JPS6058094A - Production of dipeptide - Google Patents

Production of dipeptide

Info

Publication number
JPS6058094A
JPS6058094A JP16629483A JP16629483A JPS6058094A JP S6058094 A JPS6058094 A JP S6058094A JP 16629483 A JP16629483 A JP 16629483A JP 16629483 A JP16629483 A JP 16629483A JP S6058094 A JPS6058094 A JP S6058094A
Authority
JP
Japan
Prior art keywords
dipeptide
water
reaction
immobilized enzyme
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16629483A
Other languages
Japanese (ja)
Inventor
Yasuo Kihara
木原 康夫
Takeshi Hibino
健 日比野
Isao So
宗 伊佐雄
Keiichi Ushiyama
敬一 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP16629483A priority Critical patent/JPS6058094A/en
Publication of JPS6058094A publication Critical patent/JPS6058094A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To produce a dipeptide in high yield, by reacting an amino acid derivative in the presence of an immobilized enzyme obtained by immobilizing a proteinase to water-dispersible polymer particle having specific diameter through a covalent bond. CONSTITUTION:The first amino acid or peptide having protected amino group is reacted in an aqueous medium in the presence of an immobilized enzyme obtained by immobilizing a proteinase to a water-dispersible polymer paticle having an average particle diameter of 0.03-2mum through a covalent bond. The produced dipeptide is dissolved in an organic solvent, and the dipeptide is separated and recovered while separating the immobilized enzyme as the solid phase. The water-dispersible polymer is preferably a coplymer of a vinyl monomer such as styrene, styrene derivative, (meth)acrylic acid ester, etc. with a monomer having reactive functional group such as (meth)acrylic acid, and a crosslinking monomer such as divinylbenzene.

Description

【発明の詳細な説明】 本発明はジペプチド類の製造方法に関し、詳しくは、平
均粒子径0.03〜2μmの水分散型高分子重合体粒子
にタンパク分解酵素を固定化した固定化酵素の存在下に
アミノr!I誘導体をペプチド結合させてジペプチド類
を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing dipeptides, and more specifically, the present invention relates to a method for producing dipeptides, and more specifically, the present invention relates to a method for producing dipeptides, and specifically, the presence of an immobilized protease in which a protease is immobilized on water-dispersed polymer particles having an average particle size of 0.03 to 2 μm. Amino r below! This invention relates to a method for producing dipeptides by peptide bonding I derivatives.

パパイン、キモトリプシン、サーモリシン等のようなタ
ンパク分解酵素がその逆反応であるペプチド結合の生成
反応に触媒作用を有することは既に古くより知られてい
る。最近では、水性媒体中でアミノ酸誘導体をこのよう
なタンパク分解酵素の存在下にペプチド結合させた後、
タンパク分解酵素を反応混合物から分離回収する方法が
提案されるに至っているが(特公昭57−13267号
、同13268号及び同13268号)、有機溶剤を使
用するジペプチド類及びタンパク分解酵素の分離操作に
おいて、タンパク分解酵素の失活が著しいと共に、タン
パク分解酵素を完全に分離回収することが困難であるた
め、ジペプチド製造を長期間にわたって安定して行なう
ことができない。
It has been known for a long time that proteolytic enzymes such as papain, chymotrypsin, thermolysin, etc. have a catalytic effect on the reverse reaction, which is the formation reaction of peptide bonds. Recently, after peptide bonding of amino acid derivatives in the presence of such proteolytic enzymes in an aqueous medium,
Methods for separating and recovering proteolytic enzymes from reaction mixtures have been proposed (Japanese Patent Publication Nos. 13267-13267, 13268, and 13268), but separation operations for dipeptides and proteolytic enzymes using organic solvents have been proposed. In this method, the deactivation of the proteolytic enzyme is significant and it is difficult to completely separate and recover the proteolytic enzyme, so that dipeptide production cannot be carried out stably over a long period of time.

また、タンパク分解酵素の回収時の夷活や損耗のために
製造費用が高くなる。
In addition, production costs increase due to activation and attrition during recovery of the proteolytic enzyme.

本発明者らはクンバク分解酵素を用いるジペプチド類の
製造における上記した問題を解決するために鋭意研究し
た結果、平均粒子径0.03〜2μmの水分散型高分子
重合体粒子にタンパク分解酵素を共有結合にて固定化し
た固定化酵素の存在下にアミノ酸誘導体を反応させるこ
とにより、高い収率で゛目的とするジペプチドを得るこ
とができる゛と共に、上記固定化タンパク分解酵素が有
機溶剤に対して抵抗性が強く、生成したジペプチドを有
機溶剤に熔解させ、固定化タンパク分解酵素を固相とし
て分離回収する操作においても安定であって、回収後も
実質的に当初と等しい酵素活性を有することを見出して
、本発明に至ったものである。
The present inventors conducted intensive research to solve the above-mentioned problems in the production of dipeptides using Kumbak degrading enzyme, and found that a proteolytic enzyme was added to water-dispersed polymer particles with an average particle size of 0.03 to 2 μm. By reacting an amino acid derivative in the presence of an immobilized enzyme that has been covalently immobilized, the desired dipeptide can be obtained in high yield, and the immobilized proteolytic enzyme is resistant to organic solvents. It is stable even when the dipeptide produced is dissolved in an organic solvent and the immobilized protease is separated and recovered as a solid phase, and the enzyme activity after recovery is substantially the same as that at the beginning. This discovery led to the present invention.

