JPS6057721B2 - Demultiplexer - Google Patents

Demultiplexer

Info

Publication number
JPS6057721B2
JPS6057721B2 JP9074877A JP9074877A JPS6057721B2 JP S6057721 B2 JPS6057721 B2 JP S6057721B2 JP 9074877 A JP9074877 A JP 9074877A JP 9074877 A JP9074877 A JP 9074877A JP S6057721 B2 JPS6057721 B2 JP S6057721B2
Authority
JP
Japan
Prior art keywords
polarization
polarized wave
circularly polarized
couplers
circular waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9074877A
Other languages
Japanese (ja)
Other versions
JPS5425144A (en
Inventor
修己 石田
文雄 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9074877A priority Critical patent/JPS6057721B2/en
Publication of JPS5425144A publication Critical patent/JPS5425144A/en
Publication of JPS6057721B2 publication Critical patent/JPS6057721B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

【発明の詳細な説明】 この発明は、相互に逆旋の関係にある二つの円偏波を
用いる通信方式に用いられる分波装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a demultiplexing device used in a communication system using two circularly polarized waves having anti-rotating relationships.

同一周波数で相互に逆旋の関係にある二つの円偏波を
用いる無線通信において、降雨等による伝播路の異方性
によつて交差偏波識別度の劣化した一偏波のうちの一偏
波は、管軸のまわりに回転可能な円偏波発生器、偏波面
回転器および偏分波器から成る分波装置によつて交差偏
波成分を含まない状態で分波することができる。
In wireless communications that use two circularly polarized waves with the same frequency and opposite rotation, one of the polarized waves has degraded cross-polarization discrimination due to anisotropy in the propagation path due to rain, etc. The waves can be split without containing cross-polarized components by a splitting device consisting of a circularly polarized wave generator, a polarization plane rotator, and a polarization splitter that are rotatable around the tube axis.

ここでは説明の便宜上、右旋円偏波の送信波をR)左
旋円偏波の送信波をLとし、降雨等によつて交差偏波識
別度の劣化した送信波R、LのうちLをRの干渉波のな
い状態で分波するものとする。
Here, for convenience of explanation, the right-handed circularly polarized transmitted wave is referred to as R, the left-handed circularly polarized transmitted wave is designated as L, and of the transmitted waves R and L whose cross-polarized wave discrimination has deteriorated due to rain etc., L is It is assumed that demultiplexing is performed in a state where there is no interference wave of R.

なお、このような分波装置の制御においては、少なく
ともRにはLに含まれない周波数のパイロット波が必要
である。
In addition, in controlling such a branching device, a pilot wave of a frequency not included in L is required at least for R.

このパイロット周波数をfRp)パイロット波をRpと
する。 まず、第1図は従来より考えられている分波装
置の一例を示す。
Let this pilot frequency be fRp) and the pilot wave be Rp. First, FIG. 1 shows an example of a conventional demultiplexing device.

第1図において1はホーン、2は円形導波管、3aと
4aは周波数fRpにおいてそれぞれ、円形導波管2中
のY軸およびX軸に平行な電界成分と結合する結合器、
5は円偏波発生器、6は偏波面回転器、7は偏分波器、
8と9はそれぞれ偏分波器中のY軸およびX軸に平行な
電界成分を分波する分岐導波管、10はロータリジョイ
ント、11と12はそれぞれ円偏波発生器5と偏波面回
転器6を回転させる駆動装置、13は結合器3aと4a
に結合されたパイロット波Rpのそれぞれの成分の振幅
と位相から円偏波発生器5と偏波面回転器6の最適角度
を計算し、駆動信号を与える信号処理装置である。
In FIG. 1, 1 is a horn, 2 is a circular waveguide, and 3a and 4a are couplers that couple with electric field components parallel to the Y-axis and the X-axis in the circular waveguide 2 at a frequency fRp, respectively;
5 is a circular polarization generator, 6 is a polarization plane rotator, 7 is a polarization splitter,
8 and 9 are branching waveguides that separate electric field components parallel to the Y-axis and X-axis in the polarization splitter, 10 is a rotary joint, and 11 and 12 are circularly polarized wave generator 5 and polarization plane rotation, respectively. A drive device that rotates the device 6, 13 is a coupler 3a and 4a
This is a signal processing device that calculates optimal angles for the circularly polarized wave generator 5 and the polarization plane rotator 6 from the amplitude and phase of each component of the pilot wave Rp coupled to the pilot wave Rp, and provides a drive signal.

