JPS6057515B2 - Production method of potassium bicarbonate - Google Patents

Production method of potassium bicarbonate

Info

Publication number
JPS6057515B2
JPS6057515B2 JP54036196A JP3619679A JPS6057515B2 JP S6057515 B2 JPS6057515 B2 JP S6057515B2 JP 54036196 A JP54036196 A JP 54036196A JP 3619679 A JP3619679 A JP 3619679A JP S6057515 B2 JPS6057515 B2 JP S6057515B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
producing
potassium
potassium bicarbonate
potassium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54036196A
Other languages
Japanese (ja)
Other versions
JPS55128590A (en
Inventor
利昌 岡崎
厚弐 伊藤
重康 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP54036196A priority Critical patent/JPS6057515B2/en
Publication of JPS55128590A publication Critical patent/JPS55128590A/en
Publication of JPS6057515B2 publication Critical patent/JPS6057515B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は重炭酸カリの製造法に係り、特に陽イオン交換
膜を用いた電解槽により、塩化カリ水溶液を電解し、陽
極室で塩素を発生させ、陰極室で水素の発生と水酸化カ
リを発生させる電解法を利用して重炭酸カリを製造する
方法に関する。
Detailed Description of the Invention The present invention relates to a method for producing potassium bicarbonate, and in particular electrolyzes an aqueous solution of potassium chloride in an electrolytic cell using a cation exchange membrane, generates chlorine in the anode chamber, and generates hydrogen in the cathode chamber. This invention relates to a method for producing potassium bicarbonate using an electrolysis method that generates potassium hydroxide.

重炭酸カリの製造は各種の電解法で得た苛性カリに炭酸
ガスを反応させて大部分を重炭酸カリとし、又残りを炭
酸カリとなし、これを冷却して重炭酸カリを沈殿分離す
ることによつて得られ、その分離母液は濃縮され、再び
炭酸ガス吸収工程へ戻される。
Potassium bicarbonate is produced by reacting caustic potassium obtained by various electrolytic methods with carbon dioxide gas to convert most of it into potassium bicarbonate, and the remainder into potassium carbonate, which is then cooled to precipitate and separate the potassium bicarbonate. The separated mother liquor is concentrated and returned to the carbon dioxide absorption process.

この分離母液の濃縮は原料の苛性カリが持ち込む水分の
蒸発を主目的として実施されているが、かゝる濃縮工程
の付加は技術的にも又経済的にも有利とは官えない。
Concentration of the separated mother liquor is carried out primarily for the purpose of evaporating the moisture brought in by the caustic potassium raw material, but the addition of such a concentration step is not considered to be technically or economically advantageous.

一方陽イオン交換膜を使用した電解槽内で炭酸カリなど
の炭酸塩を直接製造する方法も以前より提案されており
、この方法の1側として上記の如き電解槽内で塩化カリ
水溶液を電解し陰極室内で生成する水酸化カリ水溶液中
に炭酸ガスを吹き込んで実質的にすべてを炭酸カリとし
得る方法を挙げることが出来る。
On the other hand, a method of directly producing carbonates such as potassium carbonate in an electrolytic cell using a cation exchange membrane has been proposed for some time, and one side of this method is to electrolyze an aqueous solution of potassium chloride in the electrolytic cell as described above. One example is a method in which carbon dioxide gas is blown into the aqueous potassium hydroxide solution produced in the cathode chamber to convert substantially all of the solution into potassium carbonate.

この方法は炭酸カリを得ることは出来ても重炭酸カリを
製造するには全く適当ではない。それは陰極室で生成し
た苛性カリに炭酸ガスを吹き込んで重炭酸カリを得んと
しても炭酸ガスの分圧を高くしないと重炭酸カリまで反
応・が十分に進まず一般の電解槽では圧力を高くするこ
とが難しいため、未反応の炭酸ガスが増し能率的な方法
ではないのである。通常、重炭酸カリの製造は苛性カリ
を原料として行なわれる為、多くの場合、塩化カリ水溶
液の電解で得た苛性カリの一部を重炭酸カリ製造用とし
て使用に供している。
Although this method can obtain potassium carbonate, it is not suitable at all for producing potassium bicarbonate. Even if you try to obtain potassium bicarbonate by blowing carbon dioxide gas into the caustic potassium produced in the cathode chamber, the reaction to reach potassium bicarbonate will not proceed sufficiently unless the partial pressure of carbon dioxide gas is increased, and in a general electrolytic cell, the pressure will be high. Because it is difficult to do this, unreacted carbon dioxide gas increases, making it not an efficient method. Normally, potassium bicarbonate is produced using caustic potassium as a raw material, so in many cases, a portion of the caustic potassium obtained by electrolysis of an aqueous potassium chloride solution is used for producing potassium bicarbonate.

