JPS605682A - Charge transfer solid-state image pickup device - Google Patents

Charge transfer solid-state image pickup device

Info

Publication number
JPS605682A
JPS605682A JP58114574A JP11457483A JPS605682A JP S605682 A JPS605682 A JP S605682A JP 58114574 A JP58114574 A JP 58114574A JP 11457483 A JP11457483 A JP 11457483A JP S605682 A JPS605682 A JP S605682A
Authority
JP
Japan
Prior art keywords
transfer
region
signal charge
amount
dynamic range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58114574A
Other languages
Japanese (ja)
Inventor
Shoichi Kitagami
北上 尚一
Harunori Sato
里 治則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58114574A priority Critical patent/JPS605682A/en
Publication of JPS605682A publication Critical patent/JPS605682A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To increase the dynamic range by designing plural transfer regions comprising transfer regions separated alternately so that the total area of the transfer regions are changed in response to the amount of signal charge generated in photoelectric transducer. CONSTITUTION:Suppose that the incident light amount to the photoelectric transducer 1 is increased, a transfer region 3a is saturated and a signal charge is transferred also to a transfer region 3b. When the signal charge reaches the region A in this state, a voltage applied to the gate of a transistor (TR)1 of an output section 9a is minimum, the TR1 is turned off in this case, that is a current 11 is zero. On the other hand, the signal charge transferred from the region 3b reaches the region A, the gate potential of a TR2 of the output section 9b, that is, a current 12 is lower in response to said signal charge amount and a voltage of R2 12 is generated at an output Vout. Thus, the relation of the areas S3a, S3b of the regions 3a, 3b and resistors R1, R2, is set as S3a:S3b=R1:R2 and for example, S3a:S3b=R1:R2=1:9, then the dynamic range is increased in the order of 1 digit.

Description

【発明の詳細な説明】 本発明は電荷転送型固体撮像装置に関し、特に該装;6
のグイナミソクレンジを高めるための構造に閂するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge transfer solid-state imaging device, and in particular to a charge transfer type solid-state imaging device;
It is a lock on the structure to increase the cleanliness of the Guinamiso.

従来、二の種の装置として入射光量に応じて積分時間を
変えるものがある。第1図にその構成図を、第2図1に
該装置におりる照度、稍う(時間、出力重重の間係を示
ず。第1図において、1は光電変換素子、2ば前記光電
変換素子1により光電変換された信号電荷を信″Ff電
(;;j転送子[ツヘ移送するためのMO3型移送り−
−ト(SG)、3は電(;ij転送レジスタ、4は和分
時間を設定するためのM OS型移送ゲ−)(TG)、
5はオーバーフロー!゛レイン(OFD) 、6ば出力
グー1− (OG) 、7はりセットゲート(RG)、
8はリセットトランジスタドレイン(RI))、9は信
号電荷を重圧値に変換するための出力部である。
Conventionally, there are two types of devices that change the integration time depending on the amount of incident light. Fig. 1 shows its configuration, and Fig. 2 shows the illuminance, time, and output weight that enters the device. The signal charge photoelectrically converted by the conversion element 1 is transferred to the MO3 type transfer element (;;j transfer element).
- gate (SG), 3 is an electric transfer register (;ij transfer register, 4 is a MOS type transfer gate for setting the integration time) (TG),
5 is overflow!゛Rain (OFD), 6 output goo 1- (OG), 7 beam set gate (RG),
8 is a reset transistor drain (RI)), and 9 is an output section for converting a signal charge into a pressure value.

次に動作について説明する。MO3型移送ゲート4がロ
ーレベルになった時点から、光mW 1!7 Mi子l
により光電変換された信号型(uiが積分されイ)。
Next, the operation will be explained. From the moment the MO3 type transfer gate 4 becomes low level, the light mW 1!7 Mil
The signal type photoelectrically converted by (ui is integrated).