本発明によるジペプチド類の製造方法は、平均粒子径が
0.03〜2μmである水分散型高分子重合体粒子にタ
ンパク分解酵素を共有結合にて固定化した固定化酵素の
存在下に、アミノ基を保護された第1−のアミノ酸又は
ペプチドと、カルボキシル基を保護された第2のアミノ
酸又はペプチドとを水性媒体中で反応させ、生成したジ
ペプチドを有機溶剤に溶解させる工程と、上記有機溶剤
中からジペプチドを分離回収すると共に、上記固定化酵
素を固相として分離回収する工程とを有することを特徴
とする。
In the method for producing dipeptides according to the present invention, a proteolytic enzyme is covalently immobilized on water-dispersed polymer particles having an average particle diameter of 0.03 to 2 μm. a step of reacting a first amino acid or peptide with a protected group and a second amino acid or peptide with a protected carboxyl group in an aqueous medium and dissolving the resulting dipeptide in an organic solvent; It is characterized by comprising the steps of separating and recovering the dipeptide from the inside and also separating and recovering the above-mentioned immobilized enzyme as a solid phase.

本発明において固定化酵素の担体として用いる水分散型
高分子重合体粒子は、例えば、一部は特開昭57−15
0380号公報等によって既に知られている。本発明に
おいては、スチレンやその誘導体、(メタ)アクリル酸
エステル、(メタ)アクリロニトリル等の第1のビニル
単量体又はこれらの混合物と、(メタ)アクリル酸、(
メタ)アクリル酸グリシジル、(メタ)アクリルアミド
等の反応性官能基を有する第2のビニル単量体又はこれ
らの混合物とを乳化共重合させて得られる水分散型高分
子重合体粒子を用いることができるが、好ましくは上記
単量体に加えて、ジビニルベンゼン、多価アルコールの
ポリ (メタ)アクリレート等のような多官能性内部架
橋用単量体を共重合させて得られる水分散型高分子重合
体粒子が、前記したように、酵素反応後にジペプチドを
分離回収する際に使用する有機溶剤に膨潤熔解しないの
で好ましく用いられる。尚、この乳化共重合においては
乳化剤を用いないのが好ましい。乳化剤が存在するとき
は、得られる水分散型高分子重合体粒子に乳化剤が混入
し、酵素の固定化時に酵素を失活させるおそれがあるか
らである。但し、かかるおそれがない場合は、乳化剤の
存在下に乳化共重合させてもよいのは勿論である。
In the present invention, some of the water-dispersed polymer particles used as carriers for immobilized enzymes are, for example,
This is already known from Publication No. 0380 and the like. In the present invention, a first vinyl monomer such as styrene or its derivative, (meth)acrylic acid ester, (meth)acrylonitrile, or a mixture thereof; (meth)acrylic acid, (
It is possible to use water-dispersed polymer particles obtained by emulsion copolymerization with a second vinyl monomer having a reactive functional group such as glycidyl meth)acrylate or (meth)acrylamide, or a mixture thereof. However, preferably, in addition to the above monomers, a water-dispersed polymer obtained by copolymerizing a polyfunctional internal crosslinking monomer such as divinylbenzene, poly(meth)acrylate of a polyhydric alcohol, etc. As described above, polymer particles are preferably used because they do not swell and dissolve in the organic solvent used when separating and recovering the dipeptide after the enzymatic reaction. Note that it is preferable not to use an emulsifier in this emulsion copolymerization. This is because when an emulsifier is present, there is a risk that the emulsifier will be mixed into the resulting water-dispersed polymer particles and deactivate the enzyme during enzyme immobilization. However, if there is no such risk, it goes without saying that emulsion copolymerization may be carried out in the presence of an emulsifier.

水分散型高分子重合体粒子の平均粒子径は0゜03〜2
μmであることが必要であり、特に、0.07〜1μm
であるのが好ましい。重合体粒子の平均粒子径が0.0
3μmよりも小さいときは、これを担体としてタンパク
分解酵素を固定化した固定化酵素を反応系に分散させて
ジペプチド類の生成反応を行なわせた後の基質や反応生
成物からの分離が困難となり、一方、平均粒子径が2μ
mを越えるときは、反応系中に分散させることが困難と
なると共に、粒子の単位体積当りの表面積が小さく、固
定化酵素の酵素活性が相対的に低下して、反応効率が悪
くなる。
The average particle diameter of water-dispersed polymer particles is 0°03~2
μm, especially 0.07 to 1 μm
It is preferable that The average particle diameter of the polymer particles is 0.0
When it is smaller than 3 μm, it becomes difficult to separate the immobilized enzyme from the substrate and reaction products after dispersing the immobilized enzyme in the reaction system and carrying out the dipeptide production reaction using this carrier as a carrier. , on the other hand, the average particle size is 2μ
When the particle size exceeds m, it becomes difficult to disperse the particles in the reaction system, the surface area per unit volume of the particles is small, the enzyme activity of the immobilized enzyme is relatively reduced, and the reaction efficiency is deteriorated.