本発明は重炭酸カリ製造における上記の欠点を改良し、
且つ塩化カリ水溶液電解による苛性カリ製造プロセス中
に重炭酸カリ製造を組込んで有利に重炭酸カリを得んと
するものであり、その骨子とするところは、陽イオン交
換膜で仕切つて陽極室と陰極室とを形成し、該陽極室に
精製塩化カリ水溶液を供給しつ)電解しうる単位電解槽
の多数て構成された電解槽群を使用し、その一部を炭酸
カリ製造用電解槽に、又残部を常法の電解による苛性カ
リ製造用電解槽となし、上記炭酸カリ製造用電解槽の陰
極室から抜出される炭酸カリを主成分とする液を炭酸ガ
スと反応させて重炭酸カリを得ることからなり、上記生
成重炭酸カリを分離した後の分離母液を前記炭酸カリ製
造用電解槽の陰極室に供給し、その際電解槽群の陰極室
より排出された水素ガス、陽極室より排出された塩素ガ
スおよび返送塩水の内の少くとも1種を用いて、前記炭
酸カリ製造用電解槽の少なくとも一方の極室供給液と熱
交換させることを特徴とする重炭酸カリの製造法てある
The present invention improves the above-mentioned drawbacks in the production of potassium bicarbonate,
In addition, the aim is to advantageously obtain potassium bicarbonate by incorporating potassium bicarbonate production into the caustic potash production process using potassium chloride aqueous solution electrolysis. An electrolytic cell group consisting of a large number of unit electrolytic cells that can perform electrolysis (forming a cathode chamber and supplying purified potassium chloride aqueous solution to the anode chamber) is used, and some of them are used as an electrolytic cell for producing potassium carbonate. In addition, the remaining part is used as an electrolytic cell for producing caustic potash by conventional electrolysis, and a liquid containing potassium carbonate as a main component extracted from the cathode chamber of the electrolytic cell for producing potassium carbonate is reacted with carbon dioxide gas to produce potassium bicarbonate. The separated mother liquor after separating the produced potassium bicarbonate is supplied to the cathode chamber of the electrolytic cell for producing potassium carbonate, and at this time, the hydrogen gas discharged from the cathode chamber of the electrolytic cell group and the anode chamber are A method for producing potassium bicarbonate, characterized in that at least one of the discharged chlorine gas and the returned salt water is used to exchange heat with the liquid supplied to at least one electrode chamber of the electrolytic cell for producing potassium carbonate. be.

以上本発明方法の一態様について図面を引用しつ)説明
する。
One embodiment of the method of the present invention will be described above with reference to the drawings.

第1図は、本発明の重炭酸カリ製造例を示す工程図であ
り、1,1″は夫々陽イオン交換膜C,C″を使用した
電解槽で、該陽イオン交換膜を介して陽極室A,A″と
陰極B,B″とに分けられている。
FIG. 1 is a process diagram showing an example of producing potassium bicarbonate according to the present invention, and 1 and 1'' are electrolytic cells using cation exchange membranes C and C'', respectively. It is divided into chambers A, A'' and cathodes B, B''.

これら電解槽の内、1は重炭酸カリの製造を目.的とし
てその原料となる炭酸カリ製造のための電解槽であり、
1″は苛性カリ製造のための電解槽である。
Among these electrolytic cells, 1 is intended for the production of potassium bicarbonate. It is an electrolytic cell for producing potassium carbonate, which is the raw material for the production of potassium carbonate.
1'' is an electrolytic cell for producing caustic potash.

これら電町槽1,1″にはいずれも塩水精製系よりの精
製塩化カリ水溶液が供給されるが、この.精製塩化カリ
水溶液の内、電解槽1に供給される液は、各電解槽1,
1″の陽極室より出て経路10を経た返送塩水と熱交換
器9で熱交換されて、供給される。
A purified potassium chloride aqueous solution from the salt water purification system is supplied to these Denmachi tanks 1 and 1''. ,
The salt water is heat exchanged with the return salt water which exits from the anode chamber 1'' and passes through the path 10 in the heat exchanger 9, and then is supplied.

