JPS605747A - Insulated coil - Google Patents

Insulated coil

Info

Publication number
JPS605747A
JPS605747A JP58112870A JP11287083A JPS605747A JP S605747 A JPS605747 A JP S605747A JP 58112870 A JP58112870 A JP 58112870A JP 11287083 A JP11287083 A JP 11287083A JP S605747 A JPS605747 A JP S605747A
Authority
JP
Japan
Prior art keywords
coil
layer
electric field
conductor
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58112870A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Inoue
良之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58112870A priority Critical patent/JPS605747A/en
Publication of JPS605747A publication Critical patent/JPS605747A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F2027/329Insulation with semiconducting layer, e.g. to reduce corona effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PURPOSE:To provide an insulated coil having long voltage applying lifetime by providing a semiconductive layer on a strand bundle or a turning insulator of the upper and lower end turns of the linear portion of a coil. CONSTITUTION:A semiconductive layer 15 having 10-10<6>OMEGA of surface resistivity is formed on the end turn formed of a conductor 1 and the insulator 10, i.e., the outer layer of the first turn and the final turn. The layer 14 is formed on the portion which enters the core slot and the range of 5-30mm. from the end of the core. Then, a main insulator 5 is formed on the entire periphery of the coil by the lap winding of an insulating tape or the flat winding of an insulating sheet. Then, a corona preventive layer 6 is formed on the linear portion of the coil of the outer layer. In this manner, since an electric field of the corner of the conductor which becomes the starting point of an insulation breakdown can be alleviated, a tree can be suppressd from the coil to increase the voltage applying lifetime.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、主に回転電機に用いられる絶縁コイルに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an insulated coil mainly used in rotating electric machines.

〔発明の技術的背原とその問題点〕[Technical background of the invention and its problems]

絶縁コイルの例として回転電機コイル全円いて説明する
As an example of an insulated coil, a rotating electric machine coil will be explained.

回転電機ステータ用のヤルチターンコイルの鉄心スロッ
ト内に挿入される部分の代表的な一断面図を第1図に示
す。素線導体(1)と被覆絶縁(2)とからなる。素線
(3)を複数本(第1図では4本)まとめて1ターンと
する。各ターンをターン絶縁(4)で絶縁し、所足ター
ン数積み重ねた後、主絶縁(5)を施し、更にその外周
に低抵抗の塗料の塗布または低抵抗テープまたはシート
の巻回によるコロナ防止層(6)を施す。ただし、ター
ン電、圧の低い場合は、ターン絶縁を施さないことがあ
る。コロナ防止層(6)ハ、鉄心スロット壁に接するた
め、鉄心と同電位、即ち大地電位になる。第1図におい
て、第2ターン目以後は、■ターン内の素線部分を簡略
化しである。第2図以後も同様な方法で描く。このよう
なコイルの絶縁破壊試験または課電寿命試験を行うと、
はとんど端ターンの導体角部、すなわち第1図のP部が
破壊の起点となる。導体角部付近の電界を、第2図に示
す同心円筒モデルを用いて計a゛する。素線導体(1)
の角部の曲率半径kr+とし、0[相]は、素線絶縁(
2)とターン絶縁(4)を含んだ絶縁をあられす。印加
電圧をv、絶縁厚さをdとし、絶縁部と(5)の誘電率
は等しいとした場合、素線導体(1)の表面から距離X
の点Pの電界E (x)は次式で表される、 ■ r1割、6+m 、 d−2m 、 V = 10 k
V (D場合の電界の計算値を第3図に示す。電界はx
 = 0で最大値(11,37kV/mI+) 、 X
 = 2で最小値(2,62kVAm) ’jrとり、
素線導体近傍に電界が集中していることがわかる。
FIG. 1 shows a typical cross-sectional view of a portion of a rotary turn coil for a stator of a rotating electrical machine that is inserted into an iron core slot. It consists of a wire conductor (1) and a covering insulation (2). A plurality of wires (3) (four wires in FIG. 1) are combined into one turn. Insulate each turn with turn insulation (4), and after stacking the required number of turns, apply main insulation (5), and further prevent corona by applying low-resistance paint or wrapping low-resistance tape or sheet around the outer periphery. Apply layer (6). However, if the turn voltage or voltage is low, turn insulation may not be applied. Since the corona prevention layer (6) is in contact with the core slot wall, it has the same potential as the core, that is, the ground potential. In FIG. 1, from the second turn onwards, the strands within the turns are simplified. Draw the following figures in the same way. When conducting a dielectric breakdown test or energized life test of such a coil,
The corner of the conductor at the end turn, ie, the P section in FIG. 1, is the starting point of breakage. The electric field near the corner of the conductor is measured using the concentric cylinder model shown in FIG. Element wire conductor (1)
The radius of curvature of the corner of is kr+, and 0 [phase] is the strand insulation (
2) and insulation including turn insulation (4). When the applied voltage is v, the insulation thickness is d, and the dielectric constant of the insulation part and (5) are equal, the distance from the surface of the wire conductor (1) is
The electric field E (x) at point P is expressed by the following formula, ■ r10%, 6+m, d-2m, V = 10k
The calculated value of the electric field in the case of V (D is shown in Figure 3. The electric field is x
= Maximum value at 0 (11,37kV/mI+), X
= Minimum value at 2 (2,62kVAm) 'jr,
It can be seen that the electric field is concentrated near the wire conductor.