本発明の方法において用いるタンパク分解酵素は、ペプ
チド合成に使用し得る酵素であれば特に制限されないが
、例えば、ペプシン等の酸性プロテアーゼ、パパイン、
ステムブロメライン、フィシン、カナプシンB1キモパ
パイン、ストレプトコツカル・プロテアーゼ等のチオー
ルプロテアーゼ、放線菌起源の中性プロテアーゼ、スプ
チリシン、アスペルギルス・アルカリプロテアーゼ、エ
ラステアーゼ、α−リテツク・プロテアーゼ、キモトリ
プシン、キモトリプシンC等のセリンプロテアーゼ等を
挙げることができる。
The protease used in the method of the present invention is not particularly limited as long as it can be used for peptide synthesis, but examples include acidic proteases such as pepsin, papain,
Thiol proteases such as stem bromelain, ficin, canapsin B1 chymopapain, and streptococcal protease, neutral proteases of actinomycete origin, sptilisin, Aspergillus alkaline protease, elastase, α-lytect protease, chymotrypsin, and serine proteases such as chymotrypsin C. etc. can be mentioned.

かかるタンパク分解酵素は水分散型高分子重合体粒子に
共有結合に固定化されていることを要する。その他の方
法によりタンパク分解酵素が固定化された固定化酵素は
、前記したように有機溶剤の使用を含む生成ジペプチド
の分離操作において酵素の脱着が起こりやすく、固定化
酵素が安定性に欠けるからである。
Such proteolytic enzymes are required to be covalently immobilized on the water-dispersed polymer particles. Immobilized enzymes in which proteolytic enzymes are immobilized by other methods tend to be easily desorbed during separation operations of generated dipeptides that involve the use of organic solvents, as described above, and the immobilized enzymes lack stability. be.

本発明において用いるアミノ基を保護された第1のアミ
ノ酸又はペプチドは、特に制限されないが、例えば、ベ
ンジルオキシカルボニル基、第三ブチルオキシカルボニ
ル基等、従来よりペプチド合成に際して使用されている
保護基でアミノ基が保護されたグリシン、アラニン、バ
リン、ロイシン、イソロイシン、フェニルアラニン、メ
チオニン、シスチン、セリン、スレオニン、アスパラギ
ン酸、グルタミン酸、リジン、アルギニン、ビスチジン
、プロリン、オキシプロリン、チロシン、トリプトファ
ン等のアミノ酸又はそのペプチドを挙げることができる
。また、カルボキシル基i保護された第2のアミノ酸又
はペプチドも同様に特に制限されな′いが、例えば、低
級アルコキシ基、ベンジルオキシ基、ベンズヒドリルオ
キシ基、アニリノ基、アミノ基等でカルボキシル基が保
護された上記アミノ酸又はそめペプチドを挙げることが
できる。
The first amino acid or peptide with a protected amino group used in the present invention is not particularly limited, but may be a protecting group conventionally used in peptide synthesis, such as a benzyloxycarbonyl group or a tert-butyloxycarbonyl group. Amino acids with protected amino groups such as glycine, alanine, valine, leucine, isoleucine, phenylalanine, methionine, cystine, serine, threonine, aspartic acid, glutamic acid, lysine, arginine, bistidine, proline, oxyproline, tyrosine, tryptophan, etc.; Mention may be made of peptides. Similarly, the second amino acid or peptide protected with a carboxyl group is not particularly limited, but for example, a lower alkoxy group, benzyloxy group, benzhydryloxy group, anilino group, amino group, etc. Examples include the above-mentioned amino acids or peptides with protected .

反応系における第1及び第2のアミノ酸又はそのペプチ
ドの濃度は特に限定されるものではないが、通常、両者
共に0.001〜7M程度であり、且つ、モル比で1:
5乃至5:1、好ましくは1:3乃至3:1の範囲で反
応せしめられる。
The concentrations of the first and second amino acids or their peptides in the reaction system are not particularly limited, but usually both are about 0.001 to 7M, and the molar ratio is 1:
The reaction ratio is 5 to 5:1, preferably 1:3 to 3:1.