一方返送塩水はこの熱交換器9を経た後脱塩素・工程2
で脱塩素し、次いで原塩送給経路4よりの原塩を溶解す
る原塩溶解工程3に送られて、溶解塩水4と混合され、
塩水の沈澱工程5に送られる。
On the other hand, the returned salt water passes through this heat exchanger 9 and then undergoes dechlorination in step 2.
The raw salt is dechlorinated in the raw salt feed route 4, and then sent to the raw salt dissolution step 3 for dissolving the raw salt from the raw salt supply route 4, where it is mixed with the dissolved salt water 4,
Sent to brine precipitation step 5.

その際この沈澱工程の入口で経路6よりリン酸又はその
塩を添加する。そして沈澱工程5では、通常使用されて
いる沈澱生成剤(例えば炭酸カリ、苛性カリ、その他の
沈澱促進剤)を加えて沈澱物を除去し、沖過工程7でカ
ルシウムおよびマグネシウム成分を除去する。
At this time, phosphoric acid or a salt thereof is added through route 6 at the entrance of this precipitation step. In the precipitation step 5, a commonly used precipitation agent (for example, potassium carbonate, caustic potash, or other precipitation accelerator) is added to remove the precipitate, and in the filtering step 7, calcium and magnesium components are removed.

次いで液のPHを7〜11の範囲に調整し、更にキレー
トイオン交換樹脂塔8を通過させてこれらの不純物を殆
んど完全に除去した後、前記熱交換器9において返送塩
水と熱交換して液温を上昇せlしめて電解槽に供給され
て電解に供され、かくて塩水精製系が構成される。この
場合経路6において添加するリン酸又はその塩はろ過工
程後で最大許容値が5WL9/e1理想的には零となる
ように添加することにより、前記一した不純物の除去効
果と相俟つて電解操業における摺電圧や電流効率の変動
を防止し、長期に亘る安定運転が可能である。
Next, the pH of the liquid is adjusted to a range of 7 to 11, and the liquid is further passed through a chelate ion exchange resin tower 8 to almost completely remove these impurities, and then heat exchanged with the returned brine in the heat exchanger 9. The liquid is raised in temperature and then supplied to an electrolytic cell where it is subjected to electrolysis, thus forming a salt water purification system. In this case, the phosphoric acid or its salt added in route 6 is added so that the maximum allowable value is 5WL9/e1, ideally zero, after the filtration process, so that electrolysis can be achieved in combination with the impurity removal effect mentioned above. It prevents fluctuations in sliding voltage and current efficiency during operation, allowing stable operation over a long period of time.

さて一方、電解槽1の陰極室Bには塩化カリ水溶液の電
解によつて苛性カリが生成するが、これ”が後記する陰
極室供給液と反応して炭酸カリを主成分とする液を生成
する。
On the other hand, in the cathode chamber B of the electrolytic cell 1, caustic potassium is produced by electrolysis of the potassium chloride aqueous solution, and this reacts with the cathode chamber supply liquid, which will be described later, to produce a solution whose main component is potassium carbonate. .

この陰極室生成液は電解槽外に取出されて経路11を経
て重炭酸カリ生成工程14に導入され、経路15よりの
炭酸ガスで重炭酸カリとなし、これを冷却して溶解度の
差により重炭酸カリを沈澱させ、沖過工程16でこの沈
澱物を分離して経路17より目的製品として取出す。又
、泊過で分離された母液は、経路18を経て熱交換器1
9に至り、各陰極室B,B″より発生し、経路12によ
り熱交換器19に導入される水素ガスとの熱交換により
昇温させた後、経路20により電解槽1の陰極室Bに供
給される。
This cathode chamber produced solution is taken out of the electrolytic cell and introduced into the potassium bicarbonate production step 14 via route 11, where it is converted into potassium bicarbonate with carbon dioxide gas from route 15, which is then cooled and becomes heavier due to the difference in solubility. Potassium carbonate is precipitated, and this precipitate is separated in a filtering step 16 and taken out as a target product through a route 17. In addition, the mother liquor separated by overnight passing passes through a path 18 to a heat exchanger 1.
9, the temperature is raised by heat exchange with the hydrogen gas generated from each cathode chamber B, B'' and introduced into the heat exchanger 19 through path 12, and then into cathode chamber B of electrolytic cell 1 through path 20. Supplied.