したがって従来の回転機コイルでは素線導体近傍に電界
が集中し、そこから絶縁破壊が発生するので、破壊電圧
を向上させ、あるいは課電寿命を長くすることがむずか
しかった。
Therefore, in conventional rotating machine coils, the electric field concentrates near the wire conductors, causing dielectric breakdown, making it difficult to improve the breakdown voltage or extend the energized life.

〔発明の目的〕[Purpose of the invention]

本発明は、素線導体近傍の電界が低く、シたがって絶縁
破壊電圧が高く、課電寿命の長い絶縁コイルを提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an insulated coil that has a low electric field near a wire conductor, therefore has a high dielectric breakdown voltage, and has a long energized life.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明の絶縁コイルにおい
ては、コイル直線部の上下端のターンの素線束上あるい
はターン絶縁上に半導電性のjψを設ける。
In order to achieve the above object, in the insulated coil of the present invention, semiconducting jψ is provided on the wire bundle of the turns at the upper and lower ends of the coil straight portion or on the turn insulation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について、第4図を用いて説明
する。第4図はコイル直線部の一断面図である。導体(
1)とその絶縁00(ターン絶縁のあるがIOΩ〜lO
Ω の半導電層a4)を設ける。
Hereinafter, one embodiment of the present invention will be described using FIG. 4. FIG. 4 is a sectional view of a straight portion of the coil. conductor(
1) and its insulation 00 (with turn insulation, IOΩ~IO
A semiconducting layer a4) of Ω is provided.

半導電層u4)としてはポリエステル、ポリイミド等の
高分子フィルム、ポリエステル、ポリアミド等の不織布
、ガラスクロスなどに、カーボンを充てんしたレジンを
含浸または塗布した材料あるいは、高分子の繊維とカー
ボン繊維を混抄し、た材料■ (たとえば、日本アロマ社製Aカーボン )などが使用
できる。中間のターンには、半導電層Iは設けない。半
導電層114)は鉄心スロットに入る部分と鉄心端部か
ら5閣〜30mまで出た範囲に施す。
The semiconductive layer u4) may be a polymer film such as polyester or polyimide, a nonwoven fabric such as polyester or polyamide, glass cloth impregnated or coated with carbon-filled resin, or a mixture of polymer fiber and carbon fiber. However, other materials (for example, A Carbon manufactured by Nippon Aroma Co., Ltd.) can be used. No semiconducting layer I is provided in the middle turns. The semi-conductive layer 114) is applied to the part of the core that enters the slot and the area that extends from the end of the core to 50 m to 30 m.