そして一定時間にねたつて「(分され)こ信号型4%は
、MO3型移送ゲート2がハイレベルになることによっ
て電荷転送レジスタ3に移送され、以Fφ1、φ2、φ
3、φ4に転送パルスを加えることにより順次出力され
、出力部9で光信号電圧として検出される。この場合、
前記粕分時間′目ntは第2図に示すように照度の増大
にともない減少するように設定し、次いで外部回路によ
りfrlう3特間′l″intと信号出力Voutを演
算処理する。こうすることにより、■走査時のダイナミ
ックレンジhを持つものが、みか8ノ−ヒh゛まで向上
する。
Then, after a certain period of time, this signal type 4% is transferred to the charge transfer register 3 by the MO3 type transfer gate 2 becoming high level, and then Fφ1, φ2, φ
3. By applying a transfer pulse to φ4, the signals are sequentially output and detected as an optical signal voltage by the output section 9. in this case,
As shown in FIG. 2, the lees minute time 'nt is set to decrease as the illuminance increases, and then an external circuit calculates and processes the three special intervals 'l'int and the signal output Vout. By doing so, the dynamic range (h) during scanning can be improved to as high as 8/-h.

従来のこの種の固体撮像装置は以上のように構成されて
いるので、照度に応じて積分時間を設定しさらに積分時
間からみかけのダイナミックレンジ11“を作り出すた
めの演算回路が必要であり、また1走査時のダイナミッ
クレンジばあ(までもhであるため、明暗の極端な場合
の撮像は困難であるなどの欠点があった。
Since this type of conventional solid-state imaging device is configured as described above, it requires an arithmetic circuit to set the integration time according to the illuminance and further create an apparent dynamic range of 11" from the integration time. Since the dynamic range during one scan is only h, there are drawbacks such as difficulty in capturing images in extreme cases of brightness and darkness.

この発明は上記のような従来のものの欠点を除去するた
めになされ)こもので、入射光量に応じて転送領域全体
の面積を変えるようにすることにより、■走査時のダイ
ナミックレンジを大きくできる電荷転送型固体撮像装置
を提供することを目的とし“Cいる。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above. By changing the area of the entire transfer region according to the amount of incident light, ■ charge transfer that can increase the dynamic range during scanning. The purpose is to provide a type solid-state imaging device.

ンジは、転送領域が転送できる最大電荷量とノイズによ
って決まる最小電荷9との差によって決まる。そして一
般にノイズ源としてLet:、(1)デバイス・\の電
(1;j注入ノイズ(2ン亀荷を転送する点きの電荷量
のゆらぎによるノイズ (3)電荷検出のときのノイズ が考えられているが、今、−り記(2)rRについて考
えると、上記(2ノ項のノイズとしては暗電流や結晶欠
陥に起因するトラップノイズがある。しかし、両者とも
転送領域の大きさに伴い増加する領向にあるため、上記
ダイナミックL・ンジは転送する電荷量の大小には関係
しない。したがって上記ダイナミックレンジを増大する
ためには、信号量の大きさに応じて転送領域の大きさを
変えることが必要である。
The range is determined by the difference between the maximum amount of charge that the transfer region can transfer and the minimum charge 9 determined by noise. In general, the noise sources are considered to be (1) noise caused by fluctuations in the amount of charge at the point where the charge is transferred (3) noise during charge detection. However, if we now consider (2) rR, the noise in item (2) above includes trap noise caused by dark current and crystal defects.However, both of them depend on the size of the transfer region. Therefore, the dynamic range is not related to the magnitude of the amount of charge to be transferred.Therefore, in order to increase the dynamic range, the size of the transfer area should be adjusted according to the magnitude of the signal amount. It is necessary to change.

そこで本発明は、信号電荷量を転送する転送領域を複数
の転送領域で構成し、入射光量に応じて転送領域全体の
面積が変わるようにしたものである。
Therefore, in the present invention, the transfer area for transferring the amount of signal charge is constituted by a plurality of transfer areas, and the area of the entire transfer area changes depending on the amount of incident light.

以下、第3し1を用いて本発明の一実施例を説明する。Hereinafter, one embodiment of the present invention will be described using Part 3 and 1.

第3図において、第1図と同一符号は同一、又は相当部
う(を示し、3a、3bはそれぞれ大きさの異なる転送
領域、9a、9bはそれぞれ転送領1へ3a、3bに対
応した出力部である。
In Fig. 3, the same reference numerals as in Fig. 1 indicate the same or corresponding parts, 3a and 3b are transfer areas of different sizes, and 9a and 9b are outputs corresponding to 3a and 3b to transfer area 1, respectively. Department.

次に動作について説明する。Next, the operation will be explained.

