間消化実験をおこなったもので
、活性炭などの担体による反応促進剤は添加しない。
The first experiment used two small digesters #J with an effective volume of 10 liters (IJ liters) to homogenize equal amounts of raw sludge obtained from a sewage treatment plant and seed sludge (digested sludge pulled out from the digester). 11. from each small digester at a predetermined time every day. A long-term digestion experiment was conducted in which 1 liter of raw material sludge was added at the same time, and no reaction accelerator such as activated carbon was added.

上記2基の小形消化槽は、寸法の全く同じものとし、か
つ攪拌も同一の速度で行い、かつ消化温度も同一にする
ため同じ恒温水槽内に設置し、これら2基の小形消化槽
の運転条件をすべて同じ条件にしている。
The two small-sized digesters mentioned above have exactly the same dimensions, are stirred at the same speed, and are installed in the same constant-temperature water tank to ensure the same digestion temperature. All conditions are the same.

なお、消化ガス発生量の測定は、湿式ガスメータで行い
、一時間毎に測定値をプリンターに出力させるようにし
た。
The amount of digestive gas generated was measured using a wet gas meter, and the measured values were output to a printer every hour.

これら2基の小形消化槽からの消化ガス発生量の測定結
果を、第1図における4日目までの測定値として実線お
よび破線により示す。
The measurement results of the amount of digestive gas generated from these two small digesters are shown by solid lines and broken lines as measured values up to the fourth day in FIG.

上述のように実験東1’t=を同じにしであるから、2
つの消化槽からの消化ガス発生量は同じはずである。と
ころが第1図から明らかなように、消化ガス発生量°の
ピークが現われる時間は異なり、さらに1日当りの消化
ガス発生量の積算値も一方が他方の約2倍になり、かな
り異なった。同様な実験をもう一度行なったが、前回と
同様な結果であった。
As mentioned above, since the experiment east 1't= is the same, 2
The amount of digestive gas generated from the two digesters should be the same. However, as is clear from FIG. 1, the times at which the peak of the amount of digestive gas produced were different, and the cumulative value of the amount of digestive gas produced per day was also quite different, with one being about twice as much as the other. A similar experiment was conducted again, but the results were similar to the previous one.

このように消化ガス発生量が異なった理由は、酸素の影
響ではないかと考えた。これは、消化槽から毎日消化汚
泥を引抜く際消化構内に負圧になるため、この時大気(
酸素)が混入したのではないかと考えた。事実、この時
の実験装置は、湿式ガスメータのサンプル出口側は大気
開放にしておいたため、ここから大気が混入してしまう
構造のものであった。2基の消化槽とも消化汚泥を引き
抜く際に約11の大気が混入したと思われるが、消化汚
泥の水面の状態(スカムの発生状態など)などが異なっ
たため、液相への酸素の溶解速度がさまざまとなり、溶
存酸素による酸生成菌やメタン菌への悪影響の程度は異
なったものと考えた。
The reason for this difference in the amount of digestive gas produced was thought to be due to the influence of oxygen. This is because when the digested sludge is pulled out from the digester every day, negative pressure is created in the digester, so at this time the atmosphere (
I thought it might have been contaminated with oxygen. In fact, the experimental equipment at this time had a structure in which the sample outlet side of the wet gas meter was left open to the atmosphere, allowing air to enter from there. Approximately 11 atmospheres are thought to have been mixed in when the digested sludge was extracted from both digesters, but the water surface conditions of the digested sludge (scum generation, etc.) were different, so the rate of oxygen dissolution into the liquid phase was affected. It was thought that the degree of adverse effects of dissolved oxygen on acid-producing bacteria and methane bacteria varied.