この後、絶縁テープの重巻きまたは絶縁シートの平巻き
によりコイル全周にわたり主絶縁(5)全形成する。次
にその外層のコイル直線部にコロナ防止層(6)を形成
する。この後、絶縁の種類により、含浸、硬化処理ある
いは加熱モールド処理を施す。
Thereafter, the main insulation (5) is completely formed around the entire circumference of the coil by wrapping an insulating tape in layers or flatly wrapping an insulating sheet. Next, a corona prevention layer (6) is formed on the straight portion of the outer layer of the coil. After this, depending on the type of insulation, impregnation, curing treatment, or heat molding treatment is performed.

半導電層011)の表面抵抗率は、半導電層C1(lの
全周にわたって同一電位と見なすことができるように1
0 Ω以下で、かつもれ磁束による渦電流損を無視でき
るように100以上とする。半導電層−の表面抵抗率が
%lOΩ以上になると半導電層Iと導体(1)との間の
商用周波におけるインピーダンスに近づき半導電層04
)の周方向に電位が変化し、そのため損失が生し好捷し
くない。この半導電層(ロ)の電位は、半導電層(14
)と導体(1)との間の静電容量C3−8と半導電層I
とスロット壁と同電位となるコロナ防止層(6)との間
の静電容量C3−G の比で決まる。
The surface resistivity of the semiconducting layer 011) is 1 so that the potential can be considered to be the same over the entire circumference of the semiconducting layer C1 (l).
0 Ω or less, and 100 or more so that eddy current loss due to leakage magnetic flux can be ignored. When the surface resistivity of the semiconducting layer becomes %lOΩ or more, it approaches the impedance at the commercial frequency between the semiconducting layer I and the conductor (1), and the semiconducting layer 04
), which causes loss and is not desirable. The potential of this semiconducting layer (b) is
) and the conductor (1) and the capacitance C3-8 and the semiconducting layer I
and the capacitance C3-G between the slot wall and the corona prevention layer (6), which has the same potential.

これらの静電容量全決定するための等価回路を第5図及
び第6図に示す。導体(1)の電位’6vとすると導体
+1+と半導電層Iの間の電圧V。−8及び半導電層I
とコロナ防止層(6)の間の電圧vS−Gは次のように
表される。ただし、端ターンと隣接ターンの導体の電位
差はわずかであるので、ここでは同電位であるとして計
算する。
Equivalent circuits for determining all of these capacitances are shown in FIGS. 5 and 6. If the potential of the conductor (1) is '6V, then the voltage V between the conductor +1+ and the semiconducting layer I. -8 and semiconducting layer I
The voltage vS-G between and the anti-corona layer (6) is expressed as follows. However, since the potential difference between the conductors of the end turn and the adjacent turn is small, the calculations are made here assuming that they are at the same potential.

■ C−8L十cc−8/C8゜ vs−c ”” VC−8 ここで C6−8−3CI+ 2C*+4CsC8−G
 #C4+2C5+2C6 Cc−sは端ターンの全周の外に次のターンの導体と半
導電層04)との静電容量が加わるのに対し、C8−1
;は半導電層αをかコロナ防止層(6)に面する3面だ
けから構成されるので、絶縁厚さの違い以上にC6−8
がC3−G に比べ大きくなる。したがって導体(1)
と半導電層Iとの間の電圧V。−8は非常に小さな値と
なり、半導電層[14)のない場合に電界が最大となっ
た導体(1)の角部直上の電界が著しく低下する。
■ C-8L 10cc-8/C8゜vs-c ”” VC-8 Here C6-8-3CI+ 2C*+4CsC8-G
#C4+2C5+2C6 Cc-s is the capacitance between the conductor of the next turn and the semiconducting layer 04) in addition to the entire circumference of the end turn, whereas C8-1
; is composed of only three sides facing the semiconductive layer α and the corona prevention layer (6), so the difference in C6-8 is greater than the difference in insulation thickness.
is larger than C3-G. Therefore conductor (1)
and the semiconducting layer I. -8 becomes a very small value, and the electric field just above the corner of the conductor (1), where the electric field would be maximum in the absence of the semiconducting layer [14], decreases significantly.