今、光電変換素子1への入射光量が少なく、転送領域3
aが飽和しない範囲内で信−冒電荷が転送されるような
場合は、該信号電荷がへ領域に達ずろと、該転送領域3
aのへ領域の電位はその信号電荷口に応じて下がり、1
−ランジスタTriの電流114;1それに応じて小さ
くなり、出力VoutにはRl ・I l −1−R2
・I max ・・・・・・Tl)なろ重圧が発生ずる
。ここでImaxは転送領域3a、3bが空の状態に出
力部9a、9bのトランジスタi’rL ’I’r2に
流れる電流11.12の和10)最大値であり、上記(
1)式が得られるのは転送領域3 bが空である限りト
ランジスタ1゛r2のベース電位が高く、その電流I2
としてImax−1!が得られるからである。
Now, the amount of light incident on the photoelectric conversion element 1 is small, and the transfer area 3
When a signal charge is transferred within a range where a is not saturated, the signal charge reaches the region 3 and the transfer region 3
The potential of the region a decreases according to the signal charge port, and becomes 1
- The current of transistor Tri 114; 1 decreases accordingly, and the output Vout has Rl ・I l -1-R2
・I max...Tl) A heavy pressure is generated. Here, Imax is the maximum value of the sum 11.12 of the currents 11.12 flowing through the transistors i'rL'I'r2 of the output parts 9a and 9b when the transfer regions 3a and 3b are empty, and the above (
1) Equation can be obtained because as long as the transfer region 3b is empty, the base potential of the transistor 1゛r2 is high, and its current I2
As Imax-1! This is because it can be obtained.

次いで入射光量が多くなり、転送領域3aが飽f11シ
、転送領@3t)にも信号電荷が転送されてきた状態を
考える。このような状態で信司雷、荷がΔ領域に達する
と、出力部9aの1ランジスタ’l’ r 1のゲート
に加わる電圧は最小となり、このときl−ランジスタ′
「rlが叶F、つまり11−0となるように構成されて
いる。また一方、転送領hq3bを転送された信号型t
:jがA領域に達すると出力部9bのトランジスタTr
2のゲート電位ひいては電流12は該信号電荷量に応じ
て低くなり、出力VoutにはR2・I2なる電圧が発
生ずる。従って、転送領域3a、3bの面積S 3a、
S 3bと11記抗体旧。
Next, consider a state in which the amount of incident light increases, the transfer region 3a becomes full, and signal charges are also transferred to the transfer region @3t. In such a state, when the load reaches the Δ region, the voltage applied to the gate of 1 transistor 'l' r1 of the output section 9a becomes minimum, and at this time, the voltage applied to the gate of 1 transistor 'l'
"rl is configured so that it becomes F, that is, 11-0. On the other hand, the transfer area hq3b is configured so that the transferred signal type t
: When j reaches the A region, the transistor Tr of the output section 9b
The gate potential of signal 2 and thus the current 12 decrease in accordance with the amount of signal charge, and a voltage of R2·I2 is generated at the output Vout. Therefore, the area S 3a of the transfer regions 3a, 3b is
S 3b and 11th antibody old.

R2とをS3a: 53b−R1: R2の関係にして
おき、例えばS3a : 53b−1? I : R2
−1: 9で構成すれば、ダイナミックレンジは1桁増
大」゛るごととなる。
Set R2 in the relationship S3a: 53b-R1: R2, for example, S3a: 53b-1? I: R2
-1:9, the dynamic range increases by one order of magnitude.

このような本実施例装置によれば、信司雷、 (iii
口に応じ゛ζ転送領域全体の面fl”?が変わるため−
ダイナミックレンジの向上が期待てきる。また、ij(
半のものと比べMos+・ランリスク11固と11(抗
1(固とがイ]加されるだりであり、外部回路も不りl
ICある。さらに信号量の大小は1走配ごとでなく、侶
号電(iiJ 11−j体ごとで検出し7ているため、
■走査時のグイナミノクレンシが向−卜し、明暗のP 
141なり)合の撮像がiiJ能となる。
According to the device of this embodiment, Shinjirai, (iii
Because the surface fl” of the entire transfer area changes depending on the mouth.
We can expect an improvement in the dynamic range. Also, ij(
Compared to the half type, Mos+ and run risk are 11 hard and 11 (resistance 1 (hard) is added), and the external circuit is also very low.
There is an IC. Furthermore, the magnitude of the signal is detected not for each run, but for each body.
■Guinamino precision during scanning is directed, and bright and dark P
141), the imaging becomes iiJ function.

