JPS6056379B2 - Dual power supply system - Google Patents

Dual power supply system

Info

Publication number
JPS6056379B2
JPS6056379B2 JP54169945A JP16994579A JPS6056379B2 JP S6056379 B2 JPS6056379 B2 JP S6056379B2 JP 54169945 A JP54169945 A JP 54169945A JP 16994579 A JP16994579 A JP 16994579A JP S6056379 B2 JPS6056379 B2 JP S6056379B2
Authority
JP
Japan
Prior art keywords
transformer
input
power supply
disconnector
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54169945A
Other languages
Japanese (ja)
Other versions
JPS5694932A (en
Inventor
清志 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Facom Corp
Original Assignee
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Facom Corp filed Critical Fuji Facom Corp
Priority to JP54169945A priority Critical patent/JPS6056379B2/en
Publication of JPS5694932A publication Critical patent/JPS5694932A/en
Publication of JPS6056379B2 publication Critical patent/JPS6056379B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 本発明は二重化電源供給技術に関し、特に計算機等を
負荷とする二重化電源供給システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a redundant power supply technology, and particularly to a redundant power supply system that uses a computer or the like as a load.

この種のシステムは一般的に信頼性が高くて保守が容易
であることが要求されるほかに各系電源の独立性、故障
復旧の迅速度も要求される。まこ故障による他への影響
を最小限にとどめる必要バある。また、電源自体として
はCVCF(定電圧甘周波電源)が使用される。 二重
化電源供給方式として次の2方式が知られごいる。
This type of system is generally required to be highly reliable and easy to maintain, as well as being required to have independent power supplies for each system and quick recovery from failure. There is a need to minimize the impact of a malfunction on others. Further, as the power source itself, a CVCF (constant voltage sweet frequency power source) is used. The following two systems are known as redundant power supply systems.

I)電源側並列冗長運転(単一系、CVCFの二重化)
第1図にこの方式を示す。
I) Power supply side parallel redundant operation (single system, CVCF duplication)
Figure 1 shows this method.

図中、番号1が1系CVCF)番号2が2系CVCFで
ある。また、11、21、31は目系入力しや断固、1
2、22、32は変圧器入力しや断固、13、23、3
3は変圧器出力しや断固、16、26、36は変圧器て
ある。この方式は電源側すなわちCVCF側の故障に対
するバックアップは完全てあるが、負荷側短絡に対して
は両系CVCFが断となり全系(A系、B系およびC系
)給電不能になる欠点をかかえている。
In the figure, number 1 is the 1-system CVCF, and number 2 is the 2-system CVCF. Also, 11, 21, and 31 are determined by inputting the eye system, and 1
2, 22, 32 are connected to the transformer, 13, 23, 3
3 is a transformer output, and 16, 26, and 36 are transformers. Although this method has a complete backup against failures on the power supply side, that is, the CVCF side, it has the disadvantage that in the event of a short circuit on the load side, both CVCFs will be disconnected and power cannot be supplied to the entire system (systems A, B, and C). ing.

))共通系(C系)切替による二重化方式 第2図にこ
の方式を示す。
)) Redundant system using common system (C system) switching Figure 2 shows this system.

図においてSWは切換スイッチてあり、他の符号は第1
図と同一である。この方式はA系とB系とが完全独立し
ているため、目系のCVCF断時に給電不能となる(例
えば1系CVCFIの断てA系が給電不能となる)。ま
たC系(共通装置負荷系統)の負荷短絡により、接続さ
れている系のCVCFが断となり給電不能となる欠点を
かかえている。また切換スイッチSWが自動切替タイプ
の場合には、C系負荷短絡によつて両署CVCFが断と
なり全系給電不能になる恐れがある。したがつて、本発
明の目的は、上述の欠点を除去し、母線故障時に故障個
所以外の給電を可能し、また片系CVCF断時に他系C
VCFからの給電を可能にし、しかもC系負荷短絡時に
他系への影響のない二重化電源供給システムを提供する
ことてある。
In the figure, SW is a changeover switch, and other symbols are the first
Same as figure. In this system, since the A system and the B system are completely independent, power cannot be supplied when the CVCF of the eye system is disconnected (for example, when the 1 system CVCF is disconnected, power cannot be supplied to the A system). In addition, due to a load short circuit in the C system (common device load system), the CVCF of the connected system is disconnected and power cannot be supplied. Furthermore, if the changeover switch SW is of an automatic changeover type, there is a risk that a short circuit in the C system load will cause the CVCF of both stations to be disconnected, making it impossible to supply power to the entire system. Therefore, it is an object of the present invention to eliminate the above-mentioned drawbacks, to enable power supply to areas other than the faulty part in the event of a bus failure, and to supply power to areas other than the faulty part when one system CVCF is cut off.
To provide a redundant power supply system that enables power supply from a VCF and does not affect other systems when a C system load is short-circuited.