本発明の方法においては、水性媒体中に基質を溶解させ
ると共に、タンパク分解酵素を固定化した水分散型高分
子重合体粒子を分散させ、攪拌下に反応を行なわせるこ
とができる。本発明においては、水性媒体は水、又は反
応生成物であるジペプチドを溶解し得る有機溶剤と水と
の混合物を含む。水性媒体として水を用いるときは、反
応生成物であるジペプチド類は一般に水に対する熔解性
が小さいので媒体中に析出する。しかし、水性媒体が反
応生成物であるジペプチドを熔解させるに足る量の有機
溶剤を含有するときは、性成したジペプチドはこの有機
溶剤に熔解する。反応終了後のジペプチドと固定化クン
バク分解酵素との分離を容易に行ない得る点からは、上
記有機溶剤としては水非混和性の有機溶剤を用いるのが
好ましいが、しかし、必要ならば、水混和性の有機溶剤
を用い、反応媒体として水溶液を用いることもできる。
In the method of the present invention, the substrate can be dissolved in an aqueous medium, water-dispersed polymer particles having immobilized proteolytic enzymes can be dispersed, and the reaction can be carried out under stirring. In the present invention, the aqueous medium includes water or a mixture of water and an organic solvent capable of dissolving the reaction product dipeptide. When water is used as the aqueous medium, dipeptides, which are reaction products, generally have low solubility in water and are precipitated in the medium. However, when the aqueous medium contains an amount of organic solvent sufficient to dissolve the reaction product dipeptide, the resulting dipeptide will dissolve in the organic solvent. In order to easily separate the dipeptide from the immobilized Kumbaku-degrading enzyme after the reaction, it is preferable to use a water-immiscible organic solvent as the organic solvent. It is also possible to use an aqueous solution as the reaction medium using a specific organic solvent.

本発明の方法においては、基質に対する固定化酵素の使
用量は特に制限されないが、酵素量に換算すれば、通常
、基質の0.1〜30重量%の範囲である。また、反応
を行なう際の液性は使用する酵素が活性を示すpH領域
であり、例えば、金属プロテアーゼの場合にはpH4〜
9である。また、反応温度も酵素が活性を保持する範囲
であって、通常、20〜50℃であり、反応に要する時
間1ま上記のような条件下で通常、0.5〜24時間程
度である。
In the method of the present invention, the amount of immobilized enzyme to be used relative to the substrate is not particularly limited, but in terms of enzyme amount, it is usually in the range of 0.1 to 30% by weight of the substrate. In addition, the pH range in which the reaction is carried out is the pH range in which the enzyme used exhibits activity; for example, in the case of metalloprotease, pH 4 to
It is 9. The reaction temperature is also within a range in which the enzyme retains its activity, usually from 20 to 50°C, and the time required for the reaction is usually about 0.5 to 24 hours under the above conditions.

反応終了後は、前記したように、反応生成物であるジペ
プチドが反応媒体に溶解しない場合は、ジペプチドは媒
体中に析出するので、反応生成物を未反応基質と共に適
宜の有機溶剤にf4Mさせれば、固定化酵素を例えば精
密濾過膜や限外濾過膜を用いる膜分離、遠心分離等の手
段により容易に分離し得ると共に、反応生成物はこれを
含有する有機相から分離することができる。また、反応
媒体が反応生成物を溶解させる場合は、固定化酵素を直
ちに上記手段によって反応混合物から分離することがで
きる。本発明の方法によれば、このようにして分離され
た固定化酵素は当初と実質的に同じ酵素活性を保持して
おり、例えば、連続反応に用いるに好適である。
After the reaction is completed, as mentioned above, if the dipeptide that is the reaction product is not dissolved in the reaction medium, the dipeptide will precipitate in the medium, so the reaction product and unreacted substrate should be added to an appropriate organic solvent with f4M. For example, the immobilized enzyme can be easily separated by means such as membrane separation using a microfiltration membrane or ultrafiltration membrane, or centrifugation, and the reaction product can be separated from the organic phase containing it. Alternatively, if the reaction medium dissolves the reaction product, the immobilized enzyme can be immediately separated from the reaction mixture by the above-described means. According to the method of the present invention, the immobilized enzyme thus separated retains substantially the same enzyme activity as the initial enzyme, and is suitable for use, for example, in continuous reactions.

反応媒体が水のように反応生成物を熔解しない場合、反
応終了後に固定化酵素と反応生成物とを分離するには、
詳しくは、例えば、反応混合物に水混和性の有機溶剤を
加え、攪拌して生成した水性有機溶剤中に反応生成物を
溶解させれば、固定化酵素を固相として容易に分離する
ことができる。
When the reaction medium does not dissolve the reaction product, such as water, to separate the immobilized enzyme and the reaction product after the reaction is completed,
Specifically, for example, if a water-miscible organic solvent is added to the reaction mixture and the reaction product is dissolved in the aqueous organic solvent produced by stirring, the immobilized enzyme can be easily separated as a solid phase. .

