JPS6057651B2 - thermionic emission cathode - Google Patents
thermionic emission cathodeInfo
- Publication number
- JPS6057651B2 JPS6057651B2 JP54105674A JP10567479A JPS6057651B2 JP S6057651 B2 JPS6057651 B2 JP S6057651B2 JP 54105674 A JP54105674 A JP 54105674A JP 10567479 A JP10567479 A JP 10567479A JP S6057651 B2 JPS6057651 B2 JP S6057651B2
- Authority
- JP
- Japan
- Prior art keywords
- tip
- crystal
- cathode
- electron beam
- thermionic emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/15—Cathodes heated directly by an electric current
Landscapes
- Solid Thermionic Cathode (AREA)
Description
【発明の詳細な説明】
この発明は内硼化カルシウム型結晶構造に関するアルカ
リ土類金属又は稀土類金属の内題化物の単結晶をチップ
状の陰極とする熱電子放射陰極に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermionic emission cathode in which a chip-shaped cathode is a single crystal of an alkaline earth metal or rare earth metal having an internal calcium boride type crystal structure.
一般にこの種の硼素化合物(一般式MeB。This type of boron compound (general formula MeB) is generally used.
)は熱的に安定で、その仕事関数はタンングステンより
も約2〜3eV低い上、高温での蒸気圧も低く、従つて
長寿命を維持しうることから電子線分析機器或は電子ビ
ーム露光装置等に使用される高輝度電子銃の陰極材料と
して注目されている。このような陰極材料として好まし
い要件は、仕事関数が小さいことの他に長時間安定した
電子ビームを持続することである。) is thermally stable, its work function is about 2 to 3 eV lower than that of tungsten, and its vapor pressure at high temperatures is also low. Therefore, it can maintain a long life, so it is used in electron beam analysis equipment or electron beam exposure. It is attracting attention as a cathode material for high-intensity electron guns used in equipment. Preferred requirements for such a cathode material are that it maintains a stable electron beam for a long period of time, in addition to having a small work function.
而して、安定した電子ビームを得るのは多結晶体より、
単結晶の方が優れているがその仕事関数]で゛− ゛
−ー01■Rj、一 −L、八 罵 H陰極チップの軸
の好ましい結晶方位は、(1に100>、<110>、
<111>又は(2)<105>、<203>、<31
3>、<212>、<112>、<114>で囲まれる
範囲であることが知られている。Therefore, it is better to obtain a stable electron beam than with polycrystalline materials.
Single crystal is better, but its work function is ゛− ゛
-01 ■Rj, 1 -L, 8 The preferred crystal orientations of the axes of the H cathode tip are (1 to 100>, <110>,
<111> or (2) <105>, <203>, <31
3>, <212>, <112>, and <114>.
そして従来の陰極は、単結晶陰極チップの軸を特定の結
晶方位に一致させた後、その一端を600〜900の先
端角度を有する円錐状に研摩し、更にその先端を曲率半
径が1〜500μmRである球面に研摩することによつ
て製作されている。In conventional cathodes, after aligning the axis of a single crystal cathode tip with a specific crystal orientation, one end of the tip is polished into a conical shape with a tip angle of 600 to 900, and the tip is further polished with a radius of curvature of 1 to 500 μm. It is manufactured by polishing it into a spherical surface.
このようにして製作された従来のLaB6単結晶陰極チ
ップの一例の先端部の形態は、第1図のようであつて、
このチップ軸方位は、単結晶の<210>方位に一致さ
せてあり、先端角度は600、先端曲率半径は10μm
である。The shape of the tip of an example of the conventional LaB6 single crystal cathode chip manufactured in this way is as shown in FIG.
The tip axis direction is made to match the <210> direction of the single crystal, the tip angle is 600, and the tip radius of curvature is 10 μm.
It is.
この単結晶陰極チップを1550℃に加熱し、加速電圧
をチップの軸方向に印加した時に得られる電子ビームの
クロスオーバー像は、第2図に示すように、中心に1つ
、そしてその外周部に5つの明るいスポットが分布した
ものとなる。When this single-crystal cathode chip is heated to 1550°C and an accelerating voltage is applied in the axial direction of the chip, the crossover image of the electron beam obtained is one in the center and one on the outer periphery, as shown in Figure 2. There are five bright spots distributed in the area.