本発明の特徴は、しや断器にて区分された各母線を変圧
器を介して順次直列接続してなる母線系統を2系統備え
るとともに、各系統に異なる電源装置より給電を行なわ
せ、一方の系統の各母線に設けられた入力側しや断器の
出力側端子を他系入力用しや断器を介して他方の系統の
母線電圧が等しい母線に設けられた入力側しや断器の入
力側端子にそれぞれ接続し、各他系入力用しや断器の投
入を対応する母線に設けられたしや断器の開放を条件と
して行なうようにしたことである。
A feature of the present invention is that it has two busbar systems in which each busbar separated by a line disconnector is successively connected in series via a transformer, and that each system is supplied with power from a different power supply device. Connect the output side terminal of the input-side breaker installed on each bus in the system to the input-side breaker installed on the bus with the same bus voltage of the other system via the input breaker for the other system. The circuit is connected to the input side terminals of each bus, and the closing of the disconnector for each other system input is performed on the condition that the disconnector provided on the corresponding bus bar is opened.

他系入力用しや断器および対応する母線に設けられたし
や断器の投入、開放条件はメカニカルインタロック機構
を用いてきわめて容易に構成することができる。C系(
共通装置負荷系統)については両母線系統の母線上の点
が給電点となるようにする。以下、図面を参照して本発
明の実施例を説明する。第3図は本発明の実施例を示す
。図において第1図、第2図と同一符号で示されるもの
は同一のものを示している。1系CVCFl、2系CV
CF2の出力はそれぞれ自系入力しや断器11,21ま
たは他系入力しや断器14,24を経由した後、A系ま
たはB系のAC2OOV負荷に給電する。
Closing and opening conditions for the shield disconnector for inputting other systems and the shield disconnector provided on the corresponding bus bar can be configured very easily using a mechanical interlock mechanism. C series (
For common equipment load systems), the point on the bus of both bus systems will be the feeding point. Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 shows an embodiment of the invention. In the drawings, the same reference numerals as in FIGS. 1 and 2 indicate the same components. 1 series CVCFl, 2 series CV
The output of the CF2 is supplied to the AC2OOV load of the A system or the B system after passing through the own system input disconnectors 11 and 21 or the other system input disconnectors 14 and 24, respectively.

各系共、変圧器入力しや断器12,22を設けた200
■/130■変圧器16,26を経由し、第2の自系入
力しや断器13,23(自系変圧器出力しや断器)、ま
たは他系入力しや断器15,25(他系変圧器出力しや
断器)を通り、A系またはB系のAClOOV負荷へ給
電する。各しや断器11,12,14間、21,22,
24間、13,15間および23,25間には次の条件
でメカニカルインターロックがとられている。
Each system has a transformer input and disconnectors 12 and 22.
■/130■ Passes through the transformers 16, 26 to the second own-system input disconnector 13, 23 (self-system transformer output disconnector) or the other-system input disconnector 15, 25 ( Power is supplied to the AClOOV load of system A or system B through the other system transformer output or disconnector. Between each side disconnector 11, 12, 14, 21, 22,
Mechanical interlocks are provided between 24, 13 and 15, and 23 and 25 under the following conditions.

メカニカルインターロックの実施例を第10図に示す。An embodiment of the mechanical interlock is shown in FIG.