上記送信波R,Lは、降雨等によつて交差偏波識別度が
劣化し、それぞれ楕円偏波Rl,Llとなつて上記分波
装置に入射する。
The transmitted waves R and L have their cross-polarized wave discrimination degraded by rain or the like, and become elliptically polarized waves Rl and Ll, respectively, and enter the demultiplexer.

このとき、楕円偏波の電界の長軸方向成分と短軸方向成
分の振幅比(楕円偏波率)をr1長軸がX軸となす角を
φとすると、電界のX軸方向成分とY軸方向成分の位相
差(ZEx−ZEY)は次式で与えられる。
At this time, if the amplitude ratio (elliptical polarization index) of the long axis direction component and the short axis direction component of the electric field of the elliptically polarized wave is r1 and the angle that the long axis makes with the X axis is φ, then the X axis direction component of the electric field and the Y The phase difference of the axial component (ZEx-ZEY) is given by the following equation.

ここで、刊ま右旋偏波に対しては一、左旋偏波に対して
は+である。
Here, it is 1 for right-handed polarization and + for left-handed polarization.

この式においてφ=0として求まるように、楕円偏波R
l,Llは、電界の長軸方向成分とこれに直交する短軸
方向成分の位相差が90度であるので、上記分波器では
まず、円偏波発生器5を回転してその90度遅相面をR
1の電界楕円の長軸と平行に置くことによつて、R1の
長軸方向成分と短軸方向成分を同相あるいは逆相とする
ことができる。
In this equation, as φ=0, the elliptically polarized wave R
In Ll and Ll, the phase difference between the long axis direction component of the electric field and the short axis direction component perpendicular to this is 90 degrees, so in the above duplexer, first, the circularly polarized wave generator 5 is rotated and the phase difference is 90 degrees. R the slow phase surface
By placing it parallel to the long axis of the electric field ellipse R1, the long axis direction component and the short axis direction component of R1 can be made to be in phase or out of phase.

すなわち、このとき、R1は長軸方向成分と短軸方向成
分のベクトル和の電界の直線偏波R2となる。一方!は
、別の楕円偏波!に変換される。つぎに、偏波面回転器
6を回転させ、その180度遅相面を直線偏波R2の電
界がX軸となす角の半分の角度に置くことにより、この
直線偏波R2の電界はx軸と平行な直線偏波R,となる
That is, at this time, R1 becomes the linearly polarized wave R2 of the electric field, which is the vector sum of the long axis direction component and the short axis direction component. on the other hand! is another elliptically polarized wave! is converted to Next, by rotating the polarization plane rotator 6 and placing its 180 degree slow phase at an angle that is half the angle that the electric field of the linearly polarized wave R2 makes with the X axis, the electric field of this linearly polarized wave R2 is It becomes a linearly polarized wave R, which is parallel to .

このときL2は、・長軸の角度だけが変化した楕円偏波
!となる。このように偏分波器7においては、R3はX
軸に平行な直線偏波であるので分岐導波管9だけに結合
さ抵分岐導波管8には結合されない。
At this time, L2 is an elliptically polarized wave with only the long axis angle changed! becomes. In this way, in the polarization splitter 7, R3 is
Since it is a linearly polarized wave parallel to the axis, it is coupled only to the branch waveguide 9 and not to the branch waveguide 8.

一方、L,は分岐導波管8と9の両方に結合されるので
、分岐導波管8には!が交差偏波成分R3を含まずに分
波される。しかし、上記従来の分波装置においては、結
合器3aと4aに結合されたR,の成分の振幅と位相と
から円偏波発生器5の前後における長軸の角度を演算し
て求める必要がある。
On the other hand, since L, is coupled to both branch waveguides 8 and 9, branch waveguide 8 has ! is split without including the cross-polarized component R3. However, in the conventional demultiplexing device described above, it is necessary to calculate and determine the angle of the long axis before and after the circularly polarized wave generator 5 from the amplitude and phase of the R components coupled to the couplers 3a and 4a. be.