クロスオーバーにおける電子ビームの特性(強度分布な
ど)は最終的に使用される電子ビームの特性を決定する
重要な要因であるが、電子顕微鏡や電子ビーム露光機な
どでは電子ビームが単一スポットで、しかもガウス分布
型の強度分布を有することが必要であり、多重スポット
のあられれる上例のような電子ビームは適当でない。こ
れを解決するため、従来はバイアス電圧を更に高くして
、多重スポットを1つのスポットに絞り込んで使用して
いたが、この場合には得られる電子ビーム(見掛上の単
一スポット)の絶対強度が多重スポットの場合よりも小
さくなり、輝度が低下する。このような問題は、上例の
く210〉方位の場合だけではなく他の方位でも生じ、
〈100〉,〈110〉,〈111〉方位ではそれぞれ
4つ、2つ、3つの多重スポットの電子ビームのクロス
オーバーが得られる。The characteristics of the electron beam at crossover (intensity distribution, etc.) are important factors that determine the characteristics of the electron beam that is ultimately used. However, in electron microscopes and electron beam exposure machines, the electron beam is a single spot Furthermore, it is necessary to have a Gaussian intensity distribution, and the electron beam as in the above example, which has multiple spots, is not suitable. In order to solve this problem, conventionally the bias voltage was further increased and the multiple spots were narrowed down to a single spot. The intensity is lower than in the case of multiple spots, and the brightness is reduced. Such problems occur not only in the case of the 210〉 direction as in the above example, but also in other directions,
In the <100>, <110>, and <111> directions, electron beam crossovers of four, two, and three multiple spots are obtained, respectively.
この場合にも、バイアス電圧を更に高くして見掛上単一
スポットの電子ビームとすると、勿論その輝度は低下す
る。本発明者等の実験によれば、熱電子放射陰極一ウエ
ーネルト電極一陽極の基本構成からなる所謂三極電子銃
では、加速電圧によつて引き出される電子ビームは、単
に陰極先端の球状部分からだけではなく、特に円錐状部
分(以下、“゜コーン゛という)からの放射電子もまた
寄与していることが見出された。In this case as well, if the bias voltage is further increased to form an apparently single-spot electron beam, the brightness will of course decrease. According to experiments conducted by the present inventors, in a so-called triode electron gun consisting of a thermionic emitting cathode, a Wehnelt electrode, and an anode, the electron beam extracted by the accelerating voltage is generated only from the spherical part at the tip of the cathode. Instead, it was found that emitted electrons, especially from the conical part (hereinafter referred to as "cone"), also contributed.
従つてMe八単結晶熱電子放射陰極においては、高輝度
の結晶面、即ち低仕事関数の結晶面がコーン上にあるこ
とが高輝度電子ビームを得るために必要である。また、
単一スポットの電子ビームを得るためにはコーン上、及
び先端球状部に分布する各結晶面の仕事関数はほぼ同等
のものでなければならず、仕事関数に差がある場合には
電子ビームの強度分布はガウス分布からはずれ、多重ス
ポットの電子ビームが生ずる。本発明者等のLaBe,
単結晶について各結晶面の.仕事関数の測定結果によれ
ば、〔210〕ステレオ投影図上において〔210〕結
晶方位を中心とする〔231〕,〔241〕,〔310
,1,〔320〕と等価の各結晶方位で囲まれた範囲内
の結晶方位に対応する各結晶面の仕事関数は2.1〜2
.2eVと低!く、かつ各結晶間の仕事関数の差も極め
て小さい。Therefore, in the Me octa-crystal thermionic emission cathode, it is necessary that a high-brightness crystal plane, that is, a low work function crystal plane, be on the cone in order to obtain a high-brightness electron beam. Also,
In order to obtain a single spot electron beam, the work functions of each crystal plane distributed on the cone and the spherical tip must be approximately the same, and if there is a difference in work function, the electron beam The intensity distribution deviates from a Gaussian distribution, resulting in a multi-spot electron beam. The inventors' LaBe,
of each crystal plane for a single crystal. According to the measurement results of the work function, [231], [241], [310] centered on the [210] crystal orientation on the [210] stereo projection diagram
, 1, [320] The work function of each crystal plane corresponding to the crystal orientation within the range surrounded by the equivalent crystal orientations is 2.1 to 2.
