JPS6057315A - Wide-visual field eyepiece lens - Google Patents

Wide-visual field eyepiece lens

Info

Publication number
JPS6057315A
JPS6057315A JP58165664A JP16566483A JPS6057315A JP S6057315 A JPS6057315 A JP S6057315A JP 58165664 A JP58165664 A JP 58165664A JP 16566483 A JP16566483 A JP 16566483A JP S6057315 A JPS6057315 A JP S6057315A
Authority
JP
Japan
Prior art keywords
lens
positive
distortion
curvature
positive lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58165664A
Other languages
Japanese (ja)
Other versions
JPH0428285B2 (en
Inventor
Hiroshi Yamada
浩 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP58165664A priority Critical patent/JPS6057315A/en
Publication of JPS6057315A publication Critical patent/JPS6057315A/en
Publication of JPH0428285B2 publication Critical patent/JPH0428285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To improve the capacity with simple constitution by constituting a lens system with the first positive lens, the second biconcave negative lens, the third positive lens, and the fourth positive lens having a higher-curvature surface directed to the incidence side, which are arranged in order from the light incidence side, to satisfy specific conditions. CONSTITUTION:The lens system is provided with the first positive lens L1, the second biconcave negative lens L2, the third positive lens L3, and the fourth positive lens L4 whose surface having a higher curvature is directed to the incidence side, and these lenses are arranged in order from the light incidence side, namely, the side of a space image I . The lens system is constituted to satisfy conditions of formulas I -IV where focal lengths of the whole of the system, the second lens, and the fourth lens are denoted as F, f2, and f4 respectively and the resultant focal length of the first-the third lenses is denoted as F' and the radius of curvature in the eye side of the fourth lens is denoted as r8. If these conditions are satisfied, a wide-visual field eyepiece lens is obtained which has a small distortion and has the spherical aberration of the pupil compensated well and is superior in flatness of the image surface and has a simple constitution.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、顕微鏡用の広視野接眼レンズに関する。[Detailed description of the invention] (Technical field of invention) The present invention relates to a wide field eyepiece for a microscope.

(発明の背景) 従来の一般的接眼レンズは正の単レンズ又は接合レンズ
で構成されたものが多く、従ってペノッグアール和が大
きく像面彎曲が残存し、ま、た歪曲収差も大きいものが
多かった。生物分野に使われる顕微鏡の場合、その対象
となる標本は透過標本で厚みのあるものが多く、またそ
の形状も不規則であり、像面彎曲や歪曲収差の残存して
いる光学系でもある程度は問題がなかった。ところが、
最近のIC産栗の発達に伴ない、その検査工程などでも
顕微鏡が使われることが多くなった。これらの標本は生
物分野における標本とは異なり、多くの場合反射光で観
察する平坦な標本であり、また微細な規則的なパターン
の連続したものである。
(Background of the Invention) Most conventional eyepiece lenses were composed of a positive single lens or a cemented lens, and therefore had a large Pennog-Rir sum and residual field curvature, and also had large distortion. . In the case of microscopes used in the biological field, the target specimens are often thick, transparent specimens, and their shapes are irregular. There were no problems. However,
With the recent development of IC chestnuts, microscopes are increasingly being used in the inspection process. These specimens are different from specimens used in the biological field, in that they are often flat specimens that are observed using reflected light, and they are made up of a series of fine regular patterns.

従って、これらを観察する場合には、その光学系の像面
彎曲と歪曲収差を小さくしておく必要がある。顕微鏡光
学系において、対物レンズと接眼レンズの歪曲収差を比
べた場合、一般に接眼レンズの歪曲収差の方が大きく残
存しており、まず接眼レンズの改良が望まれていた。
Therefore, when observing these objects, it is necessary to minimize the field curvature and distortion of the optical system. In a microscope optical system, when comparing the distortion aberrations of the objective lens and the eyepiece lens, it is generally found that the distortion aberration of the eyepiece lens remains larger, and there has been a desire to improve the eyepiece lens.

このため、写真レンズでよく知られているトリブレット
型レンズを基本とした接眼レンズが、例えば特開昭54
−154342号公報により知られている。この接眼レ
ンズは強い負屈折力のレンズを設けることによりペッツ
バール和を小さくシ、非点収差及びコマ収差を良好に補
正したものであった。
For this reason, eyepiece lenses based on the triplet type lens, which is well known as a photographic lens, have been developed, for example, in Japanese Patent Application Laid-open No. 54
It is known from the publication No.-154342. This eyepiece lens had a lens with a strong negative refractive power, so that the Petzval sum was small and astigmatism and coma aberration were well corrected.