第10図イは3点メカニカルインターロック(例えば、
しや断器ないしMCB(MagnetiOCircui
tBreaker:電磁開閉器)11,12,14間の
インターロックに適用される)を示し、第10図C]?
よ2点メカニカルインターロック(例えばしや断器13
,15間のインターロックに適用される)を示す。イン
ターロックをとりたいしや断器(以下においてはMCB
と略記する。)を左右に並べ、その中央に、左右に移動
可能なレバーを設け、このレバーとしや断器の入切ツマ
ミとの位置関係により操作の可否を決定している。第1
0図口に示す2点インターロックの動作を簡単に説明す
ると、図示のレバー位置ではMCBl5を直接ONにで
きない。またMCBl3が0Nである状態ではレバーは
図示の位置から移動することができない。そこでまずM
CBl3を0FFにし、次にレバーを左手に移動させる
。このレバー移動によりリMCBl5の入切つまみのロ
ックが解除されるので、MCBl5を0Nにすることが
できる。3点インターロックは2点インターロックの組
合せすなわちMCBllとMCBl4の2点インターロ
ックとMCBl2とMCBl4との2点インターロック
との組合せであるので動作説明は省略する。
Figure 10A shows a three-point mechanical interlock (for example,
A disconnector or MCB (MagnetiOCircui)
tBreaker: an electromagnetic switch (applied to the interlock between 11, 12, and 14), shown in Figure 10C]?
2-point mechanical interlock (for example, disconnector 13)
, 15). I want to take the interlock or the disconnector (MCB in the following)
It is abbreviated as ) are arranged on the left and right, and a lever that can be moved left and right is provided in the center, and whether or not the lever can be operated is determined by the positional relationship between this lever and the on/off knob of the shimmer cutter. 1st
To briefly explain the operation of the two-point interlock shown in Figure 0, MCB15 cannot be directly turned ON in the lever position shown. Further, when MCBl3 is ON, the lever cannot be moved from the illustrated position. So first M
Set CBl3 to 0FF, then move the lever to the left. This lever movement unlocks the on/off knob of the MCBl5, so the MCBl5 can be set to ON. Since the three-point interlock is a combination of two-point interlocks, that is, the two-point interlock of MCBll and MCBl4 and the two-point interlock of MCBl2 and MCBl4, the explanation of the operation will be omitted.

次にトラブル時の給電方法について述べる。(1)片系
CVCF故障時(例、1系CVCFl故障とする)両系
(A系およびB系)正常運転中に、1系CVCFlが故
障となつた場合は、A系の200■と100V負荷は共
に、2系CVCF2からの給電となる。
Next, we will discuss how to supply power in the event of a problem. (1) When one system CVCF fails (e.g. 1 system CVCFl fails) When 1 system CVCFl fails during normal operation of both systems (A system and B system), 200V and 100V of A system Both loads are supplied with power from the second system CVCF2.

第10図イに示すようなメカニカルインターロックによ
りMCBll,l2切断後MCBl4を投入してAC2
OO■負荷に給電し、次にMCBl3を切断しMCBl
5を投入してAClOO■負荷に給電する(したがつて
、片系CVCF故障時でも全負荷へ給電可能である。)
。ここで特徴なのは、2系CVCF2への切換に当り、
A系100■負荷への給電を変圧器26経由で行わせる
ようにしたことである。これは変圧器16を使用すると
、投入時の突入電流に影響するのでこれを防止している
のである。このために、本発明においてはメカニカルイ
ンターロックを用いて、MCBl4を投入する際には必
らすMCBllだけでなくMCBl2も切断して、トラ
ンス16には入力が加わらないようにしている。すなわ
ち、1系CVCFlから2系CVCF2への電源切換の
途中で変圧器16は消勢状態になるのて、これに新たに
電源(2系CVCF2)を投入する方式を採用した場合
、その投入位相によつては投入直後過大な磁束密度とな
り鉄心が飽和し、突心状態に近くなつて大電流が突入す
るおそれがあり、出力電圧の低下等が生じる。
After disconnecting MCBll and l2 by mechanical interlock as shown in Figure 10A, MCBl4 is input and AC2 is turned on.
OO ■ Supply power to the load, then disconnect MCBl3 and connect MCBl
5 to supply power to the AClOO■ load (therefore, even if one system CVCF fails, power can be supplied to all loads.)
. The feature here is that in switching to the 2-system CVCF2,
The power is supplied to the A system 100■ load via the transformer 26. This is because if the transformer 16 is used, it will affect the inrush current at the time of turning on, so this is prevented. For this reason, in the present invention, a mechanical interlock is used to disconnect not only MCB11 but also MCB12 when turning on MCB14, so that no input is applied to the transformer 16. In other words, the transformer 16 becomes de-energized during the power switching from the 1st system CVCF1 to the 2nd system CVCF2, so if a method is adopted in which a new power supply (2nd system CVCF2) is applied to it, the power-on phase will be In some cases, the magnetic flux density may become excessive immediately after turning on, causing the iron core to saturate, approaching a concentric state, and causing a large current to rush in, resulting in a drop in output voltage, etc.