.. Low at 2eV! Moreover, the difference in work function between each crystal is also extremely small.
また、同時に測定した結果によれば、(100),(1
10),(111),結晶面の仕事関数はそれぞれ2.
4eV,2.5eV,3.3eVと大きい値であつた。
第3図は陰極チップ先端角度αと熱電子放射可能な結晶
面との関係を示したもので、陰極チップの方位を〔Hk
l〕とした場合には、〔Hkl)ステレオ投影図上で、
中心方位から900−α/2の角度範囲(図中斜線部)
にある結晶方位に対応する結晶面が熱電子放射をおこす
。Also, according to the results of simultaneous measurements, (100), (1
10), (111), the work functions of the crystal planes are 2.
The values were large, 4eV, 2.5eV, and 3.3eV.
Figure 3 shows the relationship between the cathode tip tip angle α and the crystal plane capable of emitting thermionic electrons.
l], on the [Hkl] stereo projection diagram,
Angular range of 900-α/2 from the center direction (shaded area in the figure)
The crystal plane corresponding to the crystal orientation in , causes thermionic emission.
そして中心方位から90が−α/2の円上にある結晶方
位に対応する結晶面が陰極チップのコーン上に分布する
結晶面であり、その円の内部にある結晶方位に対応する
結晶面が陰極チップ先端の球面上に分布する結晶面であ
る。(なお、第3図は一般的な説明のためのものでしか
ない)第4図はMeB6の結晶構造である立方晶系結晶
”における〔012〕,ステレオ投影図である。The crystal planes corresponding to the crystal orientations lying on the circle with -α/2 at 90 from the center direction are the crystal planes distributed on the cone of the cathode tip, and the crystal planes corresponding to the crystal orientations inside the circle are the crystal planes distributed on the cone of the cathode tip. These are crystal planes distributed on the spherical surface of the tip of the cathode tip. (It should be noted that FIG. 3 is for general explanation only.) FIG. 4 is a stereo projection view of [012] in "cubic crystal" which is the crystal structure of MeB6.
仕事関数の値が特に小さくしかもほぼ一様な領域、即ち
〔231〕,〔241〕,〔310〕,〔320〕と等
価の方位で囲まれる結晶方位の領域を斜線で示してある
。この図から明らかなように、MeB6単結晶チップを
用いる熱電子放射陰極において、チップの軸を〈210
〉方位、先端角度を160以上とすれば、〔012〕ス
テレオ投影図において中心方位〔012〕から900−
160に/2=100の範囲内の結晶方位に対応する結
晶面が電子を放射することになるが、この範囲は上述し
た仕事関数が小さく、しかも均一な領域、即ち〔231
〕,〔240,〔310〕,〔320〕と等価の方位で
囲まれる領域内にあるので、高輝度で単一スポットの電
子ビームが得られる。これに反し、〈210〉方位で先
端角度を60スとした場合にはチップ先端球面上に4ケ
所、コーン上に5ケ所、それぞれ仕事関数の小さく均一
な領域が分布するため、第5図に示すような多重スポッ
トの電子ビームが生ずるから、この状態でバイアス電圧
を高くしていくと或る範囲までは多重スポットが接近す
るにしたがつて、輝度も増大するが単一スポットを形成
させるために更にバイアス電圧を高めると輝度が急減し
て却つて目的を達しない結果になる。A region where the value of the work function is particularly small and almost uniform, that is, a region of crystal orientation surrounded by orientations equivalent to [231], [241], [310], and [320] is indicated by diagonal lines. As is clear from this figure, in a thermionic emission cathode using a MeB6 single crystal chip, the axis of the chip is set to <210
〉If the azimuth and tip angle are 160 or more, 900 - from the center azimuth [012] in the [012] stereo projection view.
Crystal planes corresponding to crystal orientations within the range of 160/2=100 will emit electrons, but this range is a region where the above-mentioned work function is small and uniform, that is, [231
], [240, [310], and [320], so a high-intensity, single-spot electron beam can be obtained. On the other hand, when the tip angle is set to 60 degrees in the <210> direction, there are four uniform regions on the spherical surface of the tip tip and five locations on the cone, each with a small work function. Since an electron beam with multiple spots as shown in the figure is generated, if the bias voltage is increased in this state, the brightness will increase as the multiple spots approach each other up to a certain range, but in order to form a single spot, If the bias voltage is further increased, the brightness will decrease sharply and the objective will not be achieved.