しかしながら、この接眼レンズでは、歪曲収差が最大画
角においてまだ数チ残存し、しかも瞳の球面収差の補正
も未だ十分ではなかった。瞳の球面収差とは、対物レン
ズの射出瞳が接眼レンズにより、アイポイント位置に結
像する際の画角による光軸方向のズレ量である。即ち画
角によりアイポイント位置が異なってしまうことを意味
する。この瞳の球面収差が太きいと、視野周辺部、中間
部、中央部付近のプ束が同じ位置に集光せず、著しい場
合には、視野にクランを生じてしまう。
However, with this eyepiece lens, several distortion aberrations still remain at the maximum angle of view, and correction of spherical aberration of the pupil is still not sufficient. The spherical aberration of the pupil is the amount of deviation in the optical axis direction due to the angle of view when the exit pupil of the objective lens is imaged at the eyepoint position by the eyepiece lens. That is, this means that the eye point position differs depending on the angle of view. If the spherical aberration of the pupil is large, the optical flux near the peripheral, middle, and central portions of the visual field will not be converged at the same position, and in severe cases, crumpling will occur in the visual field.

(発明の目的) 本発明の目的は、歪曲収差が小さく、瞳の球面収差も良
好に補正され、像面の平坦性に優れた、しかも簡単な構
成からなる広視野接眼レンズを提供することにある。
(Objective of the Invention) An object of the present invention is to provide a wide-field eyepiece with a simple structure, which has small distortion, good correction of spherical aberration of the pupil, and excellent flatness of the image surface. be.

(発明の概要) 本発明による広視野接眼レンズは、第1図に示すごとく
、光の入射側すなわち、空間像1側より順に、正レンズ
の第1V7ズ(L、)両凹負レンズの第2レンズ(L、
)、正レンズの第3レンズ(L、)、入射光側により曲
率の強い面を向けた正レンズの第4レンズ(L4)を有
するものである。そして全体の焦点距離をF1第2レン
ズ(L、)及び第4レンズ(L、)の焦点距離をそれぞ
れf、、fa、該第1〜@3レンズの合成焦点距離をF
′とし、該第4レンズ(、L、)の射出光側、すなわち
眼側のレンズ面の曲率半径をr、とするとき、 +1.5F < l fl l’ < (1,8F (
1’10.9F< f、 < 1.4F (2”10.
1F”< f、< 0.5F’ (3)−O,’7 (
F/r、< 0.7 (4)の各条件を満足するもので
ある。
(Summary of the Invention) As shown in FIG. 1, the wide-field eyepiece according to the present invention comprises, in order from the light incident side, that is, the aerial image 1 side, the first V7 lens (L) of the positive lens, the first V7 lens (L) of the biconcave negative lens, and 2 lenses (L,
), a third lens (L, ) which is a positive lens, and a fourth lens (L4) which is a positive lens with a surface having a stronger curvature facing toward the incident light side. Then, the overall focal length is F1, the focal length of the second lens (L, ) and the fourth lens (L,) is f, fa, and the composite focal length of the first to third lenses is F.
', and the radius of curvature of the lens surface on the exit light side, that is, on the eye side, of the fourth lens (,L,) is r, then +1.5F < l fl l'< (1,8F (
1'10.9F < f, < 1.4F (2"10.
1F"< f, <0.5F'(3)-O,'7 (
F/r, < 0.7 It satisfies each condition (4).

上記本発明の接眼レンズもまたいわゆるトリブレット型
レンズを基本とするものではあるが、最も射出光側の正
レンズすなわち第4レンズ(+、、)の屈折力が比較的
小さいことを主たる特徴とするものである。すなわち、
前述した特開昭54−154342号公報に開示された
接眼レンズでは、眼に最も近い正レンズの屈折力が強く
、シかも眼側により強い凸面を向けた構成であるため、
ここで発生する歪曲収差がその直前に位置する負レンズ
に」:っても打消すことができず残存する傾向にあり、
才だ、瞳の球面収差については、このような眼側の強い
正屈折力のために補正不足となっていることが判明し、
これらの改善のために、必要な上記のごとき最適条件を
見い出したのである。
The eyepiece of the present invention is also based on a so-called triplet type lens, but its main feature is that the positive lens closest to the exit light side, that is, the fourth lens (+, , ), has a relatively small refractive power. It is something to do. That is,
In the eyepiece disclosed in Japanese Patent Application Laid-Open No. 54-154342, the refractive power of the positive lens closest to the eye is strong, and the convex surface is directed toward the eye.
Even if the distortion generated here cannot be canceled out by the negative lens located immediately before it, it tends to remain.
It was discovered that the spherical aberration of the pupil was undercorrected due to the strong positive refractive power on the eye side.
In order to make these improvements, we have found the necessary optimal conditions as described above.

以下、上記の各命件について説明する。Each of the above instructions will be explained below.