他方、変圧器26の方は、付勢状態のままであるから上
述の問題は生じない。1系CVCFl故障に対する給電
系統を第5図に示す(活線系統のみを示す。
On the other hand, since the transformer 26 remains energized, the above-mentioned problem does not occur. The power supply system for system 1 CVCF1 failure is shown in Figure 5 (only the live line system is shown).

以下同様とする)。(2)片系変圧器の故障時、(例、
A系変圧器故障とする)両系正常運転中にA系変圧器1
6が故障した場合には、A系200V負荷は1系CVC
Flから、A系100■負荷は2系CVCF2から給電
となる。
The same shall apply hereinafter). (2) When a single-line transformer fails (e.g.
A system transformer failure) A system transformer 1 occurs during normal operation of both systems.
6 fails, the A system 200V load will be transferred to the 1 system CVC.
From Fl, the A-system 100■ load is supplied with power from the 2-system CVCF2.

まず、MCBl2を切換後、MCBllがトリップして
いれば投入し、1系CVCFlにてA系200■負荷に
給電する。次にMCBl3を切断してMCBl5を投入
して、2系CVCF2でA系100V負荷に給電する。
したがつて片系変圧器が故障(または修理中)でも全負
荷給電可能である。このときの給電系統を第6図に示す
。(3)片系200V側母線故障時(例、A系200■
母線短絡)両系正常運転中にA系200V母線短絡とな
つた場合、A系100V負荷は2系CVCF2からの給
電とする。
First, after switching MCB12, if MCB11 is tripped, it is turned on and power is supplied to the A system 200■ load using the 1 system CVCF1. Next, MCBl3 is disconnected, MCBl5 is turned on, and the second system CVCF2 supplies power to the A system 100V load.
Therefore, even if the single-line transformer is out of order (or under repair), full load power can be supplied. The power supply system at this time is shown in FIG. (3) When one system 200V side bus bar fails (e.g. A system 200
(Bus bar short circuit) If a 200V bus bar short circuit occurs in the A system while both systems are operating normally, the A system 100V load will be supplied with power from the 2nd system CVCF2.

MCBllは母線短絡時にトリップするので、MCBl
2,l3を切断し、MCBl5を投入することによりA
系100V負荷系は2系CVCF2からの給電となる。
したがつて、200V世線短絡による他母線への影響は
ない。このときの給電系統を第7図に示す。(4)片系
100■側母線故障時(例、A系100■母線短絡)両
系正常運転中にA系100V母線短絡となつた場合、A
系200■負荷は1系CVCFlから給電可能である。
Since MCBll trips when the bus bar is short-circuited, MCBll
By cutting 2, l3 and introducing MCBl5, A
The 100V load system is supplied with power from the second system CVCF2.
Therefore, there is no effect on other buses due to the 200V line short circuit. The power supply system at this time is shown in FIG. (4) When one system 100V side bus malfunctions (e.g. A system 100V bus short circuit) When the A system 100V bus short circuit occurs during normal operation of both systems, A
The system 200■ load can be supplied with power from the system 1 CVCF1.