以上のように、この発明によれば、転送領域を相互に分
離された複故の転送領域とし、光電変1角素子で発生ず
る信号型7ii1 曙に応じて転送領Jh19全体の面
稍が変わるように構成したので、筒中な構成でグイナミ
ノクレンジを増大させることのできろ電荷転送型固体撮
像装置6がH9られる効果がある。
As described above, according to the present invention, the transfer area is a multiple transfer area separated from each other, and the overall condition of the transfer area Jh19 changes depending on the signal type 7ii1 generated in the photoelectric conversion element. With this configuration, there is an effect that the charge transfer type solid-state imaging device 6 is able to increase the cleanliness with the in-tube configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電荷転送型固体撮像装置のtl・V成図
、第2図は第1図に示すものの照度と出力電圧の関係を
示す図、第3図は本発明の一実施例による電荷転送型固
体撮像装置の構成図である。 1・・・光電変換素子、3a、3b・・・転送領1へ。 なお1ン1中同−・符号は同−又は相当部分を示゛→−
0代理人 大 岩 増 tjl 第1図 第2図 −ILLU+、I IN/1lcE :、゛・ 311 手続補正書(t4 f++’: ) いB1”l リ() 昭和 年 月 II ′11”j’l’l)長′白1j役 1、事f’lの表示 11°19jl、’458−11
45748′2 発明の名称 山、イ:い11・;送J11.]固1イ(力布fパ、・
′J・□−活゛、゛う、?1l)if:を−4る者 代表H片山仁へ部 −モ菱電機株式会社内 氏名 (7375)ブ1′理十人岩増多111甲・・ゾ
l”: (1’j/41.’1.t’、’ j4+ :
′1..I舎IX+5.7i+正の2′(1象 明細層の発明の訂ff!IIな説明の11°n6、補正
の内7゛1 (])明910占第51′(第11行のN? 2 ・、
lm1x lをrR2(12max −1−11> 、
1に訂正′Jる。 (2)同第5頁第12行のrlmaxjをl−12ma
x 、1に訂正する。 (3)同第5頁第12〜13行の1転送i+、i’l 
、1.’N 3 ;1゜3bJを1転送領桟3b−1に
δI止する。 (4)同第5頁第13〜14行のr9a、9hのトラン
ジスタ′I″r 1. i’r 2jを191)の1ラ
ン大(直であり、」をr+2の最大(直である。1に5
11する。 (6)同第5頁第15〜18行の11−記(1)式が・
・・・・からである。1を削除する。 以 −1
FIG. 1 is a tl/V diagram of a conventional charge transfer solid-state imaging device, FIG. 2 is a diagram showing the relationship between illuminance and output voltage of the device shown in FIG. 1, and FIG. 3 is a diagram according to an embodiment of the present invention. FIG. 1 is a configuration diagram of a charge transfer solid-state imaging device. 1...Photoelectric conversion element, 3a, 3b...To transfer area 1. Note that the same - and symbols in 1 and 1 indicate the same - or equivalent parts.→-
0 agent Masu Oiwa tjl Figure 1 Figure 2-ILLU+, I IN/1lcE:,゛・311 Procedural amendment (t4 f++': ) IB1"l li () Showa year month II '11"j'l'l)long' white 1j role 1, display of thing f'l 11°19jl, '458-11
45748'2 Name of the invention Yama, I: I11.; Transfer J11. ] Hard 1i (Rikifu fpa,・
'J・□-live゛,゛u,? 1l) if: - 4 Representative H Hitoshi Katayama Department - Name within Moribishi Electric Co., Ltd. (7375) B1' Rijunin Iwamasuta 111 A...Zol": (1'j/41. '1.t', 'j4+:
'1. .. Isha IX + 5.7i + positive 2' (correction of the invention of the 1-zoom detailed layer! II explanation 11°n6, 7゛1 of the correction (]) Mei 910 divination 51' (N in the 11th line? 2 ・,
lm1x l to rR2(12max -1-11>,
Corrected to 1. (2) Set rlmaxj on page 5, line 12 to l-12ma.
Correct x to 1. (3) 1 transfer i+, i'l on page 5, lines 12-13
, 1. 'N 3 ; 1°3bJ is stopped at δI on 1 transfer area 3b-1. (4) On page 5, lines 13 and 14, the transistors ``I''r 1.i'r 2j of r9a and 9h are 1 run large (direct), and '' is the maximum (direct) of r+2. 1 to 5
11. (6) Formula (1) in paragraph 11- of page 5, lines 15 to 18 is
It is because... Delete 1. More than -1