(1)式は第2レンズとしての負レンズのパワーに関す
るものである。この負レンズは歪曲収差の補正、アイン
リーフ(眼距)め確保、像面彎曲の補正、即ちペッツバ
−ル和を小さくするために必要である。この条件の下限
を超えると負レンズのパワーが強くなり過ぎ、メリディ
オナル像面、及び歪曲収差がプラスに行き過ぎ、第4レ
ンズとしての正レンズで補正した場合にも最大画角付近
で歪曲収差がUターンする曲がりを生じる。、また、瞳
の球面収差もプラスに行き過ぎる。他方、上限を超える
と、負レンズのパワーが弱くなり過ぎ、ペッツバー ル
和が大きくなり、像面彎曲が大きくなる。また、光束の
発散作用も小さくなるためアイリーフも小さくならざる
を得ない。
Equation (1) relates to the power of the negative lens as the second lens. This negative lens is necessary to correct distortion aberration, secure eye-leaf (eye distance), and correct field curvature, that is, to reduce Petzval sum. If the lower limit of this condition is exceeded, the power of the negative lens will become too strong, and the meridional image plane and distortion will become too positive, and even when corrected with a positive lens as the fourth lens, the distortion will be U near the maximum angle of view. Causes a bend to turn. , Also, the spherical aberration of the pupil becomes too positive. On the other hand, if the upper limit is exceeded, the power of the negative lens becomes too weak, the Petzval sum increases, and the field curvature increases. Furthermore, since the divergence effect of the luminous flux becomes smaller, the eye leaf also becomes smaller.

(2)式は第4レンズとしての正レンズのパワーに関す
るものである。この正レンズは第2レンズの負レンズと
共に、像面彎曲と歪曲収差の補正のI(ランスを良くす
るためのものであり、この正レンズは、第2レンズの角
レンズで大きく発生した正の歪曲収差を打消すべく、負
の歪曲収差を発生させている。この条件の下限を超える
と正レンズのパワーが強くなり、第1〜第3レンズの合
成の)くワーが相対的に弱くなり、倍率色収差が補正不
足になる。また、後述の条件式(6)、(7)の範囲と
も関連するが、この範囲の既存の硝種をもってしても単
レンズのままでは補正が困難になる。まだ、像面と第ル
ンズとの間隔が短かくなり、レンズ面のゴミセキズが目
立つようになる。他方、との条件の上限を超えると正レ
ンズのパワーが弱くなり過ぎ、メリティオナル像面が歪
曲収差に比べて大きく正方向に動くため、これを第2レ
ンズの負レンズで打消した場合、歪曲収差が打消しきれ
ず残存してしまう。
Equation (2) relates to the power of the positive lens as the fourth lens. This positive lens, along with the negative lens of the second lens, is used to improve I (lance) for correcting field curvature and distortion aberration. Negative distortion is generated in order to cancel the distortion.When the lower limit of this condition is exceeded, the power of the positive lens becomes stronger, and the power of the combination of the first to third lenses becomes relatively weaker. , lateral chromatic aberration will be undercorrected. Furthermore, although it is related to the ranges of conditional expressions (6) and (7) described later, it is difficult to correct the condition using a single lens even if existing glass types within this range are used. However, the distance between the image plane and the lens becomes shorter, and scratches on the lens surface become more noticeable. On the other hand, if the upper limit of the condition is exceeded, the power of the positive lens becomes too weak and the meritional image plane moves in the positive direction to a greater extent than the distortion, so if this is canceled by the second negative lens, the distortion cannot be canceled out and remains.

逆に歪曲収差を打消した場合には、メリディオナル像面
が負に行き過ぎ、また瞳の球面収差がオーバーになって
しまう。
Conversely, if the distortion aberration is canceled, the meridional image surface becomes too negative and the spherical aberration of the pupil becomes excessive.

(3)式は第1〜第3レンズの合成と第4レンズとのパ
ワーの比に関するものである。下限を超えると第4レン
ズの正のパワーが相対的に強くなり過ぎ、(2)r’i
7)説明と同様に倍率色収差がアンダーとなり、単し/
ズのみの構成では補正が困難になる。
Equation (3) relates to the power ratio between the combination of the first to third lenses and the fourth lens. If the lower limit is exceeded, the positive power of the fourth lens becomes relatively too strong, and (2) r'i
7) As in the explanation, the chromatic aberration of magnification is undervalued, and it is simply /
Correction is difficult with a configuration that only includes

他方上限を超えると第4レンズの正のパワーが相対的に
弱くなり、メリディ牙ナル像面と歪曲収差の補正のバラ
ンスが難しくなる。つまり第4レンズのパワーの変化は
メリディオナル像面に大きく影響を及)!l’L、第1
〜第3レンズの合成のパワーの変化は歪曲収差に大きく
影響を及ばずため、第4レンズのパワーと第1〜第3レ
ンズの合成のパワーは上記の条件式(3)を満足しない
と収差のバランスをとることが難しくなる。
On the other hand, if the upper limit is exceeded, the positive power of the fourth lens becomes relatively weak, making it difficult to balance the meridional image plane and correction of distortion aberration. In other words, changes in the power of the fourth lens greatly affect the meridional image plane)! l'L, 1st
~Changes in the combined power of the third lens do not significantly affect distortion, so unless the power of the fourth lens and the combined power of the first to third lenses satisfy the above conditional expression (3), aberrations will occur. It becomes difficult to maintain a balance.