そこで、つぎのような第2の実験を行った。すなわち、
第2の実験は第1の実験の途中で、湿式ガスメータのサ
ンプル出口側に窒素ガスを充填した201のテトラ−バ
ック(臭気サンプリング用などに使用される袋)を取り
付け、消化汚泥引き抜き時には窒素ガスを逆流させ、大
気が混入しないようにした。第2の実験における消化ガ
ス発生量の測定結果を第1図の4日以降の測定値として
示す。第1図から明らかなように、酸素の混入を防止し
た結果、2つの消化槽とも消化ガス発生量は増大し、且
つその値は異ることなく同程度になった。この結果混入
する微量の酸素ガスが消化効率を低下させることが判明
した。
Therefore, the following second experiment was conducted. That is,
The second experiment was carried out in the middle of the first experiment by attaching a 201 Tetra Bag (a bag used for odor sampling, etc.) filled with nitrogen gas to the sample outlet side of the wet gas meter. The flow was reversed to prevent air from getting mixed in. The measurement results of the amount of digestive gas generated in the second experiment are shown as the measured values from day 4 onward in FIG. As is clear from FIG. 1, as a result of preventing the mixing of oxygen, the amount of digestive gas generated increased in both digesters, and the values remained at the same level without any difference. As a result, it was found that the trace amount of oxygen gas mixed in reduced the efficiency of digestion.

すなわち、消化汚泥を引き抜く時に1ノの大気が混入す
るが、次に生汚泥を投入する時に大気と消化ガスの混合
気体がll追い出される訳であり、また発生してくる消
化ガスによっても消化槽上部の気体は置換されるので、
液相へ溶解する酸素の量はわずかであったと推定される
のに1反応に悪影響を与えたためである。
In other words, when the digested sludge is pulled out, a small amount of air is mixed in, but when the raw sludge is then put in, a mixture of air and digestive gas is expelled, and the generated digestive gas also causes damage to the digestion tank. The gas at the top is replaced, so
This is because although the amount of oxygen dissolved in the liquid phase was estimated to be small, it adversely affected one reaction.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微量酸素による悪影響を除去し、担体
による反応促進効果を高めた嫌気性消化処理方法を提供
することにある。
An object of the present invention is to provide an anaerobic digestion method that eliminates the adverse effects of trace oxygen and enhances the reaction promoting effect of a carrier.

(発明の概要〕 本発明は担体を添加して汚泥の反応速度を高める嫌気性
消化処理方法に関するものであり、前記担体を予め90
%以上脱酸素しておき、これを消化槽へ添加することに
よって、担体に吸着されている酸素による悪影響を防止
して反応促進効果を高めたものである。
(Summary of the Invention) The present invention relates to an anaerobic digestion method for increasing the reaction rate of sludge by adding a carrier.
By deoxidizing % or more of oxygen and adding it to the digestion tank, the adverse effect of oxygen adsorbed on the carrier is prevented and the reaction promotion effect is enhanced.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を詳細に説明する。本発明におい
て、反応促進用として消化槽内に添加される担体として
は、活性炭、ゼオライト、バーミキュライトなどを用い
る。そして、これを予め約90チ以上脱酸素させておき
、この脱酸素した相当を消化槽内に添加している。
An embodiment of the present invention will be described in detail below. In the present invention, activated carbon, zeolite, vermiculite, etc. are used as the carrier added to the digestion tank for reaction promotion. This is deoxidized in advance by about 90 g or more, and the deoxidized amount is added into the digestion tank.

以下脱酸素した担体を用いて消化処理する場合につき、
その実験内容を説明する。この第3の実験は有効容積x
olの前記小形消化槽を3基用いて、表1に示す条件で
回分実験を行なった。ここで、回分実験とは、実験開始
時に所定量の原料汚泥と種汚泥を消化槽内に封入した後 表 1 は全く汚泥の投入、引抜きを行なわない実験である。
In the case of digestion using a deoxygenated carrier,
The content of the experiment will be explained. This third experiment has an effective volume x
A batch experiment was conducted under the conditions shown in Table 1 using three of the above-mentioned small-sized digesters. Here, a batch experiment is an experiment in which a predetermined amount of raw material sludge and seed sludge are sealed in the digestion tank at the start of the experiment, and then no sludge is introduced or withdrawn.