したがつて、この分波装置の信号処理装置としては、R
,の振幅、位相の検波装置のほかにかなり複雑な演算装
置が要求され、高価なものとなる欠点がある。つぎに、
従来の分波装置の他の一例を第2図に示す。この図のよ
うな制御方式の分波装置は、ElectrOnicsレ
Tters,VOl.l2,陽.25,pp.関6−6
87(197師12月)に記載されている。第2図にお
いて、1および5〜13は第1図と同じもの、3bと4
bは分岐導波管8と9に分波したあとでパイロット波R
pを結合する結合器である。このような第2図の分波装
置は、円偏波発生器5は結合器3bと4bに結合される
パイロット波Rpの成分が同相になるような駆動制御さ
れる。また、偏波面回転器は結合器3bに結合される成
分がなくなるように駆動制御される。しかし、このよう
な第2図の分波装置では、結合器3bと4bに結合され
るパイロット波Rpの成分のレベルが著しく異なること
から、正確に位相差を検出するのが困難であるという欠
点がある。
Therefore, as a signal processing device of this demultiplexing device, R
, as well as amplitude and phase detection equipment, it requires a fairly complex arithmetic unit, which has the disadvantage of being expensive. next,
Another example of the conventional demultiplexing device is shown in FIG. The demultiplexing device with the control method shown in this figure is Electronics Le Terrs, VOl. l2, positive. 25, pp. Seki 6-6
87 (December 197). In Figure 2, 1 and 5 to 13 are the same as in Figure 1, 3b and 4
b is the pilot wave R after being split into branch waveguides 8 and 9.
This is a combiner that combines p. In such a demultiplexer shown in FIG. 2, the circularly polarized wave generator 5 is driven and controlled so that the components of the pilot wave Rp coupled to the couplers 3b and 4b are in phase. Further, the polarization plane rotator is driven and controlled so that no component is coupled to the coupler 3b. However, the demultiplexing device shown in FIG. 2 has the disadvantage that it is difficult to accurately detect the phase difference because the levels of the components of the pilot waves Rp coupled to the couplers 3b and 4b are significantly different. There is.

この発明はこれらの欠点を除去するため、円偏波発生器
とともに回転する円形導波管にパイロット波Rpの結合
器を設けたもので、以下図面について詳細に説明する。
In order to eliminate these drawbacks, the present invention provides a coupler for the pilot wave Rp in a circular waveguide that rotates together with the circularly polarized wave generator, and will be described in detail below with reference to the drawings.

第3図はこの発明の一実施例であり、1〜13は第1図
および第2図と同じものであり、14は可撓性のある線
路、15はパイロット波Rpの結合器3aと4aに結合
される成分Rpx″とRpx″の位相差(ZRpx″−
ZRpy″)の余弦に比例する電圧を発生する第2の信
号処理装置である。ただし、この発明の分波装置の円形
導波管2は、第3図に示すように円偏波発生器5ととも
に回転する。
FIG. 3 shows an embodiment of the present invention, in which 1 to 13 are the same as in FIGS. 1 and 2, 14 is a flexible line, and 15 is a pilot wave Rp coupler 3a and 4a. The phase difference between the components Rpx″ and Rpx″ (ZRpx″−
This is a second signal processing device that generates a voltage proportional to the cosine of ZRpy''). However, the circular waveguide 2 of the demultiplexing device of the present invention is connected to a circularly polarized wave generator 5 as shown in FIG. rotates with

このとき、結合器4aは円偏波発生器5の9〔3遅相面
に平行な電界成分と結合し、結合器3aはこの電界成分
と直交する成分と結合するものであり、これらの電界成
分に平行な座標軸を第3図ではそれぞれx″,Y″で示
す。また、駆動装置11は第3図において、負の電圧で
時計方向に、正の電圧で反時計方向に円偏波発生器5を
回転するものである。
At this time, the coupler 4a couples with the electric field component parallel to the 9[3 slow phase plane of the circularly polarized wave generator 5, and the coupler 3a couples with the component orthogonal to this electric field component, and these electric fields Coordinate axes parallel to the components are indicated by x'' and Y'' in FIG. 3, respectively. Further, in FIG. 3, the drive device 11 rotates the circularly polarized wave generator 5 clockwise with a negative voltage and counterclockwise with a positive voltage.