(4)式は第4レンズの眼側のレンズ面の曲率に関する
ものである。この条件の下限を超えると眼に対しての正
屈折力が強くなり、歪曲収差とノリディオナル像面がプ
ラスに行きすぎる。特に歪曲収差は、画角が大きくなる
に従って急激に正方向に3動き、第2レンズの負レンズ
で最大画角の歪曲収差を打消しても中間の歪曲収差が大
きく残存する。
Equation (4) relates to the curvature of the eye-side lens surface of the fourth lens. If the lower limit of this condition is exceeded, the positive refractive power for the eye becomes strong, and the distortion aberration and noridional image surface become too positive. In particular, the distortion aberration rapidly moves in the positive direction as the angle of view increases, and even if the second negative lens cancels out the distortion at the maximum angle of view, a large amount of intermediate distortion remains.

これを実際に観察すると視野の中間部分は糸巻型歪曲、
周辺部分が樽型歪曲という好ましくない歪曲となってし
まう。逆に上限を超えると眼に対しての正屈折力が弱く
なり、歪曲収差とメリディオナル像面がマイナスに行き
すぎる。歪曲収差を第1〜第3レンズで補正した場合で
もメリディオナル像面がマイナスのまま大きく残ってし
まう。また、瞳の球面収差が大きくプラスに動き、画角
によるアイポイント位置が異なり、更に主点が像側に寄
るためアイレリーフ自体も短かくなり観察の際不便であ
る。
When this is actually observed, the middle part of the visual field has a pincushion distortion.
The peripheral portions end up with undesirable barrel distortion. On the other hand, if the upper limit is exceeded, the positive refractive power for the eye becomes weaker, and the distortion and meridional image plane become too negative. Even when distortion is corrected by the first to third lenses, the meridional image plane remains large and negative. In addition, the spherical aberration of the pupil moves significantly in the positive direction, the eye point position differs depending on the angle of view, and the principal point moves closer to the image side, so the eye relief itself becomes shorter, which is inconvenient during observation.

上記のごとき本発明の構成において、第2レンズと第3
レンズとの空気間隔をd4、第2レンズ及び第4レンズ
のアツベ数をそれぞれν1、ν4とするとき、 0.081f、l < d、 < 0.221f、l 
(5)杓 <30 (6) ν、>45 (7) の条件を満足することが望ましい。
In the configuration of the present invention as described above, the second lens and the third lens
When the air distance with the lens is d4, and the Atsube numbers of the second and fourth lenses are ν1 and ν4, respectively, 0.081f, l < d, < 0.221f, l
(5) It is desirable to satisfy the following conditions: <30 (6) ν, >45 (7).

(5)式の条件は第2レンズとしての負レンズの焦点距
離f、と第2レンズと第3レンズとの間隔(14の比に
関するものである。d6が下限を超えると、即ち第2レ
ンズと第3レンズとの間隔が小さくなると、第2レンズ
の凹レンズではね上げられた光束があまり上がらないう
ちに第3レンズの正レンズで収束させられるため、アイ
レリーフが短かくなる。また、d4をあまり小さくする
と第2レンズと第3レンズとがぶつかってしまうので、
これ以下にはできない。他方d、が上限を超えると、即
ち第2レンズ、第3レンズとの間隔が大きくなると、倍
率色収差が補正不足になり単レンズのままでは既存の硝
種では補正が困難である。また、像面から第ルンズまで
の距離が小さくなり、レンズ面のキズセゴミが目立ち易
く、観察上好ましくない。
The condition of equation (5) is related to the focal length f of the negative lens as the second lens and the distance (14 ratio) between the second lens and the third lens.If d6 exceeds the lower limit, that is, the second lens When the distance between d4 and the third lens becomes smaller, the light beam bounced up by the concave lens of the second lens is converged by the positive lens of the third lens before it rises much, resulting in a shorter eye relief. If it is too small, the second lens and third lens will collide,
I can't do less than this. On the other hand, when d exceeds the upper limit, that is, when the distance between the second lens and the third lens becomes large, the chromatic aberration of magnification becomes insufficiently corrected, and it is difficult to correct it with existing glass types if a single lens is used. In addition, the distance from the image plane to the first lens becomes small, and scratches and dirt on the lens surface become noticeable, which is unfavorable for observation.