上記水混和性有機溶剤としては、例えば、メタノール、
エタノール、プロパツール等の低級アルコールのほか、
アセトン、テトラヒドロフラン、ジメチルスルホキシド
、ジメチルホルムアミド、ジメチルアセトアミド等が用
いられる。また、反応混合物に水非混和性有機溶剤を加
え、攪拌して、有機溶剤中に反応生成物を熔解させて抽
出した後、有機層と水層との二層に分離させれば、有機
層から反応生成物を得ることができる。かかる水非混和
性有機溶剤としては、例えば、クロロホルム、エチレン
ジクロリド等のハロゲン化低級アルキル、酢酸エチル、
酢酸イソプロピル等の低級脂肪族エステル、ベンゼン、
トルエン、キシレン等の芳香族炭化水素等が用いられる
Examples of the water-miscible organic solvent include methanol,
In addition to lower alcohols such as ethanol and propatool,
Acetone, tetrahydrofuran, dimethylsulfoxide, dimethylformamide, dimethylacetamide, etc. are used. Alternatively, if a water-immiscible organic solvent is added to the reaction mixture and stirred, the reaction product is dissolved in the organic solvent and extracted, and then separated into two layers, an organic layer and an aqueous layer. The reaction product can be obtained from Examples of such water-immiscible organic solvents include chloroform, lower alkyl halides such as ethylene dichloride, ethyl acetate,
Lower aliphatic esters such as isopropyl acetate, benzene,
Aromatic hydrocarbons such as toluene and xylene are used.

更に、別の方法として、反応終了後、反応生成物及び固
定化酵素を固相として分離した後、これに有機溶剤を加
えて反応生成物を溶解させることにより、固定化酵素を
前記膜分離等の手段によって分離回収し得ると共に、有
機層から反応生成物を取得することができる。尚、有機
層から反応生成物を分離するには、従来より知られてい
る通常の方法、例えば、濃縮晶析、抽出等によることが
できる。
Furthermore, as another method, after the completion of the reaction, the reaction product and the immobilized enzyme are separated as a solid phase, and then an organic solvent is added thereto to dissolve the reaction product, so that the immobilized enzyme can be separated by the membrane separation, etc. It is possible to separate and recover the organic layer, and also obtain the reaction product from the organic layer. In order to separate the reaction product from the organic layer, conventional methods known in the art, such as concentration crystallization and extraction, can be used.

以上のように、本発明の方法によれば、固定化酵素の担
体として平均粒子径0.03〜2μmの水分散型高分子
重合体粒子を用いるので、反応系において遊離の酵素と
同様に移動することができ、従って、反応効率が高い。
As described above, according to the method of the present invention, since water-dispersed polymer particles with an average particle diameter of 0.03 to 2 μm are used as carriers for immobilized enzymes, they move in the reaction system similarly to free enzymes. Therefore, the reaction efficiency is high.

また、本発明の方法によれば、固定化酵素を回収すると
共に反応生成物を分離する場合に、遊離の酵素を用いる
場合と異なり、固相として固定化酵素を反応混合物から
直ちに且つ完全に分離することができ、更に、本発明の
方法において用いる固定化酵素は有機溶剤に対して抵抗
性がすぐれるため、上記のような有機溶剤の使用を含む
固定化酵素と反応生成物との分離操作においても実質的
に失活が起こらず、従って、回収された固定化酵素は繰
り返して使用することができ、また、水性有機溶剤中で
9ジペプチド合成にも有利に使用することができる。
Further, according to the method of the present invention, when recovering the immobilized enzyme and separating the reaction product, the immobilized enzyme can be immediately and completely separated from the reaction mixture as a solid phase, unlike when using a free enzyme. Furthermore, since the immobilized enzyme used in the method of the present invention has excellent resistance to organic solvents, separation operations between the immobilized enzyme and the reaction product including the use of organic solvents as described above are possible. Substantially no inactivation occurs even in the above, and therefore, the recovered immobilized enzyme can be used repeatedly and can also be advantageously used for the synthesis of 9-dipeptide in an aqueous organic solvent.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 (11固定化リパーゼの製造 メチルメタクリレート26g1アクリロニトリル12g
、グリシジルメタクリレート18g及びテトラエチレン
グリコールジメタクリレート4gを蒸留水300gに加
え、過硫酸カリウム0.3gを水40m1に熔解した重
合開始剤水溶液を70℃の温度で窒素気流下に加え、p
Hを7.0に維持しつつ200 rpmで攪拌して4時
間重合させ、更に、温度を80℃まで高めて1時間反応
させて、固形公約15%、平均粒子径0.4μmの水分
散型高分子重合体粒子の水分散液を得、この重合体粒子
を遠心分離し、水洗した。これを蒸留水340m1に再
分散させて、重合体粒子の水分散液を得た。
Example 1 (11 Production of immobilized lipase 26 g of methyl methacrylate 1 12 g of acrylonitrile
, 18 g of glycidyl methacrylate and 4 g of tetraethylene glycol dimethacrylate were added to 300 g of distilled water, and an aqueous polymerization initiator solution prepared by dissolving 0.3 g of potassium persulfate in 40 ml of water was added at a temperature of 70° C. under a nitrogen stream.
Polymerization was carried out for 4 hours by stirring at 200 rpm while maintaining H at 7.0, and then the temperature was raised to 80°C and the reaction was carried out for 1 hour to form a water-dispersed polymer with a solid content of approximately 15% and an average particle size of 0.4 μm. An aqueous dispersion of high molecular weight polymer particles was obtained, and the polymer particles were centrifuged and washed with water. This was redispersed in 340 ml of distilled water to obtain an aqueous dispersion of polymer particles.