本発明は、MeB6単結晶の陰極チップの軸を〈210
〉方位と56以内の範囲で一致させ、かつチップ先端の
開き角度(頂角)を160せ以上とすることによりクロ
スオーバーが多重スポットとならず、低バイアス電圧で
も単一スポットで、しかも従来のMeB6熱電子陰極よ
りも高輝度の電子ビームが得られる熱陰極を提供するも
のである。In the present invention, the axis of the MeB6 single crystal cathode tip is
>By matching the azimuth within a range of 56 degrees and by setting the opening angle (apex angle) of the tip tip to 160 degrees or more, the crossover does not result in multiple spots, and even at low bias voltage, it is a single spot, and moreover, compared to conventional The present invention provides a hot cathode that can provide an electron beam with higher brightness than a MeB6 thermionic cathode.
本発明におけるMeB6単結晶は、フローティング・ゾ
ーン法(帯溶融法)、フラックス法、アーク・メルト法
等の手段によつて育成されるが、どのような手段で育成
されたものであつても、純度が高い単結晶であればよい
。また陰極は、陰極材料(Me八単結晶)を加熱して熱
電子放射を起こさせ、放射された熱電子を加速電界によ
つて加速し、引き出す、所謂0熱電子放射陰極ョである
。以下、本発明を実施例によつて詳しく説明する。実施
例1
フローティング●ゾーン法によつてLlB6単結晶を育
成し、く210〉を軸方位とする単結晶から先端角度1
601のチップを得た。The MeB6 single crystal in the present invention is grown by means such as a floating zone method (zonal melting method), a flux method, an arc melt method, etc., but no matter what method it is grown, Any single crystal with high purity may be used. The cathode is a so-called zero thermionic emission cathode in which the cathode material (Me single crystal) is heated to cause thermionic emission, and the emitted thermionic electrons are accelerated and extracted by an accelerating electric field. Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 A LlB6 single crystal was grown by the floating zone method, and the tip angle was 1 from the single crystal with the axial direction of 210〉.
I got 601 chips.
また比較のために先端角度601のチップも作製した。
これらのLlB6単結晶チップを用いた熱電子放射陰極
を、チップ〜ウエーネルト間0.2Tn!n陰極温度1
550、加速電圧20KVで作動させ、バイアス電圧と
電子ビームの輝度、及びクロスオーバー像を測定した。
第5図はバイアス電圧と輝度の関係を示したものである
。For comparison, a tip with a tip angle of 601 was also fabricated.
A thermionic emission cathode using these LlB6 single crystal chips has a distance between the chip and Wehnelt of 0.2Tn! n cathode temperature 1
550, and was operated at an acceleration voltage of 20 KV, and the bias voltage, electron beam brightness, and crossover image were measured.
FIG. 5 shows the relationship between bias voltage and brightness.
先端角度1600のものは、常に単一円形スポットのク
ロスオーバーを生じ、しかもその最高輝度は3×1Cf
3Amp/D.strと高い値を示した。これに対し先
端角度600のものは、最高輝度を与えるバイアス電圧
でも6つの多重スポットのクロスオーバーを生じ、単一
スポットにするにはバイアス電圧をさらに高くする必要
があつた。しかもその時の輝度は4×1CPAmp/C
rl・Strと低いものであつた。実施例2
フローティング・ゾーン法によつて育成したLlB6単
結晶から先端角度1600で、チップの軸が〈210〉
方位からそれぞれ56,100ずれた陰極チップを作製
し、実施例1と同様の実験を行つた。The one with a tip angle of 1600 always produces a single circular spot crossover, and its maximum brightness is 3×1Cf.
3Amp/D. It showed a high value of str. On the other hand, with the tip angle of 600, crossover of six multiple spots occurred even at a bias voltage that gave the highest brightness, and it was necessary to increase the bias voltage even higher to achieve a single spot. Moreover, the brightness at that time was 4×1CPAmp/C
It was as low as rl/Str. Example 2 A tip angle of 1600 and a tip axis of <210> from an LlB6 single crystal grown by the floating zone method.