(6)、(7)式は主に倍率色収差の補正に関するもの
である。(6)式は第2レンズとしての負レンズのアツ
ベ数の適切な範囲を規定するものである。本構成におい
ては、負レンズは1個のみであり、また接合レンズが存
在しない為、負レンズのアツベ数はω)式の範囲にない
と、倍率色収差が補正しきれない。(7)式は第4レン
ズとしての正レンズのアツベ数の適切な範囲を規定する
ものである。本構成において、正レンズは3個存在する
が、倍率色収差に最も効くのが第4レンズとしての正レ
ンズである。従って、この第4レンズとしての正レンズ
のアツベ数が上記の範囲にないと倍率色収差が補正しき
れない。
Equations (6) and (7) mainly relate to correction of lateral chromatic aberration. Equation (6) defines an appropriate range of the Abbe number of the negative lens as the second lens. In this configuration, there is only one negative lens and there is no cemented lens, so unless the Abbe number of the negative lens falls within the range of formula ω), the chromatic aberration of magnification cannot be corrected completely. Equation (7) defines an appropriate range of the Abbe number of the positive lens as the fourth lens. In this configuration, there are three positive lenses, but the positive lens as the fourth lens is most effective against lateral chromatic aberration. Therefore, unless the Abbe number of the positive lens as the fourth lens is within the above range, the chromatic aberration of magnification cannot be corrected completely.

尚、本構成において、第ルンズと第4レンズとのいずれ
かを接合レンズにすれば、(6)、(7)式の範囲はも
っと広くなるが、安価で簡単な構成とするためには、単
レンズのままとし、上記の範囲を満足するのが望ましい
In addition, in this configuration, if either the first lens or the fourth lens is a cemented lens, the range of equations (6) and (7) will be wider, but in order to have an inexpensive and simple configuration, It is desirable to leave it as a single lens and satisfy the above range.

(実施例) 以下に本発明による実施例について説明する。(Example) Examples according to the present invention will be described below.

各実施例はいずれも上記本発明の条f’l二を全て満た
すものである。そして、第1実施例では次のごとく極め
て簡単な構成になっている。すなわち8151〜第4レ
ンズは全て単一レンズで形成され、第ルンズと第3レン
ズは同一のものであり、第2レンズとしての負レンズは
両面の曲率半径の絶対値が等しい両凹レンズであり、第
4レンズの眼側のレンズ面は平面である。さらに3個の
正レンズの硝種は同一である。従って、研磨面合計8簡
のうち、平面以外の曲率原器及び皿は4種類のみであり
、工具の種類が少なく、工数の低減効果が著しいもので
ある。
Each of the embodiments satisfies all of the above-mentioned conditions f'l2 of the present invention. The first embodiment has an extremely simple configuration as follows. That is, the 8151 to 4th lenses are all formed of a single lens, the 3rd lens and the 3rd lens are the same, and the negative lens as the 2nd lens is a biconcave lens with the same absolute value of the radius of curvature on both sides, The eye-side lens surface of the fourth lens is a flat surface. Furthermore, the glass types of the three positive lenses are the same. Therefore, out of a total of 8 polishing surfaces, there are only 4 types of curvature prototypes and plates other than flat surfaces, which reduces the number of types of tools and significantly reduces the number of man-hours.

本発明による第1〜第4実施例の諸元を順に下表に示す
。但し、I’、、r、、r、・・・は入射光側すなわち
対物レンズ側から順次の各レンズ面の曲率半径を表わし
、dいd、、d、、・・は各レンズの中心厚及び空気間
隔、nl、n、・・・は各レンズのd線(λ=587.
6nm)に対する屈折率、ν1、ν、・・・は各レンズ
のアツベ数を表わすものとする。また、各実施例の焦点
距離は25箭、画角は20)=44°で共導であり、P
はペンツバール和、EPはアイレリーフ(眼距すなわち
最終レンズ面頂点からアイポイントマでの距離)を表わ
すものとする。
The specifications of the first to fourth embodiments according to the present invention are shown in the table below. However, I',, r,, r,... represent the radius of curvature of each lens surface sequentially from the incident light side, that is, the objective lens side, and dd,, d,,... are the center thicknesses of each lens. and air spacing, nl, n, . . . are the d-line of each lens (λ=587.
6 nm), the refractive indexes ν1, ν, . . . represent the Abbe number of each lens. In addition, the focal length of each example is 25°, the angle of view is 20) = 44°, and it is co-conducting.
is the Pentuval sum, and EP represents the eye relief (ocular distance, that is, the distance from the apex of the final lens surface in terms of the eye point).