この場合、導体角部直上に代って半導′4L層o4)の
R部の外表面(凸側の表面)に最大電界が生じる。
In this case, the maximum electric field occurs on the outer surface (convex side surface) of the R portion of the semiconductor layer '4L o4) instead of directly above the corner of the conductor.

しかし、その部分の曲率半径は導体角部に比べて太きい
ため、電界の集中が緩和され、それほど大きな値とはな
らない。導体角部付近を第7図のように同心円筒でモデ
ル化し、導体(1)の表面から、距離Xの点の電界を計
算でめた結果を第8図に実線aで示す。第8図の計算条
件は次のようである:lターンの導体の幅y=lQ岨、
1ターンの導体の厚さt−10咽、 d4−Q、3+o
+ 、半導′電層の厚さd2=0.05咽、主絶縁の厚
さds−1,65+s 、導体表面からコロナ防止層の
内側までの距離d=2.onm、印加電圧V=lOkV
0比較のため転極形状及び寸法は同じであるが半導電層
α4)を除いた場合の電界分布を第8図に破線すで示す
。半導電層のない場合の最大電界が11.37 k V
/ nanであるのに対し、本発明の半導電層を導入し
た場合の最大電界は9.46kV/m+nとなり16.
8%だけ最大電界を低減することができる。
However, since the radius of curvature of that portion is thicker than that of the corner of the conductor, the concentration of the electric field is relaxed and the radius of curvature is not so large. The vicinity of the corner of the conductor is modeled as a concentric cylinder as shown in FIG. 7, and the result of calculating the electric field at a point at a distance X from the surface of the conductor (1) is shown by a solid line a in FIG. The calculation conditions for Fig. 8 are as follows: width of l-turn conductor y = lQ-shape,
Thickness of conductor of 1 turn t-10, d4-Q, 3+o
+, thickness of the semiconducting layer d2=0.05, thickness of the main insulation ds-1, 65+s, distance from the conductor surface to the inside of the anti-corona layer d=2. onm, applied voltage V=lOkV
For comparison, the electric field distribution in the case where the polarity inversion shape and dimensions are the same but the semiconducting layer α4) is removed is already shown in broken line in FIG. Maximum electric field without semiconducting layer is 11.37 kV
/nan, whereas the maximum electric field when the semiconducting layer of the present invention is introduced is 9.46 kV/m+n, which is 16.
The maximum electric field can be reduced by 8%.

次に主絶縁の厚さ全低減したコイルの電、界分布を検討
する。第5図及び第7図と同じ構成で、W=10+岡、
 t=l 0ran 、 rl= 0.6m 、 dl
=0.3m+n 、 d2=0.05順とし、かつ最大
電界が上述の半導電層のない場合の最大電界11.37
1cV/+nmの95係即ち10.8 ]cV/ nu
nとなるような主絶縁の厚さds(= d d+ dz
)を計算でめるとds”’1.3朋(d=1.65調)
となる。この場合の電界分布を第9図のaに示す。同図
中の破線Cは第8図の破線すと同じく半導電層がなく絶
縁厚さdが2閣の場合の電界分布である。また同様にし
てa、=o、4sMとした場合の最大電界が10.81
cV 7mmとなる主絶縁の厚さ請求めると、ds−1
,07側(d=1.57叫)となる。この場合の電界分
布を第9図のbに示す。上記の実施例では本発明の半導
電層を導入し、導体と半導電層の間の絶縁距離d、全0
.3mmとした時には、半導電層を含む絶縁厚さd’に
17.5係、またd、全0.45+m++とじた時には
d =i 21.5%だけ減らしてしかもその最大電界
を従来の構成のコイルの値より5チだけ低い値に保つこ
とができる。
Next, we will examine the electric field distribution of a coil whose main insulation thickness is completely reduced. With the same configuration as Figures 5 and 7, W = 10 + Oka,
t=l0ran, rl=0.6m, dl
=0.3m+n, d2=0.05, and the maximum electric field is 11.37 when there is no semiconducting layer as described above.
95 factor of 1cV/+nm or 10.8]cV/nu
The main insulation thickness ds (= d d+ dz
) is calculated as ds”'1.3ho (d=1.65 tone)
becomes. The electric field distribution in this case is shown in FIG. 9a. The broken line C in the figure is the electric field distribution when there is no semiconducting layer and the insulation thickness d is equal to the same as the broken line in FIG. Similarly, when a, = o, 4sM, the maximum electric field is 10.81
If you request the thickness of the main insulation to be cV 7mm, then ds-1
, 07 side (d=1.57). The electric field distribution in this case is shown in FIG. 9b. In the above embodiment, the semiconducting layer of the present invention is introduced, and the insulation distance d between the conductor and the semiconducting layer is 0.
.. When it is set to 3 mm, the insulation thickness d' including the semiconducting layer is reduced by a factor of 17.5, and when d is combined with the total 0.45 + m++, the maximum electric field is reduced by 21.5%, and the maximum electric field is lower than that of the conventional configuration. The value can be kept 5 inches lower than the value of the coil.