MCBl3はA系100■母線短絡絡時にトリップする
が、トリップするまでの変圧器16の一次側短絡電流に
より1系CVCFlの停止が予想される。このときは1
系CVCFlの再起動が必要である。A系100■母線
短絡に対する給電系統を第8図に示す。(5)個別負荷
故障時(例、個別負荷短絡とする)両系運転中に個別負
荷が短絡した場合は個別負荷用MCBがトリップするの
みて給電系統に影響はない。
MCBl3 trips when the A system 100■ bus is short-circuited, but it is expected that the 1st system CVCFl will stop due to the short-circuit current on the primary side of the transformer 16 until it trips. At this time 1
It is necessary to restart the system CVCF1. Figure 8 shows the power supply system for system A 100■ bus short circuit. (5) At the time of individual load failure (for example, individual load short-circuit) If an individual load is short-circuited while both systems are operating, the MCB for individual load will only trip and the power supply system will not be affected.

(6)二重故障時 上述の組合せとなるのて説明は省き、第9図に給電系統
のみを例示する。
(6) In case of double failure Since the above-mentioned combination occurs, the explanation will be omitted and only the power supply system will be illustrated in FIG.

×印が故障個所を示す。第9図に例示した以外の二重故
障を考えられるが、実際負荷システムが機能を満足でき
るのは第9図イ,0,ハの場合と思われる。次に、C系
負荷(A系、B系の共通装置)への給電方式について述
べる(第4図)。(1)直流電源を並列運転する方式 第4図において、A系直流電源装置17とB系直流電源
装置27の出力を並列接続してC系1へ給電する。
The x mark indicates the failure location. Although double failures other than those illustrated in FIG. 9 are possible, cases A, 0, and C in FIG. 9 seem to be the cases in which the load system can actually satisfy the function. Next, the power supply system to the C-system load (common device for A-system and B-system) will be described (FIG. 4). (1) Method of operating DC power supplies in parallel In FIG. 4, the outputs of the A-system DC power supply device 17 and the B-system DC power supply device 27 are connected in parallel to supply power to the C-system 1.

したがつてC系1負荷の短絡時、短絡電流によるA系、
B系母線への影響がないよう、直流電源装置17と27
の1次側短絡電流を設定する必要がある。(2)入力電
源を切り換る方式 第4図において、2入力切換直流電源装置37は常時A
系母線より給電され、A系電源断時、自動的にB系母線
に切り換り給電される。
Therefore, when the C system 1 load is short-circuited, the A system due to the short circuit current,
DC power supplies 17 and 27 are installed so as not to affect the B system bus.
It is necessary to set the primary short circuit current of (2) Method of switching input power source In Fig. 4, the 2-input switching DC power supply device 37 is always connected to A
Power is supplied from the system bus, and when the A system power is cut off, power is automatically switched to the B system bus.

C系2の短絡の場合は接続されている母線への影響が考
えられるが、これは最悪でも片系電源しや断であるので
1次側短絡電流にさほど気をつかう必要はない。次にC
VCFと変圧器の容量について述べる。
In the case of a short circuit in the C system 2, it is possible that it will affect the connected bus, but in the worst case, the power supply will be cut off on one side, so there is no need to be too concerned about the primary side short circuit current. Next, C
Let's talk about the capacity of the VCF and transformer.

前述のように両系負荷が同時にかかる場合があるので次
の制約を受ける。A系200V負荷合計:LA2 A系100V負荷合計:LAl B系200■負荷合計:LB2 B系100V負荷合計:LBl とすると、 1系CVCF/2系CVCF:LA2+LAl+LB2
+LBl2系変圧器/B系変圧器:LAl+LBlが必
要である。
As mentioned above, there are cases where loads are applied to both systems at the same time, so the following restrictions apply. Total 200V load on A system: LA2 Total 100V load on A system: LAl Total 200V load on B system: LB2 Total 100V load on B system: LBl Then, 1st system CVCF/2nd system CVCF: LA2 + LAl + LB2
+LBl2 system transformer/B system transformer: LAl+LBl is required.