Claims (1)

【特許請求の範囲】[Claims] (])複数の光電変換素子とこれに隣接し該光電変換素
子で発生した信号電荷を転送する転送領域とから形成さ
れる固体撮像装置において、上記転送領域が相互に分8
1]された複数の転送領域からなり、該複数の転送領域
は上記光電変換率子で発生した信号電荷晴に応じて該信
号電荷の転送に寄与する転送領域全体の面積が変わるよ
うに構成されていることを特徴とする電11:1転送型
固体撮像装置。
(]) In a solid-state imaging device formed from a plurality of photoelectric conversion elements and a transfer area adjacent to the photoelectric conversion elements that transfers signal charges generated by the photoelectric conversion elements, the transfer areas are divided into 8 parts from each other.
1], and the plurality of transfer regions are configured such that the area of the entire transfer region contributing to the transfer of the signal charges changes depending on the signal charge generated in the photoelectric conversion factor. An 11:1 transfer type solid-state imaging device characterized by:
JP58114574A 1983-06-23 1983-06-23 Charge transfer solid-state image pickup device Pending JPS605682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58114574A JPS605682A (en) 1983-06-23 1983-06-23 Charge transfer solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58114574A JPS605682A (en) 1983-06-23 1983-06-23 Charge transfer solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS605682A true JPS605682A (en) 1985-01-12

Family

ID=14641240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114574A Pending JPS605682A (en) 1983-06-23 1983-06-23 Charge transfer solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS605682A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157081A (en) * 1984-12-28 1986-07-16 Toshiba Corp Charge transfer device
JPH01229874A (en) * 1988-03-02 1989-09-13 Agency Of Ind Science & Technol Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof
JPH02229217A (en) * 1988-11-28 1990-09-12 Avco Corp Silicon carbide monofilament with improved composite property and preparation thereof
JP2001077351A (en) * 1999-08-17 2001-03-23 Hyundai Electronics Ind Co Ltd Charge transfer device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157081A (en) * 1984-12-28 1986-07-16 Toshiba Corp Charge transfer device
JPH01229874A (en) * 1988-03-02 1989-09-13 Agency Of Ind Science & Technol Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof
JPH0316422B2 (en) * 1988-03-02 1991-03-05 Kogyo Gijutsu Incho
JPH02229217A (en) * 1988-11-28 1990-09-12 Avco Corp Silicon carbide monofilament with improved composite property and preparation thereof
JP2001077351A (en) * 1999-08-17 2001-03-23 Hyundai Electronics Ind Co Ltd Charge transfer device

Similar Documents

Publication Publication Date Title
US7750958B1 (en) Pixel structure
US7626620B2 (en) Photoelectric conversion unit stacked structure
JPH08149376A (en) Solid-state image pickup device
US20060013485A1 (en) Data processing method, data processing apparatus, semiconductor device, and electronic apparatus
JPH03208460A (en) Image sensor
JP2000175107A (en) Image sensor
GB2115636A (en) A solid-state imaging device
US11323639B2 (en) Image sensor and operation method thereof
US20100141819A1 (en) Imaging Array with Non-Linear Light Response
TW451584B (en) Reducing striped noise in CMOS image sensors
JPH05502309A (en) Autofocus chip with reference level setting circuit
US9749566B2 (en) Imaging device and electronic device
JPS605682A (en) Charge transfer solid-state image pickup device
KR100595795B1 (en) Image reading device and image reading method
JP2015002415A (en) Photoelectric conversion device, photoelectric conversion system, and method for driving photoelectric conversion device
KR100320892B1 (en) Image sensor
JP2973650B2 (en) Output circuit of charge transfer device
JP3514663B2 (en) Semiconductor imaging device
US7773131B2 (en) Solid state image sensing device with level fluctuation suppression
JP3011207B1 (en) Image sensor
US7420600B2 (en) Photoelectric conversion apparatus with circuitry to offset dark noise
JPH04248756A (en) Method and device for reading picture
CN112492237A (en) Image sensor, transfer circuit and transfer method thereof
JPS63164771A (en) Reading circuit of line transfer photosensitive device, line transfer photosensitive device including the circuit and method of reading the device
JPH08201442A (en) Signal output circuit and solid state image sensor using the circuit