一方、電解槽1″は既述の通り、陽極室に精製塩化カリ
水溶液を供給し、陰極室には経路21より水又は希薄苛
性カリ液を供給して常法によるイオン交換膜電解を行な
い陰極室B″で生成した苛性カリは製品として取出され
る。
On the other hand, as described above, in the electrolytic cell 1'', purified potassium chloride aqueous solution is supplied to the anode chamber, and water or dilute caustic potassium solution is supplied to the cathode chamber from route 21, and ion-exchange membrane electrolysis is carried out by a conventional method. The caustic potash produced in B'' is taken out as a product.

この様に本発明方法は、少くとも1槽の炭酸カリ製造用
電解槽と、少くとも1槽の苛性カリ製造用電解槽とより
なる電解槽群を組合せて苛性カリの製造に併行して重炭
酸カリを得んとするものであり、その際各電解槽より発
生する液およびガスの保有熱を電解槽に供給する液と熱
交換させて効果的な操業を行なわんとすものである。
As described above, the method of the present invention combines an electrolytic cell group consisting of at least one electrolytic cell for producing potassium carbonate and at least one electrolytic cell for producing caustic potash to simultaneously produce potassium bicarbonate. At this time, the heat retained in the liquid and gas generated from each electrolytic cell is exchanged with the liquid supplied to the electrolytic cell to achieve effective operation.

そして上記の通り陽イオン交換膜電解槽1の陰極室で得
た炭酸カリを主成分とする液を重炭酸カリ製造工程に送
り、こ)で炭酸ガスとの反応で大部分を重炭酸カリに変
え、これを冷却して溶解度の差により重炭酸カリを沈澱
分離し、母液を電解工程に再び戻すことにより濃縮工程
は殆んど不要となる。
Then, as mentioned above, the solution containing potassium carbonate as the main component obtained in the cathode chamber of the cation exchange membrane electrolytic cell 1 is sent to the potassium bicarbonate production process, and in this step, most of it is converted to potassium bicarbonate by reaction with carbon dioxide gas. The concentration step is almost unnecessary by converting the solution, cooling it, precipitating and separating potassium bicarbonate due to the difference in solubility, and returning the mother liquor to the electrolysis step.

この場合、陰極室生成液は、その一部を重炭酸カリ製造
に用い、残りの液は熱交換器19を出た後の昇温された
分離母液と経路20において混合し、陰極室に循環供給
してもよい。重炭酸カリ製造のこれらの構成は、陰極室
生成液が陰極室供給液として実質的に循環使用される結
果、系外から水の入り込む余地が殆んどなく、プロセス
全体の水分濃度が略一定に保たれて操業出来る。
In this case, a part of the cathode chamber product liquid is used for producing potassium bicarbonate, and the remaining liquid is mixed with the heated separated mother liquor after exiting the heat exchanger 19 in the path 20 and circulated to the cathode chamber. May be supplied. In these configurations for producing potassium bicarbonate, the cathode chamber produced liquid is essentially recycled as the cathode chamber feed liquid, and as a result, there is almost no room for water to enter from outside the system, and the water concentration throughout the process is approximately constant. It can be operated while being maintained at

たSt電解槽を含む系内の水バランス上、一部を濃縮し
たり、又不純物の蓄積(電解槽の陽極室より拡散した塩
化カリが陰極生成液中に不純物として蓄積する場合など
)を防ぐため一部の液の抜き出しを必要とする場合もあ
るが、殆んど液の濃縮を必要としないことは経済的に非
常に有利である。
Due to the water balance in the system including the St electrolytic cell, it is possible to prevent some concentration or the accumulation of impurities (such as when potassium chloride diffused from the anode chamber of the electrolytic cell accumulates as an impurity in the cathode production solution). Therefore, it may be necessary to draw out a part of the liquid, but it is economically very advantageous that there is almost no need to concentrate the liquid.