(第1実施例) P=0.024 EP=21.1 ” ”” ”9”’ (Il”’5.5 11+ ””
1.713 1’l −54,0r、 =−35,4 d、 =4.3 r、 −−27°Od、 =3.On、 =1.784
7 11. =25.8rl = 2.7.0 da ”’2.(+ r、 = 5’J、3 rl =−35,4” =5.5 11+ 、=l、7
13 ν、=54.Od藝=0.8 r、 = 21.4 r、 = ωdy =6.On4 =l、713 ν、
=54.0(第2実施例) P=0.025 EP=19.2 r、 = 28.6 r、 、、:36.(l d、 ==8.Q ’ nl
 ”1.6968 シ、=55.6d、 =2.6 r、 = 28、O r、 :I B、B d−二1.5 fl+ ””1.
7408 ν+ ”27.6d、 =2.4 rs=45.4 r、 =−42,3ds =5.0 nl =1.62
04 1/、 =60.34 =0.2 r、 = 、 17.1 r、 = 87.0 ” =5、On、 =1.713
 ν、 =5’4.Q(第3実施例) p=Q、925 E P = 19.6r′−37°7
d、=8.Q n1=1.6385 p、−55,5r
l =−28,5 d、 =3.0 r、 =−22,3 r4= 26.B d、 =1.5 rb =1.78
47 ν# =2(i、1at −1,8 rv−57,0 、、==−36,46I”4.5 0+ =1.717
 νs =48.1d、 =0.2 rv ”” 19.3 r、 =] 4o、o d、 =6.7 n、 =1.
717 ν、=48.1(第4実施例) P=0.025 E P = 21.0” ” ””4
cL =5.5 III =1.713 1’l =5
4.Or、 =−34,Q 市=4.3 ” ”−2” d−=3.On= =1.7552 h
 =27.6r、 = 26.0 (L =2.0 rg=59°3dI=5.5 nI=1.713 1’
、=54.Ore = 35.4 d、 =0.8 rv−20°5d、 =6.On、 =1.6583 
v、 =57.3r、 =−500,0 上記第1〜第4実施例それぞれにおける本発明による上
記条件式の対応値を下表にそれぞれ示しておく。
(First Example) P=0.024 EP=21.1 ” ” ”9”'(Il”'5.5 11+ ””
1.713 1'l -54,0r, =-35,4 d, =4.3 r, --27°Od, =3. On, =1.784
7 11. =25.8rl = 2.7.0 da ”'2. (+ r, = 5'J, 3 rl = -35,4" = 5.5 11+ , = l, 7
13 ν, =54. Od = 0.8 r, = 21.4 r, = ωdy = 6. On4 = l, 713 ν,
=54.0 (Second Example) P=0.025 EP=19.2 r, = 28.6 r, , :36. (l d, ==8.Q' nl
``1.6968 shi, =55.6d, =2.6 r, = 28, Or r, :I B, B d-2 1.5 fl+ ``''1.
7408 ν+ ”27.6d, =2.4 rs=45.4 r, =-42,3ds =5.0 nl =1.62
04 1/, =60.34 =0.2 r, = , 17.1 r, = 87.0'' =5, On, =1.713
ν, =5'4. Q (Third Example) p=Q, 925 E P = 19.6r'-37°7
d,=8. Q n1=1.6385 p, -55,5r
l =-28,5 d, =3.0 r, =-22,3 r4=26. B d, =1.5 rb =1.78
47 ν# =2(i, 1at -1,8 rv-57,0 ,, ==-36,46I"4.5 0+ =1.717
νs =48.1d, =0.2 rv ”” 19.3 r, =] 4o, o d, =6.7 n, =1.
717 ν, = 48.1 (4th example) P = 0.025 E P = 21.0” ” 4
cL =5.5 III =1.713 1'l =5
4. Or, =-34,Q City=4.3""-2" d-=3.On= =1.7552 h
=27.6r, =26.0 (L =2.0 rg=59°3dI=5.5 nI=1.713 1'
,=54. Ore = 35.4 d, =0.8 rv-20°5d, =6. On, =1.6583
v, =57.3r, =-500,0 Corresponding values of the above conditional expression according to the present invention in each of the above first to fourth embodiments are shown in the table below.

上記第1〜第4実施例の諸収差図をそれぞれ順に第2図
〜第4図に示す。各収差図には、瞳の球面収差(PSp
H)を基準光線としての(1線(λ−587,Gnm)
、C線(λ=656.3nm)、F線(λ=486.1
.nm)、g線(λ= 435.8 nm )について
示し、また、111−側から光線追跡計算を行なった場
合の非点収差(Ast)、コマ収差(COma)、歪曲
収差(Di s)をそれぞれ示した。尚、接眼レンズの
性能を分り易く説明するために、収差計算においては、
対物レンズを無収差とした。
Aberration diagrams of the first to fourth embodiments are shown in FIGS. 2 to 4, respectively. Each aberration diagram shows the spherical aberration of the pupil (PSp
H) as the reference beam (1 line (λ-587, Gnm)
, C line (λ=656.3nm), F line (λ=486.1nm)
.. nm), g-line (λ = 435.8 nm), and astigmatism (Ast), coma aberration (COma), and distortion aberration (Di s) when ray tracing calculations are performed from the 111- side. shown respectively. In addition, in order to explain the performance of the eyepiece lens in an easy-to-understand manner, in the aberration calculation,
The objective lens was made aberration-free.