次に、この水分散液50m1、水300 ml及びポリ
エチレンイミン水溶液(固形分30%)50i1を混合
し、攪拌下に室温で3日間、更に40℃で1日間反応さ
せて、重合体粒子にポリエチレンイミンを結合させた。
Next, 50ml of this aqueous dispersion, 300ml of water, and 50ml of polyethyleneimine aqueous solution (solid content 30%) were mixed and reacted with stirring at room temperature for 3 days and then at 40°C for 1 day to form polyethylene into polymer particles. combined with imine.

この後、反応混合物を遠心分離、水洗し、0.1 M 
トリス緩衝液(pH6,5)で洗滌し、蒸留水に再分散
させて5Qmlとした。
After this, the reaction mixture was centrifuged, washed with water, and diluted with 0.1 M
It was washed with Tris buffer (pH 6.5) and redispersed in distilled water to make 5Qml.

この水分散液30m1に25%グルタルアルデヒド水溶
液6mlを加え、室温で2時間反応させた後、水洗し、
重合体粒子の有するアミノ基とシッフ塩基を形成させて
アルデヒド基を導入し、これにサーモリシン150■を
ジメチルスルホキシドと水との等容量混合物40 ml
 (5mmol/ ccの酢酸カルシウムを含む。)に
溶解した溶液を加え、穏やかに攪拌しながら反応させた
。この後、未反応のアルデヒド基をブロックするために
pH8,0,0,1Mのトリス塩酸緩衝液(5mmol
/ ccの酢酸カルシウムを含む。)を同量加えた。
Add 6 ml of 25% glutaraldehyde aqueous solution to 30 ml of this aqueous dispersion, react at room temperature for 2 hours, and then wash with water.
An aldehyde group is introduced by forming a Schiff base with the amino group of the polymer particles, and then 150 μl of thermolysin is added to 40 ml of an equal volume mixture of dimethyl sulfoxide and water.
(containing 5 mmol/cc of calcium acetate) was added to the solution and reacted with gentle stirring. After this, in order to block unreacted aldehyde groups, a Tris-HCl buffer (5 mmol) of pH 8, 0, 0, 1M
/cc of calcium acetate. ) was added in the same amount.

次いで、ジメチルスルホキシド、水、0. I M ト
リス塩酸緩衝液の順に洗滌を繰り返し、か(して、乾燥
重合体粒子1g当りサーそりシン16mgが固定化され
た固定化酵素を得た。
Then dimethyl sulfoxide, water, 0. Washing was repeated in the order of I M Tris-HCl buffer to obtain an immobilized enzyme in which 16 mg of sarsolycin was immobilized per 1 g of dry polymer particles.

(2) ジペプチドの合成反応 上で得たサーモリシン固定化水分散型高分子重合体粒子
5m1(固形分4.5%)に0.1 M l−リス塩酸
緩衝液(p)I 8.0) 20ynlを加えて酢酸カ
ルシウム濃度を10 mmol/ 12とし、更にN−
アクリロイルフェニルアラニンl mmol及びフェニ
ルアラニンベンジルエステル−p−)ルエンスルホネー
ト1 mmolを加えて反応させた。この間、反応系の
pHを8.0となるようにIN力性ソーダにて調整した
(2) 0.1 M l-Lis-HCl buffer (p)I 8.0) was added to 5 ml (solid content 4.5%) of thermolysin-immobilized water-dispersed polymer particles obtained in the dipeptide synthesis reaction. Add 20ynl to make the calcium acetate concentration 10 mmol/12, and then add N-
1 mmol of acryloylphenylalanine and 1 mmol of phenylalanine benzyl ester-p-)luenesulfonate were added and reacted. During this time, the pH of the reaction system was adjusted to 8.0 using IN sodium hydroxide.

一夜反応させた後、析出した生成物を酢酸エチルにて抽
出し、これを7%アンモニア水、0.5%クエン酸、水
の順で洗滌した後、減圧蒸留して溶剤を留去してジペプ
チドを収率58,3%で得た。
After reacting overnight, the precipitated product was extracted with ethyl acetate, washed with 7% ammonia water, 0.5% citric acid, and water in this order, and then distilled under reduced pressure to remove the solvent. The dipeptide was obtained with a yield of 58.3%.