このように本発明によれば、C系母線をなくし、A系と
B系の各1次電圧(200V)母線と各2次電圧(10
0V)母線に、他系入力しや断器(例えは、MCBl4
,l5)を設け、この他系入力しや断器を、一次電圧母
線系統については第1の自系入力しや断器(例、MCB
ll)、自系変圧器入力しや断器(例MCBl2)と上
述のメカニカルインターロックをとり、二次電圧母線系
統については第2の自系入力しや断器(例MCBl3)
と、自系と他系による同時給電を排除するメカニカルイ
ンターロックをとつたことにより、次の効果が得られる
As described above, according to the present invention, the C system bus is eliminated, and each primary voltage (200 V) bus of the A system and B system and each secondary voltage (10
0V) to the bus bar, connect another system input or a disconnector (for example, MCBl4
, l5), and for the primary voltage bus system, install a first self-system input terminal and disconnector (e.g., MCB
ll), take the above-mentioned mechanical interlock with the own system transformer input disconnector (e.g. MCBl2), and for the secondary voltage bus system, install the second own system input disconnector (example MCBl3)
By implementing a mechanical interlock that eliminates simultaneous power supply by the own system and other systems, the following effects can be obtained.

(1)自系CVCF故障時、他系CVCFからの給電が
可能となる。
(1) When the own system CVCF fails, power can be supplied from the other system CVCF.

(2)母線故障時他の母線に給電可能となる。(2) When a bus fails, power can be supplied to other buses.

(3)1台の変圧器故障時全母線に給電可能となる。(
4)C系母線を有さない構成であるからC系母線故障が
存在しない。
(3) If one transformer fails, power can be supplied to all buses. (
4) Since the configuration does not have a C-system bus, there is no C-system bus failure.

C系はA系とB系の母線から給電を受ける構成であるか
ら、C系負荷短絡によるA系とB系母線への影響が軽減
される。(5)各系CVCFに対し、母線、変圧器共二
重化されたことにより、信頼性、保守性、復電処理速度
が向上する。本発明は上述した二重化給電技術以外に、
信号の二重化入力の技術としても応用できると思われる
Since the C system is configured to receive power from the A system and B system buses, the influence of a C system load short circuit on the A system and B system buses is reduced. (5) Reliability, maintainability, and power restoration processing speed are improved by duplicating bus bars and transformers for each CVCF system. In addition to the above-mentioned redundant power supply technology, the present invention also provides
It is thought that it can also be applied as a technology for dual signal input.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電源並列冗長式の二重化電源供給システ
ムの系統図、第2図は従来の電源切換式の二重化電源供
給システムの系統図、第3図と第4図は本発明よる二重
化電源供給システムの系統図、第5図は片系電源故障時
における本発明による給電系統図、第6図は片系変圧器
故障時における本発明による給電系統図、第7図は片系
一次電圧母線故障時における本発明による給電系統図、
第8図は片系二次電圧母線故障時における本発明による
給電系統図、第9図は二重故障時における本発明による
給電系統図、第10図はメカニカルインターロックの概
路外観図である。 1:1?CVCF(第1の電源装置)、2:2系CVC
F(第2の電源装置)、11,21:自系入力しや断器
、14,24,15,25:他系入力しや断器、12,
22:変圧器入力しや断器、13,23:変圧器出力し
や断器、16,26:変圧器。
Figure 1 is a system diagram of a conventional dual power supply system with parallel redundant power supply system, Figure 2 is a system diagram of a conventional dual power supply system with switching power supply system, and Figures 3 and 4 are system diagrams of a redundant power supply system with redundant power supply system according to the present invention. System diagram of the supply system, Figure 5 is a power supply system diagram according to the present invention when a single system power supply fails, Figure 6 is a power supply system diagram according to the present invention when a single system transformer fails, and Figure 7 is a single system primary voltage bus Power supply system diagram according to the present invention at the time of failure,
Figure 8 is a power supply system diagram according to the present invention in the event of a single secondary voltage bus failure, Figure 9 is a power supply system diagram according to the present invention in the event of a double failure, and Figure 10 is a schematic external view of the mechanical interlock. . 1:1? CVCF (first power supply), 2:2 system CVC
F (second power supply), 11, 21: own system input and disconnection, 14, 24, 15, 25: other system input and disconnection, 12,
22: Transformer input disconnector, 13, 23: Transformer output disconnector, 16, 26: Transformer.