上記の各収差図より、各実施例ともII!iiの球面収
差が十分良好に補正され、像面彎曲、コマ収差、歪曲収
差も良好に補正されており、特に歪曲収差は約1係と極
めて良好に補正されていることが明らかである。
From each aberration diagram above, each example is II! It is clear that the spherical aberration (ii) is sufficiently well corrected, and the curvature of field, coma aberration, and distortion are also well corrected, and in particular, the distortion is very well corrected with a factor of about 1.

(発明の効果) 以上のごとく、本発明によれば、歪曲収差が小さく、瞳
の球面収差も良好に補正され像面の平坦性にも優れた高
性能の広視野接眼レンズが簡単に製造でき、IC素子等
の平坦な規則的微細パターンの検査に適した接眼レンズ
の犬1.かつ安価な供給が可能となる。
(Effects of the Invention) As described above, according to the present invention, it is possible to easily manufacture a high-performance wide-field eyepiece with small distortion, good correction of spherical aberration of the pupil, and excellent flatness of the image plane. 1. An eyepiece lens suitable for inspecting flat regular fine patterns such as IC devices. Moreover, it becomes possible to supply it at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による接眼レンズの光路図、第2図〜第
5図は本発明による第1〜第4実施例の諸収差図である
。 (主要部分の符号の説明) L、・・・・・・・・・第2レンズ L、・・・・・・・・・第2レンズ L、・・・・・・・・・第3レンズ L4・・・・・・・・・第4レンズ 出願人 日本光学工業株式会社 代理人 渡辺隆男
FIG. 1 is an optical path diagram of an eyepiece lens according to the present invention, and FIGS. 2 to 5 are aberration diagrams of first to fourth embodiments of the present invention. (Explanation of symbols of main parts) L, ...... Second lens L, ...... Second lens L, ...... Third lens L4・・・・・・Fourth lens applicant Takao Watanabe, agent of Nippon Kogaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 光の入射側より順に、正レンズの第ルンズ、両凹負レン
ズの第2レンズ、正レンズの第3レンズ、入射光側によ
り曲率の強い面を向けた正レンズの第4レンズを有し、
全体の焦点距離を1−1該第2レンズ及び該第4レンズ
の焦点距離をそれぞれfl、(、、該第1〜第3レンズ
の合成焦点距離をF′とし、該第4レンズの射出光側の
レンズ而の曲率半径をr、とするとき、 o、5F< l fl l <o、aF (1)0.9
F< L (i、4F’ (2)o、il”’< f、
<0.5F’ (3)−〇、7 <F/r、 <0.7
 (4)の各条件を満足する広視野接眼レンズ。
[Claims] In order from the light incident side, the first lens is a positive lens, the second lens is a biconcave negative lens, the third lens is a positive lens, and the third lens is a positive lens with a surface with a stronger curvature facing toward the incident light side. It has 4 lenses,
Let the overall focal length be 1-1, the focal lengths of the second lens and the fourth lens be fl, (,, the composite focal length of the first to third lenses be F', and the output light of the fourth lens be When the radius of curvature of the side lens is r, o, 5F < l fl l < o, aF (1) 0.9
F< L (i, 4F' (2) o, il"'< f,
<0.5F' (3)-〇, 7 <F/r, <0.7
A wide-field eyepiece that satisfies each condition (4).
JP58165664A 1983-09-08 1983-09-08 Wide-visual field eyepiece lens Granted JPS6057315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165664A JPS6057315A (en) 1983-09-08 1983-09-08 Wide-visual field eyepiece lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165664A JPS6057315A (en) 1983-09-08 1983-09-08 Wide-visual field eyepiece lens

Publications (2)

Publication Number Publication Date
JPS6057315A true JPS6057315A (en) 1985-04-03
JPH0428285B2 JPH0428285B2 (en) 1992-05-14

Family

ID=15816666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165664A Granted JPS6057315A (en) 1983-09-08 1983-09-08 Wide-visual field eyepiece lens

Country Status (1)