次に、半導電性の材料を絶縁層内に巻き込んだ場合、そ
の端部で電界が異常に集中しないか検討する。本発明の
コイルの鉄心端部付近の縦方向断面図を第10図に示す
。コイルが鉄心0ηのスロットに挿入されていて、コロ
ナ防止層(6)は鉄心の端部より外に20咽はど出し、
その端部に一部重ねてコイルの沿面の電界緩和層σψを
設ける。(1)は導体。
Next, if a semiconductive material is wrapped in an insulating layer, we will examine whether the electric field will be abnormally concentrated at its edges. A longitudinal cross-sectional view of the vicinity of the core end of the coil of the present invention is shown in FIG. The coil is inserted into the slot of the iron core 0η, and the corona prevention layer (6) is extended 20 mm beyond the end of the iron core.
An electric field relaxation layer σψ is provided on the creeping surface of the coil, partially overlapping the end portion thereof. (1) is a conductor.

(If)は素線絶縁またはターン絶縁のある場合にはタ
ーン絶縁をも含む絶縁、(5)は主絶縁である。半導電
層α荀はコロナ防止層(6)より長く設ける。本発明の
構成にすれば、第9図かられかるように半導電層Iより
内側の電界は非常に低く抑えられており、半導電層Q4
)の端部Aで電界が集中するといえども導体側に向って
は、それほど高くならない。また半導電層Iの端部Aの
位置に対応するコイル表面Bには、電界緩和層ueがあ
り、この電界緩和層の効果によりA−B間の電圧は、鉄
心内の部分に比べ何十パーセントか小さくなり、半導電
層α荀の端部Aからコイル表面層に向かう電界も十分緩
和される。コイル表面の電界緩和層(I[9のない低電
圧機種の場合には、コイル表面電位は、コロナ防止層(
6)端部C(コロナ防止層もない場合には鉄心端部)を
出ると急速に導体電位に近づくので半導電層(I4)端
部から外面に向かう電界は、電界緩和層のある場合より
なお一層緩和される。
(If) is insulation including wire insulation or turn insulation when there is turn insulation, and (5) is main insulation. The semiconductive layer α is provided longer than the corona prevention layer (6). With the structure of the present invention, the electric field inside the semiconducting layer I is suppressed to a very low level as shown in FIG.
Although the electric field is concentrated at end A of ), it does not become so high toward the conductor side. In addition, there is an electric field relaxation layer ue on the coil surface B corresponding to the position of the end A of the semiconducting layer I, and due to the effect of this electric field relaxation layer, the voltage between A and B is several tens of tens of degrees lower than that in the core. %, and the electric field directed from the end A of the semiconducting layer α toward the coil surface layer is also sufficiently relaxed. In the case of low-voltage models without the electric field relaxation layer (I [9) on the coil surface, the coil surface potential is determined by the corona prevention layer (
6) After exiting end C (core end if there is no corona prevention layer), the electric field rapidly approaches the conductor potential, so the electric field directed from the end of the semiconducting layer (I4) toward the outer surface is lower than when there is an electric field relaxation layer. It will be further relaxed.