一方、水層の固定化酵素を孔径0.2μmの膜にて濾別
し、0.1M、pH8のトリス塩2酸緩衝液(酢酸カル
シウム10 mmolを含む。)で洗滌した後、水分散
液5m1(固形分4.5%)とし、上記と同様にしてこ
れに0.1トリス塩酸緩衝液20m1を加えて酢酸カル
シウム濃度を10 mmol/ 11とし、更に上記と
同量の基質を加え、pns、oの条件下で反応させた。
On the other hand, the immobilized enzyme in the aqueous layer was filtered through a membrane with a pore size of 0.2 μm, washed with 0.1 M, pH 8 Tris salt diacid buffer (containing 10 mmol of calcium acetate), and then the aqueous dispersion was separated. 5 ml (solid content 4.5%), add 20 ml of 0.1 Tris-HCl buffer to it in the same manner as above to make the calcium acetate concentration 10 mmol/11, further add the same amount of substrate as above, and add pns. , o.

このようにして反応終了後に水層から分離回収した固定
化酵素を用いて反応を繰り返して行なった結果、5回に
わたって当初とほぼ同じ収率にてジペプチドを得ること
ができた。結果を図面に示す。
As a result of repeating the reaction using the immobilized enzyme separated and recovered from the aqueous layer after the completion of the reaction, the dipeptide was able to be obtained five times at almost the same yield as the initial one. The results are shown in the drawing.

尚、比較のために、実施例1において固定化酵素の代わ
りに遊離のサーモリシン3.6■を用いた以外は、実施
例1と全く同様にして基質を反応させ、反応生成物を酢
酸エチルで抽出したところ、ジペプチドの収率は59.
2%であった。しかし、上記抽出後の水層に上記と同量
の基質を加え、pH8,0の条件下で反応を繰り返した
ところ、結果を図面に示すように、ジペプチドの収率は
急激に低下した。
For comparison, the substrates were reacted in exactly the same manner as in Example 1, except that 3.6 mm of free thermolysin was used instead of the immobilized enzyme in Example 1, and the reaction product was treated with ethyl acetate. When extracted, the yield of dipeptide was 59.
It was 2%. However, when the same amount of substrate as above was added to the aqueous layer after the above extraction and the reaction was repeated under conditions of pH 8.0, the yield of the dipeptide sharply decreased as shown in the figure.

実施例2 実施例1において、基質としてN−カルボベンジルオキ
シ−し−フェニルアラニンとL−バリンメチルエステル
塩酸塩とを用いた以外は、実施例1と全く同様にして反
応させ、収率72.3%にてジペプチドを得た。
Example 2 The reaction was carried out in exactly the same manner as in Example 1, except that N-carbobenzyloxy-dis-phenylalanine and L-valine methyl ester hydrochloride were used as substrates, and the yield was 72.3. % dipeptide was obtained.

実施例1と同様にして水層中の固定化酵素を用いて繰り
返して基質を反応させたところ、じべぶの収率は第2回
目が70.0%、第3回目が70.8%であった。
When the substrate was reacted repeatedly using the immobilized enzyme in the aqueous layer in the same manner as in Example 1, the yield of Jibebu was 70.0% in the second reaction and 70.8% in the third reaction. Met.

実施例3 実施例1においてポリエチレンイミンに代えてm−キシ
リレンジアミンを用いた以外は、実施例1と全く同様に
して固定化酵素を得た。これを用いて、実施例1と同じ
条件にて基質を反応させたところ、ジペプチドを58.
8%の収率で得た。また、実施例1と同様にして固定化
酵素を繰り返して用いて基質を反応させたところ、第2
回目及び第3回目のジペプチドの収率はそれぞれ58.
8%及び56.1%であった。
Example 3 An immobilized enzyme was obtained in exactly the same manner as in Example 1, except that m-xylylenediamine was used in place of polyethyleneimine. When this was used to react the substrate under the same conditions as in Example 1, the dipeptide was reacted with 58.
Obtained with a yield of 8%. In addition, when the substrate was reacted using the immobilized enzyme repeatedly in the same manner as in Example 1, the second
The yields of the dipeptide in the third and third rounds were 58.
They were 8% and 56.1%.