消化槽NOIには、担体として、約100 ℃の恒温槽
に3時間放置し、吸着している酸素を脱着させた活性炭
を、消化槽NO2には、担体として室内に放置しておい
た活性炭を添加し、また消化槽NO3には担体を何も添
加しなかった。
For the NOI digestion tank, activated carbon that had been left in a constant temperature bath at about 100 °C for 3 hours to desorb the adsorbed oxygen was used as a carrier, and for the NO2 digestion tank, activated carbon that had been left indoors as a carrier was used. and no carrier was added to digester NO3.

これら消化1NO1−NO3のiN化ガス発生僅の経時
変化を第2図に生ず。図から明らかなように、酸素を脱
着させた活性炭を添加した消化4i+fNOxでは、曲
線aで示す如く、従来方法による消化槽NO2の消化ガ
ス発生量(曲mb)に比較して、消化ガス発生速度は大
きくなり(例えば消化反応時間200時間後で比較した
場合、約1.5倍である)反応促進効果は大きくなるこ
とが判明した。
Figure 2 shows slight changes in the generation of iN gas from the digested 1NO1-NO3 over time. As is clear from the figure, as shown by curve a, in the digestion 4i+fNOx with the addition of activated carbon that desorbs oxygen, the digestion gas generation rate is lower than that of the conventional method (curve mb) in the digestion tank NO2. It was found that the reaction acceleration effect becomes larger (for example, it is about 1.5 times larger when compared after 200 hours of digestion reaction time), and the reaction promotion effect becomes larger.

これらの実験においても、消化ガス発生量は湿式ガスメ
ータで測定し、一時間毎にプリンターに出力させた。ま
た活性炭は試用薬品(株)製の「白鷺A」を使用した。
In these experiments as well, the amount of digestive gas generated was measured using a wet gas meter and output to a printer every hour. In addition, the activated carbon used was "Shirasagi A" manufactured by Kyushu Yakuhin Co., Ltd.

反応促進剤である活性炭に吸着している酸素ガスを分解
する方法、消化ガス貯留タンクなどから消化ガスを取り
出して、担体をパージし、吸着している酸素を消化ガス
の主成分であるメタン、炭酸ガスで置換させる方法、お
よび消化槽の加温に用いる蒸気、温水などの熱媒体や消
化ガス発電システムのエンジン廃熱などを利用して担体
を70〜100 ’Oに加温し、数時間放置させる方法
等が有効である。消化ガスや蒸気、温水などの熱媒体エ
ンジン廃熱は、嫌気性消化プロセスや消化ガス発電シス
テムで必然的に得られるものであるため、酸素の脱着に
要するコストが安価になる、という利点を有する。ただ
し、本発明は反応促進剤に吸着している酸素の脱着、分
解方法によって限定されるものではない。
A method of decomposing oxygen gas adsorbed on activated carbon, which is a reaction accelerator, by taking out digestion gas from a digestion gas storage tank, purging the carrier, and decomposing the adsorbed oxygen into methane, the main component of digestion gas. The carrier is heated to 70 to 100'O by using a method of replacing carbon dioxide gas, a heat medium such as steam or hot water used to heat the digestion tank, or engine waste heat of the digestion gas power generation system, and then heated for several hours. An effective method is to leave it alone. Heat carrier engine waste heat such as digestion gas, steam, and hot water is inevitably obtained in anaerobic digestion processes and digestion gas power generation systems, so it has the advantage that the cost required for oxygen desorption is low. . However, the present invention is not limited to the method of desorption and decomposition of oxygen adsorbed on the reaction accelerator.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば従来よりもさらに
反応速度を高め得ることができるため、消化槽での滞留
日数を縮小でき、また投入有機物量が過負荷の場合でも
良好な処理が可能となる。
As explained above, according to the present invention, it is possible to further increase the reaction rate than before, so the residence time in the digester can be reduced, and even when the amount of input organic matter is overloaded, good treatment is possible. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な嫌気性消化処理における消化ガスの発
生状態を説明する実験結果を示すグラフ、第2図は本発
明の詳細な説明する実験結果を示すグラフである。
FIG. 1 is a graph showing experimental results explaining the state of generation of digestive gas in a general anaerobic digestion process, and FIG. 2 is a graph showing experimental results explaining the present invention in detail.