炭酸カリ製造用電解槽における陰極室からは好ましくは
苛性カリが15%(重量%;以下同じ)以下、更に好ま
しくは5%以下を含む炭酸カリを得られるように操作す
ることがよい。
It is preferable to operate the electrolytic cell for producing potassium carbonate so that potassium carbonate containing caustic potassium is preferably 15% (weight %; the same applies hereinafter) or less, more preferably 5% or less, from the cathode chamber.

これは苛性カリの濃度が15%をこえると陽イオン交換
膜の種類によつては陰極電流効率が低下するので、出来
る丈効率よく運転するには5%以下の苛性カリ濃度を保
つことが望ましい条件である。陰極室Bから出た炭酸カ
リを主成分とする液の一部を重炭酸製造工程に使用する
場合、その全液量に対する重炭酸カリ製造の為に分取す
る液量の割合は任意にとることが出来、これは電解槽出
口のカリ分濃度、重炭酸カリ製造工程における炭酸ガス
反応の程度、冷却前の重炭酸カリ濃度、冷却温度などを
考慮に入れて適宜操作することが望ましいが、特に好ま
しい割合は陰極室出口流量;分取液流量が1:0.5〜
0.%程度である。
This is because when the concentration of caustic potassium exceeds 15%, the cathode current efficiency decreases depending on the type of cation exchange membrane, so it is desirable to maintain the concentration of caustic potassium below 5% in order to operate efficiently. be. When a portion of the liquid containing potassium carbonate as the main component discharged from cathode chamber B is used in the bicarbonate production process, the ratio of the liquid volume to be separated for the production of potassium bicarbonate to the total liquid volume can be set arbitrarily. It is desirable to operate this as appropriate, taking into account the potassium concentration at the electrolyzer outlet, the degree of carbon dioxide reaction in the potassium bicarbonate production process, the potassium bicarbonate concentration before cooling, the cooling temperature, etc. A particularly preferred ratio is cathode chamber outlet flow rate: separation liquid flow rate of 1:0.5~
0. It is about %.

陰極室を出た液の温度は電解運転により異るが概ね70
〜1100Cであり、従つて重炭酸カリの製造工程に抜
出す液の温度も70−110℃である。これを重炭酸カ
リ製造工程に送り、反応によつて生成した重炭酸カリ分
離後の母液は概ね40〜10℃の温度となるが、この液
を直接陰極室供給液として循環系路中に戻すと電解槽の
温度が低下して操業に支障を来すので、この母液と電解
槽群の陰極室で発生した水素ガスとを熱交換し、陰極室
供給液温を70〜110℃の範囲に維持する。この場合
の供給熱源として上記の水素ガス以外に各電解槽の陽極
室で発生する塩素ガスおよび未分解の塩化カリを含む返
送塩水の保有熱を用いてもよい。本発明方法において、
電解槽に供給する塩化カリ水溶液は、返送塩水を原塩溶
解工程を経て沈澱、枦過するという通常の精製で得たも
のでもよいが、リン酸等の添加およびキレートイオン交
換樹脂層への通液を付加した既述の通りの精製工程を経
て精製された液であることが望ましい。特に沈澱工程入
口で加えるリン酸又はその塩がろ過工程後で零となるよ
に添加し、更に枦過工程後の塩水PHを調整してキレー
トイオン交換樹脂によりカルシウム、マグネシウム等の
不純物を除去することにより、これら不純物の除去が著
るしく促進されることに加えて摺電圧、電流効率が共に
変動することなく良好な成績で運転することが出来、又
陽イオン交換膜の寿命も長時間に亘つて維持することが
出来る。上述の方法においては、又既述の通り炭酸カリ
製造用電解槽の陽極室に供給する精製塩化カリ水溶液を
各電解槽で生する返送塩水と熱交換させるのであるが、
か)る返送塩水に代えて陽極室で発生する塩水ガス、陰
極室で発生する前記の水素ガスを使用してもよい。
The temperature of the liquid leaving the cathode chamber varies depending on the electrolytic operation, but is approximately 70°C.
-1100C, and therefore the temperature of the liquid extracted into the process of producing potassium bicarbonate is also 70-110C. This is sent to the potassium bicarbonate manufacturing process, and the mother liquor produced by the reaction after separation of potassium bicarbonate has a temperature of approximately 40 to 10°C, but this liquid is directly returned to the circulation system as the cathode chamber supply liquid. This causes the temperature of the electrolytic cell to drop and hinder operation, so heat exchange is performed between this mother liquor and the hydrogen gas generated in the cathode chamber of the electrolytic cell group, and the temperature of the liquid supplied to the cathode chamber is kept within the range of 70 to 110°C. maintain. In this case, as the supply heat source, in addition to the above-mentioned hydrogen gas, chlorine gas generated in the anode chamber of each electrolytic cell and the heat retained in returned salt water containing undecomposed potassium chloride may be used. In the method of the present invention,
The aqueous potassium chloride solution to be supplied to the electrolytic cell may be obtained by normal purification in which the returned brine is subjected to a raw salt dissolution process, then precipitated and filtered. It is desirable that the liquid be purified through the purification process described above in which a liquid is added. In particular, phosphoric acid or its salt added at the entrance of the precipitation process is added so that it becomes zero after the filtration process, and the pH of the brine after the filtration process is adjusted to remove impurities such as calcium and magnesium using a chelate ion exchange resin. This not only significantly accelerates the removal of these impurities, but also allows operation with good performance without fluctuations in both sliding voltage and current efficiency, and also extends the life of the cation exchange membrane. It can be maintained over time. In the above method, as mentioned above, the purified potassium chloride aqueous solution supplied to the anode chamber of the electrolytic cell for producing potassium carbonate is subjected to heat exchange with the returned brine produced in each electrolytic cell.
In place of the returned salt water, the salt water gas generated in the anode chamber or the above-mentioned hydrogen gas generated in the cathode chamber may be used.