マタ、コイルにサージ電圧が加わり、ターン間に電圧が
発生した場合にも、半導電層04)が土工に分離されて
いるため、半導電層間でフラッジオーバすることなく、
コイルのサージit M ’fr低下することはない。
Even if a surge voltage is applied to the coil and a voltage is generated between the turns, the semi-conductive layer 04) is separated by the earthwork, so there will be no flooding over between the semi-conductive layers.
The coil surge it M'fr does not decrease.

なお図4における半導電層は端ターンの全周を包み込ん
でいるが、第11図、第12図のように一部接続しない
部分りがあっても問題はない。とくに第12図のように
隣接ターン側に半導電層の切れ目りがきた場合にはC8
,、は変らないが、CC−8が小さくなって、導体(1
)と半導電層Iの間の電界を若干高め、逆に最大電界を
生じる半2j1電kj L+4)の外表面の電界全低減
することという効果が生−まれる。
Note that although the semiconducting layer in FIG. 4 wraps around the entire circumference of the end turn, there is no problem even if there is a portion that is not connected as shown in FIGS. 11 and 12. In particular, when there is a break in the semiconducting layer on the adjacent turn side as shown in Figure 12, C8
,, remain the same, but CC-8 becomes smaller and the conductor (1
) and the semiconducting layer I, while conversely producing the effect of completely reducing the electric field on the outer surface of the semi-conducting layer I (2j1 electric field kj L+4) which produces the maximum electric field.

また端の1ターンだけでなく、端ターンを含めて2ター
ン又は3ターンを一括して半導電層をその外周に設けて
も、上述の場合と同様に最大電界を低減することができ
る。端の2ターンずつk 一括して半導電層(ロ)で包
み込んだコイルの一断面を第13図に示す。同図の符号
は、第4図と同じである。ただし、コイルのターン構成
が同じである場合には一括して包み込むターン数が多く
なるほど、コイルに急峻なサージが侵入した場合ターン
の導体(1)と半導′ら層u4)間の電圧が高くなり、
そのために絶縁0〔が絶縁破壊する可能性も考えられる
Further, even if a semiconducting layer is provided on the outer periphery of not only one turn at the end but also two or three turns including the end turn, the maximum electric field can be reduced in the same manner as in the above case. FIG. 13 shows a cross section of a coil wrapped in a semiconductive layer (b) of two turns at each end. The reference numerals in this figure are the same as in FIG. 4. However, when the turn configuration of the coil is the same, the more turns are wrapped together, the more the voltage between the conductor (1) of the turn and the semiconductor layer U4) increases when a steep surge enters the coil. get higher,
Therefore, there is a possibility that the insulation 0 [is dielectrically broken down.

したがって、第13図のような構成全採用する場合には
、回転機が接続される系統において発生するであろうサ
ージの種類、大きさ、頻度を予め調査、検討する必要が
ある。
Therefore, when adopting the entire configuration as shown in FIG. 13, it is necessary to investigate and consider in advance the type, magnitude, and frequency of surges that will occur in the system to which the rotating machine is connected.