Cathode chips each deviated from the orientation by 56 and 100 degrees were produced, and the same experiment as in Example 1 was conducted.
〈210〉方位から51ずれたチップは円形の単一スポ
ットのクロスオーバーを示し、最高輝度も2.8×1C
f′Amp/Clt−Strと〈210〉方位に一致し
たチップと同等の性能を示した。これに対し、〈210
〉方位から10をずれたチップは、単一ではあるが半円
形のクロスオーバーを示し、しかも最高輝度が9×旬E
mp/Cll・s囮こ低下した。これは第4図のステレ
オ投影図からも容易に理解できるように、チップの熱電
子放出領域に仕事関数の高い面が一部存在するからであ
る。実施例3ceB6単結晶から軸方位く210〉、先
端角度1706のチップを得、熱電子放射陰極として、
実施例1と同一条件で輝度を測定した。The chip shifted by 51 points from the <210> orientation shows a circular single spot crossover, and the maximum brightness is also 2.8×1C.
It showed the same performance as the chip that matched f'Amp/Clt-Str with the <210> orientation. On the other hand, <210
〉A chip that is deviated from the azimuth by 10 shows a single but semicircular crossover, and the maximum brightness is 9×ShunE
mp/Cll・s decoy decreased. This is because, as can be easily understood from the stereo projection diagram of FIG. 4, there are some surfaces with a high work function in the thermionic emission region of the chip. Example 3 A chip with an axial orientation of 210〉 and a tip angle of 1706 was obtained from a ceB6 single crystal, and was used as a thermionic emission cathode.
Brightness was measured under the same conditions as in Example 1.
最高輝度は2.9×103Amp/Clt−StI′で
あつた。実施例4実施例1で用いた2種類の熱電子放射
陰極を走査型電子顕微鏡で作動させた。The maximum brightness was 2.9 x 103 Amp/Clt-StI'. Example 4 The two types of thermionic emitting cathodes used in Example 1 were operated in a scanning electron microscope.
先端角度600のものは良好な画像を得るためには16
000Cに加熱することが必要で、寿命は300時間で
あつた。これに対し、先端角度1600のものは153
0℃の低温でも十分に良好な画像が得られ、低温で作動
しているためにLlB6の蒸発が少く、100C@間以
上の寿命を示した。上述1.,たことから明らかなよう
に本発明陰極チップを採用することにより、電子ビーム
露光においては低域度・高分解能のレジスト材の使用を
可能にし、超LSIの微細パターンの線巾を更に細くし
、集積度を向上させ、また描画の高速度化を可能にする
。For those with a tip angle of 600, it is necessary to obtain a good image with a tip angle of 16
It required heating to 000C and the lifespan was 300 hours. On the other hand, the tip angle of 1600 is 153
Sufficiently good images were obtained even at a low temperature of 0°C, and because it was operated at a low temperature, there was little evaporation of LlB6, and it showed a lifespan of 100°C or more. Above 1. As is clear from the above, by adopting the cathode chip of the present invention, it is possible to use a resist material with low frequency and high resolution in electron beam exposure, and the line width of the fine pattern of VLSI can be further narrowed. , which improves the degree of integration and enables faster drawing speeds.
また従来よりも低い陰極温度で高性能の電子ビームを得
ることができるので、陰極材料(MeB6単結晶)の蒸
発が少くなり、陰極の長寿命化を可能にするものである
。Furthermore, since a high-performance electron beam can be obtained at a lower cathode temperature than in the past, evaporation of the cathode material (MeB6 single crystal) is reduced, making it possible to extend the life of the cathode.
第1図は従来のLaB6単結晶熱電子放射陰極チップの
先端部分の説明図、第2図は従来のく210〉LaB6
単結晶チップから得られるクロスオーバーを示す図、第
3図イ,口は単結晶陰極チップの先端角度と熱電子放射
可能な結晶面の関係を示す〔Hkl)ステレオ投影図、
第4図は立方晶系結晶の〔012〕ステレオ投影図、第
5図はLllB6単結晶熱電子放射陰極の輝度の大きさ
を示す図である。Figure 1 is an explanatory diagram of the tip of a conventional LaB6 single crystal thermionic emission cathode chip, and Figure 2 is an explanatory diagram of the tip of a conventional LaB6 single crystal thermionic emission cathode chip.