このよに炭酸カリ製造用電解槽の陽極室及び陰極室に供
給する液を予熱して供給することは、この電解槽の全体
を電解反応に好適な、温度状態にするためであるが、か
)る予熱は電解反応が好適に維持出来るならばいずれか
一方の液に対して実.施するのみでよい。
The purpose of preheating and supplying the liquid to the anode chamber and cathode chamber of the electrolytic cell for producing potassium carbonate is to bring the entire electrolytic cell into a temperature state suitable for the electrolytic reaction. ) preheating is practical for either solution if the electrolytic reaction can be maintained properly. All you have to do is apply.

この熱交換の為の熱媒体となる液およびガスの内、陽極
室より排出される返送塩水及び塩素ガスは、塩素による
機器腐蝕の関係上、陰極室供給液との熱交換は避てた方
がよく、通常この系統で防j蝕対策が施されている精製
塩化カリ水溶液との熱交換に使用することが望ましい。
Among the liquids and gases that serve as heat carriers for this heat exchange, the return salt water and chlorine gas discharged from the anode chamber should be avoided from being heat exchanged with the cathode chamber supply liquid due to equipment corrosion caused by chlorine. It is desirable to use it for heat exchange with purified potassium chloride aqueous solution, which is usually treated with anti-corrosion measures in this system.

本発明における苛性カリ製造用電解槽の電解運転条件は
特に制限はなく、常法による運転が採用出来る。本発明
方法て使用する電解槽の陽イオン交換膜としては耐酸、
耐アルカリ性で塩素ガスに耐える膜であることが好まし
く、特にスルホン酸基をイオン交換基とする含フッ素系
の膜が望ましくか)る膜の例としてデュポン社製のナフ
イオン(NafiOn)を商品名とする膜を挙げること
が出来る。
The electrolytic operation conditions of the electrolytic cell for producing caustic potash in the present invention are not particularly limited, and a conventional operation can be adopted. The cation exchange membrane of the electrolytic cell used in the method of the present invention is acid-resistant,
It is preferable that the membrane is alkali-resistant and resistant to chlorine gas, and in particular, a fluorine-containing membrane with sulfonic acid groups as ion exchange groups is preferable. There are some membranes that do this.

以上の通り本発明は苛性カリ製造用電解槽と、炭酸カリ
製造用電解槽との各系統を巧妙に組合わせてその熱利用
をはかり有利に目的物を得ることが出来る。
As described above, the present invention can advantageously obtain the desired product by cleverly combining the systems of the electrolytic cell for producing caustic potash and the electrolytic cell for producing potassium carbonate, and utilizing the heat.