また半導電層Q4)で包み込むターン数をコイル断面の
上側と下側で変えても同様な効果が得られることは言う
までもない。
It goes without saying that the same effect can be obtained even if the number of turns wrapped in the semiconductive layer Q4) is changed between the upper and lower sides of the coil cross section.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、絶縁破壊の起点と
なる導体角部の電界全緩和することができるので、従来
コイルよりトリーの発生を抑え課電寿命を著しく長くす
ることができる。1だ従来コイルと同程度の最大電界に
するならば、絶縁厚さk 20%程度削減することがで
き、鉄心スロット内の占積率の向上と熱伝達率向上によ
る定格電流増大により機器の小形化に大きく貢献するこ
とができる。
As explained above, according to the present invention, the electric field at the corners of the conductor, which is the starting point of dielectric breakdown, can be completely relaxed, so that tree generation can be suppressed and the energized life can be significantly extended compared to conventional coils. 1. If the maximum electric field is the same as that of conventional coils, the insulation thickness can be reduced by about 20%, and the rated current increases due to the improvement of the space factor in the core slot and the heat transfer coefficient, resulting in smaller equipment. can greatly contribute to the development of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の回転機の絶縁コイルの直線部の断面図、
第2図は第1図の導体角部付近の電界を計算するための
モデルを示す図面、第3図は従来コイルの導体角部側近
の電界分布を示す曲線図、第4図は本発明の一実施例の
絶縁コイル直線部の断面図、第5図は紀4図の導体角部
付近の電界を計算するための静電容量分布図、第6図は
第5図の等価回路、第7図は第4図の導体角部付近の電
界を計算するためのモデル図、第8図は第7図のモデル
を用いて計算した本発明のコイルの導体角部付近の電界
分布を従来コイルと比較して示す曲線図、第9図は第7
図のモデルを用いて計算した最大電界を従来コイルの9
5係となるように絶縁厚さを薄くした本発明のコイルの
導体角部付近の電界分布を示す曲線図、第1O図は本発
明のコイルの鉄心端付近の縦断11図、第11図、第1
2図および第13図は本発明の他の実施例を示すコイル
の断面図である。 ■・・・素線導体 2・・・被#′η絶縁3・・・累&
! 4・・・ターン絶縁 5・・・主絶縁 6・・・コロナ防止層IO・・素線の
禎覆絶縁とターン絶縁百−Gbせた絶縁 16・・・電界緩和層 17・・・鉄心代理人 弁理士
 則 近 憲 佑(はが1名)第1図 第2図 第3図 距離2(ケーラ 第4図 第5図 第6図 = 第7図 。 第8図 導体乃・うの距鉦λ(祈−1) 第9図 溝イ本η・ら丙 距離l(γm〕 第10図 /7 第11図
Figure 1 is a cross-sectional view of the straight part of the insulating coil of a conventional rotating machine.
Fig. 2 is a drawing showing a model for calculating the electric field near the conductor corner in Fig. 1, Fig. 3 is a curve diagram showing the electric field distribution near the conductor corner of the conventional coil, and Fig. 4 is a diagram showing the electric field distribution near the conductor corner of the conventional coil. 5 is a capacitance distribution diagram for calculating the electric field near the corner of the conductor shown in Fig. 4, Fig. 6 is an equivalent circuit of Fig. 5, and Fig. The figure is a model diagram for calculating the electric field near the conductor corner of Fig. 4, and Fig. 8 shows the electric field distribution near the conductor corner of the coil of the present invention calculated using the model of Fig. 7 compared to the conventional coil. A curve diagram shown for comparison, Figure 9 is the 7th
The maximum electric field calculated using the model shown in the figure is 9
A curve diagram showing the electric field distribution near the conductor corner of the coil of the present invention in which the insulation thickness is thinned so that the insulation thickness is 5. 1st
2 and 13 are cross-sectional views of coils showing other embodiments of the present invention. ■...Element wire conductor 2...#'η insulation 3...Cumulative &
! 4...Turn insulation 5...Main insulation 6...Corona prevention layer IO...Material insulation of strands and turn insulation 10-Gb thin insulation 16...Electric field relaxation layer 17...Substitute for iron core Person Patent Attorney Noriyuki Chika (1 person) Fig. 1 Fig. 2 Fig. 3 Distance 2 (Kehler Fig. 4 Fig. 5 Fig. 6 = Fig. 7. Fig. 8 Conductor-Uno Distance) λ (Prayer-1) Fig. 9 Groove A Main η・Ra C Distance l (γm) Fig. 10/7 Fig. 11

Claims (1)