Country Link
JP (1) JPS6057315A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227918A (en) * 1988-11-10 1993-07-13 Olympus Optical Co., Ltd. Wide field eyepiece lens system
US5255121A (en) * 1991-10-24 1993-10-19 Olympus Optical Co., Ltd. Ultra-wide field eyepiece for microscopes
JPH07234357A (en) * 1994-02-23 1995-09-05 Asahi Optical Co Ltd Loupe
JPH08254660A (en) * 1995-01-17 1996-10-01 Asahi Optical Co Ltd Eyepiece lens
US6011655A (en) * 1995-01-17 2000-01-04 Asahi Kogaku Kogyo Kabushiki Kaisha Eyepiece
WO2014054295A1 (en) * 2012-10-04 2014-04-10 株式会社ニコン Eyepiece optical system, optical device, and eyepiece-optical-system production method
JP2014074815A (en) * 2012-10-04 2014-04-24 Nikon Corp Ocular optical system, optical device, and observation method
JP2016224239A (en) * 2015-05-29 2016-12-28 株式会社ニコン Eyepiece lens, optical device including eyepiece lens, and eyepiece lens manufacturing method
JP2017068129A (en) * 2015-09-30 2017-04-06 株式会社ニコン Ocular lens, optical device, and method of manufacturing ocular lens
CN110824694A (en) * 2019-11-13 2020-02-21 北方夜视技术股份有限公司 Enhancement mode night-vision goggles visual system based on color separation membrane
JP2022172335A (en) * 2020-12-24 2022-11-15 株式会社ニコン Ocular lens, optical equipment having ocular lens, and method of manufacturing ocular lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE616565C (en) * 1932-06-23 1935-07-31 Zeiss Carl Fa Collecting eyepiece consisting of two free-standing lens groups
JPS53138357A (en) * 1977-05-09 1978-12-02 Yoshihiko Yamauchi Eyepiece lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE616565C (en) * 1932-06-23 1935-07-31 Zeiss Carl Fa Collecting eyepiece consisting of two free-standing lens groups
JPS53138357A (en) * 1977-05-09 1978-12-02 Yoshihiko Yamauchi Eyepiece lens

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227918A (en) * 1988-11-10 1993-07-13 Olympus Optical Co., Ltd. Wide field eyepiece lens system
US5255121A (en) * 1991-10-24 1993-10-19 Olympus Optical Co., Ltd. Ultra-wide field eyepiece for microscopes
JPH07234357A (en) * 1994-02-23 1995-09-05 Asahi Optical Co Ltd Loupe
JPH08254660A (en) * 1995-01-17 1996-10-01 Asahi Optical Co Ltd Eyepiece lens
US6011655A (en) * 1995-01-17 2000-01-04 Asahi Kogaku Kogyo Kabushiki Kaisha Eyepiece
JP2014074815A (en) * 2012-10-04 2014-04-24 Nikon Corp Ocular optical system, optical device, and observation method
WO2014054295A1 (en) * 2012-10-04 2014-04-10 株式会社ニコン Eyepiece optical system, optical device, and eyepiece-optical-system production method
US9753246B2 (en) 2012-10-04 2017-09-05 Nikon Corporation Eyepiece optical system, optical apparatus and method for manufacturing the eyepiece optical system
CN107884924A (en) * 2012-10-04 2018-04-06 株式会社尼康 Eyepiece optical system and Optical devices
CN107884924B (en) * 2012-10-04 2021-03-23 株式会社尼康 Eyepiece optical system and optical device
JP2016224239A (en) * 2015-05-29 2016-12-28 株式会社ニコン Eyepiece lens, optical device including eyepiece lens, and eyepiece lens manufacturing method
JP2017068129A (en) * 2015-09-30 2017-04-06 株式会社ニコン Ocular lens, optical device, and method of manufacturing ocular lens
CN110824694A (en) * 2019-11-13 2020-02-21 北方夜视技术股份有限公司 Enhancement mode night-vision goggles visual system based on color separation membrane
JP2022172335A (en) * 2020-12-24 2022-11-15 株式会社ニコン Ocular lens, optical equipment having ocular lens, and method of manufacturing ocular lens

Also Published As

Publication number Publication date
JPH0428285B2 (en) 1992-05-14

Similar Documents

Publication Publication Date Title
US7262922B2 (en) Immersion microscope objective lens
JPH06160720A (en) Liquid immersion system microscope objective lens
JPH10274742A (en) Immersion microscopic objective lens
JPH0735983A (en) Immersion objective lens system microscope
JPH06324264A (en) Wide angle lens
JPS6057315A (en) Wide-visual field eyepiece lens
JP3353355B2 (en) Eyepiece zoom lens system, and telescope and binoculars including the eyepiece zoom lens system
JP3381409B2 (en) Aspheric eyepiece
JPH0868953A (en) Eyepiece
JPH1048513A (en) Large diameter wide angle telecentric lens
JPH11174345A (en) Wide visual field ocular
JPH05313073A (en) Eyepiece for endoscope
JPS62134617A (en) Eyepiece zoom lens system
JPH10221614A (en) Wide field eyepiece
JP3384163B2 (en) Microscope objective lens
US5532879A (en) Microscope objective lens
JP4470374B2 (en) Eyepiece
JP5912769B2 (en) Eyepieces and optical equipment
JPH11160631A (en) Wide visual field eyepiece
JPH0574806B2 (en)
JPH11316337A (en) Image-formation lens
JP4747600B2 (en) Eyepiece attachment
JPS5912411A (en) Objective lens for ic mask inspecting machine
JPS60177313A (en) Triplet lens
JP3541285B2 (en) Eyepiece