A diagram showing the crossover obtained from a single-crystal chip;
FIG. 4 is a [012] stereo projection diagram of a cubic crystal, and FIG. 5 is a diagram showing the brightness of an LllB6 single crystal thermionic emission cathode.
Claims (1)
て、六硼化カルシウム型結晶構造に属する単結晶を陰極
チップとする熱電子放射陰極において、該単結晶チップ
の軸<210>結晶方位と50以内の角度範囲にあり、
かつ該単結晶チップの先端角度が160゜以上であるこ
とを特徴とする熱電子放射陰極。1. In a thermionic emission cathode whose cathode tip is a single crystal of an alkaline earth metal or rare earth metal hexaboride that belongs to the calcium hexaboride type crystal structure, the axis <210> crystal orientation of the single crystal tip and within the angle range of 50,
and a thermionic emission cathode characterized in that the tip angle of the single crystal tip is 160° or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54105674A JPS6057651B2 (en) | 1979-08-20 | 1979-08-20 | thermionic emission cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54105674A JPS6057651B2 (en) | 1979-08-20 | 1979-08-20 | thermionic emission cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5630231A JPS5630231A (en) | 1981-03-26 |
JPS6057651B2 true JPS6057651B2 (en) | 1985-12-16 |
Family
ID=14413973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54105674A Expired JPS6057651B2 (en) | 1979-08-20 | 1979-08-20 | thermionic emission cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6057651B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6221963A (en) * | 1985-07-22 | 1987-01-30 | 佐藤工業株式会社 | Method and jig for fixing lower steel bar of reinforced concrete beam |
CN109314026A (en) * | 2016-06-30 | 2019-02-05 | 科磊股份有限公司 | High brightness boracic electron beam emitter for vacuum environment |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5679828A (en) * | 1979-12-05 | 1981-06-30 | Toshiba Corp | Electron gun |
US4486684A (en) * | 1981-05-26 | 1984-12-04 | International Business Machines Corporation | Single crystal lanthanum hexaboride electron beam emitter having high brightness |
-
1979
- 1979-08-20 JP JP54105674A patent/JPS6057651B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6221963A (en) * | 1985-07-22 | 1987-01-30 | 佐藤工業株式会社 | Method and jig for fixing lower steel bar of reinforced concrete beam |
CN109314026A (en) * | 2016-06-30 | 2019-02-05 | 科磊股份有限公司 | High brightness boracic electron beam emitter for vacuum environment |
Also Published As
Publication number | Publication date |
---|---|
JPS5630231A (en) | 1981-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6903499B2 (en) | Electron gun and a method for using the same | |
JP2000173900A (en) | Electron beam emitting device and electron beam exposure system equipped therewith | |
JP2002523860A (en) | Cathode structure having getter material and diamond film and method of manufacturing the same | |
US6091187A (en) | High emittance electron source having high illumination uniformity | |
US20090023355A1 (en) | Electron source manufacturing method | |
JPS6057651B2 (en) | thermionic emission cathode | |
JPS6315693B2 (en) | ||
US4798957A (en) | Electron beam apparatus comprising an anode which is included in the cathode/Wehnelt unit | |
JPH1074446A (en) | Electron emitting cathode | |
US5864199A (en) | Electron beam emitting tungsten filament | |
US4871911A (en) | Electron beam apparatus comprising a semiconductor electron emitter | |
US4975617A (en) | Electric discharge tube | |
JPH0130247B2 (en) | ||
JPH0131256B2 (en) | ||
JPS6346942B2 (en) | ||
JPS6017832A (en) | Single crystal lanthanum hexaboride electron gun | |
JPH0128450B2 (en) | ||
GB2090698A (en) | Electron gun for high brightness | |
US2987641A (en) | Irradiation system for an electron beam apparatus with cold cathode | |
JPS6269424A (en) | Lanthanum hexabromide hot cathode | |
JPH03114215A (en) | Electron beam exposing method | |
KR20080100158A (en) | Electron gun, electron beam exposure apparatus and exposure method | |
US3521113A (en) | Electron beam apparatus incorporating a hollow pyramidal indirectly heated cathode member | |
US5864201A (en) | Electron-optical device having separate elongate electron-emitting regions | |
JPS6129093B2 (en) |