以下に実施例を掲げて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 炭酸カリ製造用イオン交換膜電解槽4槽と、苛性カリ製
造用のイオン交換膜電解槽1槽とを使用し、本発明方法
に従つて下記の通り重炭酸カリの製造を行なつた。
Example 1 Potassium bicarbonate was produced as follows according to the method of the present invention using four ion-exchange membrane electrolyzers for producing potassium carbonate and one ion-exchange membrane electrolyzer for producing caustic potash. .

この運転における各液、ガスの流れは概ね第1図の通り
であるが炭酸カリ製造用電解槽の陽極室に供給する精製
塩化カリ水溶液の熱交換用熱源二は、苛性カリ製造用電
解槽で発生した塩素ガスにより、又炭酸カリ製造用電解
槽の陰極室供給液の熱交換用熱源は苛性カリ製造用電解
槽で発生した水素ガスを使用した。
The flow of each liquid and gas in this operation is roughly as shown in Figure 1. Heat source 2 for heat exchange of the purified potassium chloride aqueous solution supplied to the anode chamber of the electrolytic cell for producing potassium carbonate is generated in the electrolytic cell for producing caustic potash. In addition, the hydrogen gas generated in the electrolytic cell for producing caustic potash was used as the heat source for heat exchange of the cathode chamber supply liquid of the electrolytic cell for producing potassium carbonate.

主成分の機器仕様および操作条件ならびに結果2は次の
通りてある。
The equipment specifications and operating conditions for the main components and results 2 are as follows.

(1)供給塩化カリ水溶液 (イ)キレートイオン交換樹脂CR−10(三菱化成(
株)商品名)((口)〜(へ)は炭酸カリ製造用電解槽
に対する3もの。
(1) Supply potassium chloride aqueous solution (a) Chelate ion exchange resin CR-10 (Mitsubishi Kasei Co., Ltd.
Co., Ltd. (Product name) ((口)~(F) are three items for electrolytic cells for producing potassium carbonate.

)2)電解槽及び重i〒り製造工程 −ーーー゛−(
イ)炭酸カリ製造用電解槽(1)100dイ複極槽4槽
使用、陽極室はチタ ンライニング製、陰極室はSUS
3O塵、陽 極は酸化ルテニウムを含む材料でコーテイ
ングしたチタンメッシュ、陰極はSUS3O4メッシ
ュを使用、陽イオン交換膜はデユポ ン社製N−415
(商品名ナフイヨン)を使 用。
)2) Electrolytic cell and heavy duty manufacturing process -ーー゛-(
B) Electrolytic cell for producing potassium carbonate (1) Four 100 d bipolar cells are used, the anode chamber is made of titanium lining, and the cathode chamber is made of SUS.
3O dust, the anode uses a titanium mesh coated with a material containing ruthenium oxide, the cathode uses SUS3O4 mesh, and the cation exchange membrane is DuPont N-415.
(Product name Nafyon) is used.

(x1) 重炭酸カリ製造後母液温度 (熱交換前)31℃(X
ii) 重炭酸カリ生成量 36.3kg/Hr(ロ)
苛性カリ製造用電解槽(1)40KA電解槽1槽使用、
他の仕様は炭酸 カリ製造用電解槽と同じ。
(x1) Mother liquor temperature after producing potassium bicarbonate (before heat exchange) 31℃ (X
ii) Potassium bicarbonate production amount 36.3 kg/Hr (b)
Electrolytic cell for producing caustic potash (1) One 40KA electrolytic cell used,
Other specifications are the same as electrolytic cells for producing potassium carbonate.

(!i)生成苛性カリ濃度 25%−(!i) Produced caustic potash concentration 25%-

【図面の簡単な説明】 第1図は本発明方法による重炭酸カリ製造例を−(す工
程図である。 1・・・・・・炭酸カリ製造用電解槽、1″・・・・・
苛性力J製造用電解槽、3・・・・・・原塩溶解工程、
5・・・・・・沈2工程、7・・・・・・枦過工程、9
,19・・・・・・熱交換;、14・・・・・・重炭酸
カリ生成工程。
[Brief Description of the Drawings] Fig. 1 is a process diagram showing an example of producing potassium bicarbonate by the method of the present invention. 1... Electrolytic cell for producing potassium carbonate, 1''...
Electrolytic cell for producing caustic force J, 3... raw salt dissolution process,
5... 2nd precipitation step, 7... filtration step, 9
, 19... Heat exchange; , 14... Potassium bicarbonate generation step.