実施例4 実施例1において反応系に酢酸エチル25m1を存在さ
せた以外は、実施例1と全く同様にして反応させた。こ
の反応においては、反応生成物は酢酸エチルに溶解した
。ジペプチドの収率は54.4%であった。また、24
時間毎に基質をそれぞれ1mlずつ添加したときの酢酸
エチル層のジペプチドの収率はそれぞれ55%、56%
及び49%であった。
Example 4 A reaction was carried out in exactly the same manner as in Example 1 except that 25 ml of ethyl acetate was present in the reaction system. In this reaction, the reaction product was dissolved in ethyl acetate. The yield of dipeptide was 54.4%. Also, 24
The yields of dipeptide in the ethyl acetate layer were 55% and 56%, respectively, when 1 ml of each substrate was added every hour.
and 49%.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法による固定化酵素を用いてジペプチ
ド合成を繰り返して行なった場合のジペプチドの収率の
変化と、遊離の酵素を用いた場合の収率の変化とを示す
グラフである。 723’1S k4回嘘虻 手続補正書(自発) 昭和58年特許願第166294号 2、発明の名称 ジペプチド類の製造方法 3、補正をする者 事件との関係 特許出願人 住 所 大阪府茨木市下穂積1丁目1番2号名 称 日
東電気工業株式会社 4、代理人 住 所 大阪市西区新町1丁目8番3号新町七福ビル 補正の内容 (11明細書第16頁7行の「じべぶ」を「ジペプチド
」を補正する。 以」ニ
The figure is a graph showing the change in dipeptide yield when dipeptide synthesis is repeatedly performed using an immobilized enzyme according to the method of the present invention, and the change in yield when using a free enzyme. 723'1S k 4th Liar Procedure Amendment (Spontaneous) 1982 Patent Application No. 166294 2 Title of invention Method for producing dipeptides 3 Relationship with the person making the amendment Case Address of patent applicant Ibaraki City, Osaka Prefecture 1-1-2 Shimohozumi Name Nitto Electric Industry Co., Ltd. 4 Agent address Shinmachi Shichifuku Building 1-8-3 Shinmachi, Nishi-ku, Osaka Correct “bebu” to “dipeptide”.

Claims (1)

【特許請求の範囲】[Claims] (11平均粒子径が0.03〜2μmである水分散型高
分子重合体粒子にタンパク分解酵素を共有結合にて固定
化した固定化酵素の存在下に、アミノ基を保護された第
1のアミノ酸又はペプチドと、カルボキシル基を保護さ
れた第2のアミノ酸又はペプチドとを水性媒体中で反応
させ、生成したジペプチドを有機溶剤に熔解させる工程
と、上記有機溶剤中からジペプチドを分離回収すると共
に、上記固定化酵素を固相として分離回収する工程とを
有することを特徴とするジペプチド類の製造方法。
(11) In the presence of an immobilized enzyme in which a protease is covalently immobilized on water-dispersed polymer particles with an average particle diameter of 0.03 to 2 μm, the first A step of reacting an amino acid or peptide with a second amino acid or peptide with a protected carboxyl group in an aqueous medium and dissolving the resulting dipeptide in an organic solvent, and separating and recovering the dipeptide from the organic solvent, A method for producing dipeptides, comprising a step of separating and recovering the immobilized enzyme as a solid phase.
JP16629483A 1983-09-09 1983-09-09 Production of dipeptide Pending JPS6058094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16629483A JPS6058094A (en) 1983-09-09 1983-09-09 Production of dipeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16629483A JPS6058094A (en) 1983-09-09 1983-09-09 Production of dipeptide

Publications (1)

Publication Number Publication Date
JPS6058094A true JPS6058094A (en) 1985-04-04

Family

ID=15828674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16629483A Pending JPS6058094A (en) 1983-09-09 1983-09-09 Production of dipeptide

Country Status (1)

Country Link
JP (1) JPS6058094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179824U (en) * 1988-06-10 1989-12-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179824U (en) * 1988-06-10 1989-12-25

Similar Documents

Publication Publication Date Title
US5914367A (en) Polymer protein composites and methods for their preparation and use
US4284721A (en) Method for manufacturing dipeptides
JPS592694A (en) Production of free alpha-amino acid
US4066505A (en) Process for extracting a polypeptide from an aqueous solution
JPS60164495A (en) Enzymatic coupling of n-formyl amino acid and peptide residue
US4439524A (en) Stereoselective resolution of phenylglycine derivatives with enzyme resins
JPS6058094A (en) Production of dipeptide
Belokon et al. Enantioselective hydrolysis of a Schiff's base of D, L-Phenylalanine ethyl ester in water-poor media via the reaction catalyzed with α-chymotrypsin immobilized on hydrophilic macroporous gel support
US3650901A (en) Polymeric enzyme products
Sinisterra et al. Synthesis of peptides catalysed by enzymes: A practical overview
Stepanov Proteinases as catalysts in peptide synthesis
Gaertner et al. Papain-catalyzed peptide synthesis and oligomerization of amino acid amides in organic solvents
IE860102L (en) Method and apparatus for enzymatic synthesis
Kawashiro et al. Esterification of N‐benzyloxycarbonyldipeptides in ethanol–water with immobilized papain
US3536587A (en) Enzyme resin and a process for the preparation thereof
US4670390A (en) Process for the immobilization of compounds comprising nucleophilic groups
JPS59154988A (en) Water-dispersible polymer particles and immobilized enzyme using said particles as carrier
JPS6153036B2 (en)
JPS5914790A (en) Immobilized enzyme and its preparation
JPS6251106B2 (en)
JPH05284991A (en) Production of methyl ester of n-benzyloxycarbonyl-alfa-l-aspartyl-l-phenylalanine
CA1052045A (en) Water-insoluble preparations of peptide materials, their production and their use
JPH02303493A (en) Production of l-lysine-epsilon-peptide
JPH04299988A (en) Production of lysine-epsilon-peptide
JPS58149680A (en) Preparation of immobilized enzyme