つぎに、第4図aは入射パイロット波R,の円形導波管
2中における偏波状態とx″,Y″軸との関係を示す。
Next, FIG. 4a shows the relationship between the polarization state of the incident pilot wave R in the circular waveguide 2 and the x'' and Y'' axes.

また、第4図bはパイロット波Rpの長軸が第4図aに
示すようにX″軸となす角φ(第4図aにおいて時計回
9正)と、結合器3a,4aに結合されるR,の成分R
py′とRp/の位相差(ZRpx″−ZRpy″)と
の関係を示す。すなわち、右旋楕円偏波のパイロット波
RpはX軸に平行な電界成分RpO″のY軸に平行な電
界成分Rpy″に対する位相差(ZRpx″−ZRpy
″)が、φの正のときは90度より大きく、φが負のと
きは90度より小さい。したがつて、φが正のときは第
2の信号処理装置15で負の電圧が発生し、駆動装置1
1によつて円偏波発生器5が、x″軸に平行な90度遅
相面がパイロット波Rpの長軸に一致するまで時計方向
に回転される。
In addition, FIG. 4b shows the angle φ (9 positive clockwise in FIG. 4a) that the long axis of the pilot wave Rp makes with the X'' axis as shown in FIG. component R of R,
The relationship between the phase difference (ZRpx''-ZRpy'') between py' and Rp/ is shown. In other words, the right-handed elliptically polarized pilot wave Rp has a phase difference (ZRpx'' - ZRpy
'') is larger than 90 degrees when φ is positive, and smaller than 90 degrees when φ is negative. Therefore, when φ is positive, a negative voltage is generated in the second signal processing device 15. , drive device 1
1, the circularly polarized wave generator 5 is rotated clockwise until the 90-degree slow phase plane parallel to the x'' axis coincides with the long axis of the pilot wave Rp.

また、0が負のときは円偏波発生器5が反時計方向に回
転され、90は遅相面がR9の長軸に一致したとき第2
の信号処理装置15で発生する電圧がOになるので、円
偏波発生器5は常に、90度遅相面がパイロット波Rp
の長軸に一致するように制御されることになる。したが
つて、上記制御によつて第1図の従来の分波装置で述べ
たように入射波R1は直線偏波R2に変換される。
Further, when 0 is negative, the circularly polarized wave generator 5 is rotated counterclockwise, and 90 is the second rotation when the slow surface coincides with the long axis of R9.
Since the voltage generated in the signal processing device 15 becomes O, the circularly polarized wave generator 5 always has a 90 degree slow phase plane as the pilot wave Rp.
It will be controlled so that it coincides with the long axis of . Therefore, by the above control, the incident wave R1 is converted into a linearly polarized wave R2 as described in the conventional demultiplexing device of FIG.

この発明の偏波面回転器゛6・の駆動方法は第2図の方
法と全く同様であり、直線偏波R2偏波面はX軸に平行
になるよう制御され、分岐導波管8には結合されなくな
る。したがつて左旋円偏波で送信された信号は右旋円偏
波で送信された信号の干渉を受けることなく分岐導波管
8に分波することができる。この発明の分波装置では、
第1図に従来の分波装置のように複雑な演算回路を必要
としないため安価であり、また、第2図の分波装置のよ
うにレベルの著しく異なる信号の位相差を検出する必要
がないという利点がある。
The driving method of the polarization plane rotator 6 of this invention is exactly the same as the method shown in FIG. It will no longer be done. Therefore, the signal transmitted with the left-handed circularly polarized wave can be branched to the branch waveguide 8 without being interfered with by the signal transmitted with the right-handed circularly polarized wave. In the demultiplexing device of this invention,
As shown in Figure 1, it is inexpensive because it does not require a complex arithmetic circuit like the conventional demultiplexer, and it is not necessary to detect the phase difference between signals with significantly different levels as in the demultiplexer shown in Figure 2. There is an advantage that there is no