Claims (1)

【特許請求の範囲】[Claims] 担体を添加して汚泥の反応速度を高める嫌気性消化処理
方法において、前記担体を予め90%以上脱酸素してお
き、これを消化槽へ添加することを特徴とする嫌気性消
化処理方法。
An anaerobic digestion method that increases the reaction rate of sludge by adding a carrier, characterized in that the carrier is deoxidized by 90% or more in advance and then added to a digestion tank.
JP58166487A 1983-09-12 1983-09-12 Anaerobic digestion treatment Pending JPS6058298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166487A JPS6058298A (en) 1983-09-12 1983-09-12 Anaerobic digestion treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166487A JPS6058298A (en) 1983-09-12 1983-09-12 Anaerobic digestion treatment

Publications (1)

Publication Number Publication Date
JPS6058298A true JPS6058298A (en) 1985-04-04

Family

ID=15832295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166487A Pending JPS6058298A (en) 1983-09-12 1983-09-12 Anaerobic digestion treatment

Country Status (1)

Country Link
JP (1) JPS6058298A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342524A (en) * 1991-05-24 1994-08-30 Gaddy James L Performance of anaerobic digesters
AT413209B (en) * 2004-03-17 2005-12-15 Ipus Ind Produktions Und Umwel ZEOLITE IN BIOGAS PRODUCTION
CN109448881A (en) * 2018-12-05 2019-03-08 天津大学 The devices and methods therefor of multistep Combined Treatment radioactive iodine pollution water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342524A (en) * 1991-05-24 1994-08-30 Gaddy James L Performance of anaerobic digesters
AT413209B (en) * 2004-03-17 2005-12-15 Ipus Ind Produktions Und Umwel ZEOLITE IN BIOGAS PRODUCTION
CN109448881A (en) * 2018-12-05 2019-03-08 天津大学 The devices and methods therefor of multistep Combined Treatment radioactive iodine pollution water

Similar Documents

Publication Publication Date Title
JP3821011B2 (en) Wastewater treatment method and treatment apparatus
CN106915883A (en) A kind of minimizing of endogenous FNA pretreating sludges and process for reclaiming
CN113336327A (en) Synergism method of anaerobic membrane bioreactor based on biochar addition
Akizuki et al. Effect of COD/NO3−–N ratio and seed sludge on simultaneous methanogenesis and denitrification in intermittent organic solid waste treatment
JP2006167512A (en) Apparatus and method for treating methane fermented substance
JPS6058298A (en) Anaerobic digestion treatment
Zhou et al. Packed activated carbon particles triggered a more robust syntrophic pathway for acetate oxidation-hydrogenotrophic methanogenesis at extremely high ammonia concentrations
Duca et al. Intensive biochemical processes of wastewater treatment with high caloricity biogas production
JP2005103375A (en) Methane fermentation treatment method and apparatus
JP3409728B2 (en) Organic waste treatment method
CN113184996A (en) Self-control-based integrated autotrophic nitrogen removal coupled biological phosphorus removal method and device
JPS57107299A (en) Anaerobic sludge digestion method
JPH047099A (en) Waste water treatment apparatus for simultaneously removing organic matter, nitrogen and phosphorus
JPH0947787A (en) Waste water treating device
JPH0310392B2 (en)
JP3937625B2 (en) Biological treatment method for organic waste
JPS6125440B2 (en)
Yang et al. Hybrid anaerobic treatment of poultry wastes in the tropics
JP3699999B2 (en) Treatment method of organic sludge
JPS605293A (en) Two-phase anaerobic digestion treatment of organic waste liquid
Duff et al. Treatment of fish processing waste using the downflow stationary fixed film (DSFF) reactor
JPH0310393B2 (en)
CN218755254U (en) High concentration organic waste water resourceful treatment device
WO2004028983A1 (en) A method of processing organic wastewater
JPH06142685A (en) Method and device for treating waste fluid containing organic nitrogen