Claims (1)

【特許請求の範囲】[Claims] 1 陽イオン交換膜で仕切つて陽極室と陰極室とを形成
し、該陽極室に精製塩化カリ水溶液を供給しつゝ電解し
うる単位電解槽の多数で構成された電解槽群を使用し、
その一部を炭酸カリ製造用電解槽に、又残部を常法の電
解による苛性カリ製造用電解槽となし、上記炭酸カリ製
造用電解槽の陰極室から抜け出される炭酸カリを主成分
とする液を炭酸ガスと反応させて重炭酸カリを得ること
からなり、上記生成重炭酸カリを分離した後の分離母液
を前記炭酸カリ製造用電解槽の陰極室に供給し、その際
電解槽群の陰極室より排出された水素ガス、陽極室より
排出された塩素ガスおよび返送塩水の内の少くとも1種
を用いて前記炭酸カリ製造用電解槽の少くとも一方の極
室供給液と熱交換させることを特徴とする重炭酸カリの
製造法。
1. Using an electrolytic cell group consisting of a large number of unit electrolytic cells that can be separated by a cation exchange membrane to form an anode chamber and a cathode chamber, and can perform electrolysis while supplying purified potassium chloride aqueous solution to the anode chamber,
A part of it is used as an electrolytic cell for producing potassium carbonate, and the rest is used as an electrolytic cell for producing caustic potash by conventional electrolysis. The method consists of reacting with carbon dioxide gas to obtain potassium bicarbonate, and supplying the separated mother liquor after separating the generated potassium bicarbonate to the cathode chamber of the electrolytic cell for producing potassium carbonate; At least one of the hydrogen gas discharged from the anode chamber, the chlorine gas discharged from the anode chamber, and the returned salt water is used to exchange heat with the liquid supplied to at least one electrode chamber of the electrolytic cell for producing potassium carbonate. Characteristic method for producing potassium bicarbonate.
JP54036196A 1979-03-29 1979-03-29 Production method of potassium bicarbonate Expired JPS6057515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54036196A JPS6057515B2 (en) 1979-03-29 1979-03-29 Production method of potassium bicarbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54036196A JPS6057515B2 (en) 1979-03-29 1979-03-29 Production method of potassium bicarbonate

Publications (2)

Publication Number Publication Date
JPS55128590A JPS55128590A (en) 1980-10-04
JPS6057515B2 true JPS6057515B2 (en) 1985-12-16

Family

ID=12462967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54036196A Expired JPS6057515B2 (en) 1979-03-29 1979-03-29 Production method of potassium bicarbonate

Country Status (1)

Country Link
JP (1) JPS6057515B2 (en)

Also Published As

Publication number Publication date
JPS55128590A (en) 1980-10-04

Similar Documents

Publication Publication Date Title
US4242185A (en) Process and apparatus for controlling impurities and pollution from membrane chlor-alkali cells
EP0544686B1 (en) Chlorine dioxide generation from chloric acid
US5198080A (en) Electrochemical processing of aqueous solutions
JP2520085B2 (en) Chlorine dioxide production method
US20110044882A1 (en) Method of making high purity lithium hydroxide and hydrochloric acid
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
CA2156125C (en) Process of producing chlorine dioxide
CA2060724A1 (en) Process for electrolytic production of alkali metal chlorate and auxiliary chemicals
EP0110033B1 (en) Processing of sodium chloride brines for chlor-alkali membrane cells
CA1214429A (en) Removal of chlorate from electrolyte cell brine
CA2121628C (en) Process for the production of alkali metal chlorate
JPH11511204A (en) Electrochemical production method combining sodium peroxodisulfate and caustic soda solution
US4076603A (en) Caustic and chlorine production process
US4963235A (en) Process for treating electrolytic cell products
CA2084183C (en) Electrochemical processing of aqueous solutions
WO1992020837A1 (en) Process for producing perchloric acid and ammonium perchlorate
JPS6057515B2 (en) Production method of potassium bicarbonate
US5284553A (en) Chlorine dioxide generation from chloric acid
RU2769609C2 (en) Method for obtaining lithium hydroxide monohydrate of high purity from materials containing lithium salts
JPH08109006A (en) Deuterium generator
JPS6338589A (en) Electrochemical method for producing hydrosulfite solution
JPH08109005A (en) Heavy water generator