なお、以上は、結合器だけを円偏波発生器とともに回転
する円形導波管にとりつけているが、信号処理装置に含
まれる検波装置までをとりつけてもよい。
Note that in the above description, only the coupler is attached to the circular waveguide that rotates together with the circularly polarized wave generator, but even the detection device included in the signal processing device may be attached.

また、パイロット波は右旋円偏波で送信されるとしたが
、左旋円偏波であつてもよい。
Further, although the pilot wave is transmitted as a right-handed circularly polarized wave, it may be a left-handed circularly polarized wave.

ただし、このときは、右旋円偏波で送信された信号が左
旋円偏波で送信された信号の干渉を受けずに分波される
。以上のように、この発明に係る分波装置では、簡単な
回路構成によつて円偏波発生器の駆動制御一が容易にで
きるという利点がある。
However, in this case, the signal transmitted with right-handed circular polarization is separated without being interfered with by the signal transmitted with left-handed circular polarization. As described above, the demultiplexing device according to the present invention has the advantage that drive control of the circularly polarized wave generator can be easily performed with a simple circuit configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は従来の分波装置を示す概略構成図、第
3図はこの発明の一実施旋を示す概略構成図、第4図は
A,bはこの発明の分波装置の動作原理を示す図である
。 図中、3a,3b,4a,4bは結合器、5は円偏波発
生器、6は偏波面回転器、7は偏分波器、10はロータ
リジョイント、11,12は駆動装置、13,15は信
号処理装置、14は可撓j性のある線路を示す。
1 and 2 are schematic configuration diagrams showing a conventional demultiplexing device, FIG. 3 is a schematic configuration diagram showing one implementation of the present invention, and FIG. 4 shows A and b of the demultiplexing device of the present invention. It is a diagram showing the principle of operation. In the figure, 3a, 3b, 4a, 4b are couplers, 5 is a circularly polarized wave generator, 6 is a polarization plane rotator, 7 is a polarization splitter, 10 is a rotary joint, 11, 12 is a drive device, 13, 15 is a signal processing device, and 14 is a flexible line.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも一偏波に他の偏波では用いられない周波
数のパイロット波を含む直交2偏波共用の通信に用いら
れる分波装置において、ホーンと;このホーンに第1の
ロータリジョイントを介して縦続的に結合された第1の
円形導波管と;この第1の円形導波管に設けられ、直交
する偏波に対して別々に結合する第1及び第2の結合器
と;上記第1の円形導波管に縦続的に結合され、一方の
偏波の位相を直交する偏波に対して90度変化させる円
偏波発生器と;この円偏波発生器に第2のロータリジョ
イントを介して縦続的に結合され、一方の偏波の位相を
直交する偏波に対して180度変化させる偏波面回転器
と;この偏波面回転器に第3のロータリジョイントを介
して縦続的に結合され、直交する偏波を別々の端子に分
波する偏分波器と;この偏分波器に設けられた一対の分
岐導波管と;この一対の分岐導波管に対応して接続され
、直交する偏波に対して別々に結合する第3及び第7の
結合器と;上記第1及び第2の結合器に結合された上記
パイロット波の信号を処理する第1の信号処理装置と;
上記第3及び第4の結合器に結合された上記パイロット
波の信号を処理する第2の信号処理装置と;上記第1の
信号処理装置の出力によつて上記円偏波発生器を回転駆
動する第1の駆動装置と;上記偏分波器の端子にそれぞ
れ接続された第3及び第4の結合器と;上記第2の信号
処理装置の出力によつて上記偏波面回転器を回転駆動す
る第2の駆動装置と;を備え、円形導波管を上記円偏波
発生器とともに回動するようにしたことを特徴とする分
波装置。
1 In a demultiplexing device used for communications for two orthogonal polarizations, in which at least one polarization includes a pilot wave of a frequency that is not used in the other polarization, a horn; a first circular waveguide that is coupled to the first circular waveguide; first and second couplers that are provided in the first circular waveguide and separately couple orthogonal polarized waves; a circularly polarized wave generator that is cascaded to the circular waveguide and changes the phase of one polarized wave by 90 degrees with respect to the orthogonal polarized wave; a second rotary joint is connected to this circularly polarized wave generator; a polarization plane rotator that changes the phase of one polarized wave by 180 degrees with respect to the orthogonal polarization; and a polarization plane rotator that is cascaded to the polarization plane rotator via a third rotary joint; a polarization demultiplexer that separates orthogonal polarized waves into separate terminals; a pair of branch waveguides provided in this polarization demultiplexer; , third and seventh couplers that separately couple orthogonal polarized waves; a first signal processing device that processes signals of the pilot waves coupled to the first and second couplers; ;
a second signal processing device for processing the pilot wave signals coupled to the third and fourth couplers; rotationally driving the circularly polarized wave generator by the output of the first signal processing device; third and fourth couplers connected to the terminals of the polarization splitter, respectively; and rotationally driving the polarization plane rotator by the output of the second signal processing device; A second driving device for rotating a circular waveguide together with the circularly polarized wave generator.
JP9074877A 1977-07-28 1977-07-28 Demultiplexer Expired JPS6057721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9074877A JPS6057721B2 (en) 1977-07-28 1977-07-28 Demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9074877A JPS6057721B2 (en) 1977-07-28 1977-07-28 Demultiplexer