【特許請求の範囲】 +1) 電線w ?N数回巻回してマルチターンとなし
、最外側ターンのターン絶縁の表面に半導電層を設け、
全てのターン全一括して包囲する対地絶縁金膜け、鉄心
スロットに納めたことを特徴とする絶縁コイル。 (2) 半導′電層のコイルの長さ方向の終端は、対地
絶縁の表面に施された電界緩和層の下に位置したことを
特徴とする特許請求の範囲第1項記載の絶縁コイル。
[Claims] +1) Electric wire w? N turns several times to form a multi-turn, and a semi-conducting layer is provided on the surface of the outermost turn insulation.
An insulated coil characterized by a ground insulating gold film surrounding all turns and housed in an iron core slot. (2) The insulated coil according to claim 1, wherein the longitudinal end of the coil of the semiconducting electric layer is located under the electric field relaxation layer applied to the surface of the ground insulation. .
JP58112870A 1983-06-24 1983-06-24 Insulated coil Pending JPS605747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58112870A JPS605747A (en) 1983-06-24 1983-06-24 Insulated coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58112870A JPS605747A (en) 1983-06-24 1983-06-24 Insulated coil

Publications (1)

Publication Number Publication Date
JPS605747A true JPS605747A (en) 1985-01-12

Family

ID=14597583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58112870A Pending JPS605747A (en) 1983-06-24 1983-06-24 Insulated coil

Country Status (1)

Country Link
JP (1) JPS605747A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2261187B (en) * 1991-11-08 1995-11-08 Kaumagraph Flint Corp Method of making a molded applique product
EP1903662A1 (en) * 2006-09-25 2008-03-26 Abb Research Ltd. A high voltage rotating machine and an electric installation provided therewith
EP2333938A1 (en) * 2009-12-09 2011-06-15 Alstom Technology Ltd Stator bar
CN104901459A (en) * 2015-07-06 2015-09-09 永济新时速电机电器有限责任公司 Converter-powered loose winding motor
WO2019077821A1 (en) * 2017-10-19 2019-04-25 株式会社日立製作所 Rotating electrical machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2261187B (en) * 1991-11-08 1995-11-08 Kaumagraph Flint Corp Method of making a molded applique product
EP1903662A1 (en) * 2006-09-25 2008-03-26 Abb Research Ltd. A high voltage rotating machine and an electric installation provided therewith
EP2333938A1 (en) * 2009-12-09 2011-06-15 Alstom Technology Ltd Stator bar
CN104901459A (en) * 2015-07-06 2015-09-09 永济新时速电机电器有限责任公司 Converter-powered loose winding motor
WO2019077821A1 (en) * 2017-10-19 2019-04-25 株式会社日立製作所 Rotating electrical machine
JP2019075951A (en) * 2017-10-19 2019-05-16 株式会社日立製作所 Rotary electric machine

Similar Documents

Publication Publication Date Title
US7109835B2 (en) Highly insulated inductive data couplers
ATE504929T1 (en) ELECTRICAL DEVICE
JPS605747A (en) Insulated coil
KR100309318B1 (en) Electromagnetic Interference Heating Cable
US1784989A (en) Elimination of corona in alternators
NO752943L (en)
JPS58157350A (en) Insulated coil for rotary electric machine
US11804748B2 (en) Corona protection insulation system
JP3615926B2 (en) Stator coil end structure of rotating electrical machine
JP2000125498A (en) Insulation structure of three-phase ac dynamoelectric machine stator coil
JPS6134836Y2 (en)
JP2005341706A (en) Rotating electric machine
NO20002734L (en) Insulated conductor for high voltage winding machines
JP2863649B2 (en) Corona shield layer
JPH0638424A (en) Stator coil of high-tension rotating electric machine
JP2002125339A (en) Coil of high-voltage dynamoelectric machine
JPS61247247A (en) Winding for rotary electric machine
AU2003301381B2 (en) Highly insulated inductive data couplers
JPH0428198Y2 (en)
JPH01152938A (en) Winding of rotary electric machine
JPS59165945A (en) Stator coil of rotary electric machine
JPH0670499A (en) Stator coil for high voltage rotary electric machine
JPS5821763B2 (en) Rubber/plastic insulated power cable
JPS59165936A (en) Stator coil of rotary electric machine
JPS5861612A (en) Winding for electric induction apparatus