Publications (2)

Publication Number Publication Date
JPS5425144A JPS5425144A (en) 1979-02-24
JPS6057721B2 true JPS6057721B2 (en) 1985-12-17

Family

ID=14007206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9074877A Expired JPS6057721B2 (en) 1977-07-28 1977-07-28 Demultiplexer

Country Status (1)

Country Link
JP (1) JPS6057721B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330088B2 (en) 2003-04-04 2008-02-12 Mitsubishi Denki Kabushiki Kaisha Waveguide orthomode transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330088B2 (en) 2003-04-04 2008-02-12 Mitsubishi Denki Kabushiki Kaisha Waveguide orthomode transducer

Also Published As

Publication number Publication date
JPS5425144A (en) 1979-02-24

Similar Documents

Publication Publication Date Title
JPS5953738B2 (en) Crossed polarization compensation method
US3742506A (en) Dual frequency dual polarized antenna feed with arbitrary alignment of transmit and receive polarization
US4668052A (en) Optical switch having low cross-talk for wide range of wavelengths
CA1141012A (en) Method an dsystem for tracking and object radiating a circularly or linearly polarized electromagnetic signal
US3214590A (en) Communication receiver utilizing negative feedback polarization modulation of electromagnetic waves and communication system including said receiver
WO2020151546A1 (en) Sending end for decoy state encoding and polarization encoding, encoding method and quantum key distribution system
CN109799445A (en) Millimere-wave band microwave polarization parameter measuring system
JPS6057721B2 (en) Demultiplexer
RU2475863C1 (en) Method of measuring banking angle of aircraft and apparatus for realising said method
US3914764A (en) Apparatus for reducing cross coupling between orthogonal polarizations in satellite communication systems
US3484151A (en) A nonreciprocal optical device employing birefringent elements with rotating birefringent axes
US3656070A (en) Variable axial ratio compensator
US2817812A (en) Non-reciprocal hybrid structures
US3404353A (en) Birefringent apparatus for demodulating phase modulated light
GB932808A (en) Improvements in or relating to electric signal combining arrangements
JPS63229926A (en) Optical communication system
SU813570A1 (en) Laser
JPS6147403B2 (en)
EP0073258B1 (en) Angular error detecting device
US4408207A (en) Angular error detecting device
EP0306654A2 (en) Angular error detecting device
GB2232010A (en) Polarisation controller for an antenna
JPH0354425Y2 (en)
JPS5840380B2 (en) Signature compensation method for cross-polarization interference
JPS5813057B2 (en) Interference wave cancellation circuit