Claims (1)

【特許請求の範囲】[Claims] 1 自系入力用しや断器と一次電圧負荷と変圧器入力用
しや断器と変圧器と自系変圧器出力用しや断器と二次電
圧負荷とを順次直列接続してなる母線系統を2系統備え
るとともに、各系統に異なる電源装置より給電を行なわ
せ、一方の母線系統に設けられた前記自系入力用しや断
器の出力側端子を他系入力用しや断器を介して他方の母
線系統の前記自系入力用しや断器の入力側端子にそれぞ
れ接続し、更に一方の母線系統に設けられた前記自系変
圧器出力用しや断器の出力側端子を他系変圧器出力用し
や断器を介して他方の母線系統の前記自系変圧器出力用
しや断器の入力側端子にそれぞれ接続し、各他系入力用
しや断器の投入を、メカニカルインタロック機構を用い
て対応する母線系統に設けられた各自系入力用しや断器
及び各変圧器入力用しや断器の開放を条件として行ない
、また各他系変圧器出力用しや断器の投入を、メカニカ
ルインタロック機構を用いて対応する母線系統に設けら
れた各自系変圧器出力用しや断器の開放を条件として行
なうようにしたことを特徴とする二重化電源供給システ
ム。
1. A bus bar formed by sequentially connecting in series a shield breaker for the own system input, a primary voltage load, a shield breaker for the transformer input, a transformer, a shield breaker for the output of the own system transformer, and a secondary voltage load. Two systems are provided, each system is supplied with power from a different power supply device, and the output side terminal of the self-system input switch and disconnector provided on one bus system is used to connect the other system input and disconnector. The terminals are connected to the input side terminals of the self-system input shunt breaker of the other bus system through the terminals, and further connected to the output side terminals of the self-system transformer output shunt breaker provided on one bus system. Connect to the input side terminals of the own system transformer output circuit breaker of the other bus system through the other system transformer output circuit breaker, and turn on each other system input circuit breaker. , the mechanical interlock mechanism is used to open the respective system input shield disconnectors and each transformer input shield disconnector provided in the corresponding bus system, and each other system transformer output disconnector is opened. A redundant power supply system characterized in that a mechanical interlock mechanism is used to turn on a circuit or disconnector on the condition that the output circuit or disconnector for each system transformer installed in the corresponding bus system is opened. .
JP54169945A 1979-12-26 1979-12-26 Dual power supply system Expired JPS6056379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54169945A JPS6056379B2 (en) 1979-12-26 1979-12-26 Dual power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54169945A JPS6056379B2 (en) 1979-12-26 1979-12-26 Dual power supply system

Publications (2)

Publication Number Publication Date
JPS5694932A JPS5694932A (en) 1981-07-31
JPS6056379B2 true JPS6056379B2 (en) 1985-12-10

Family

ID=15895793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54169945A Expired JPS6056379B2 (en) 1979-12-26 1979-12-26 Dual power supply system

Country Status (1)

Country Link
JP (1) JPS6056379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56103935A (en) * 1980-01-23 1981-08-19 Tokyo Shibaura Electric Co Breaker control device

Also Published As

Publication number Publication date
JPS5694932A (en) 1981-07-31

Similar Documents

Publication Publication Date Title
JPS6056379B2 (en) Dual power supply system
JPH0245419B2 (en)
JP3248962B2 (en) How to protect the inverter distribution system
JP3817921B2 (en) Grid interconnection device
US2173673A (en) Electric distribution system
CN213906294U (en) Prevent busbar voltage parallel circuit malfunction circuit based on microcomputer five prevent
CN111917105B (en) Circuit for preventing misoperation of bus voltage parallel circuit based on microcomputer five-prevention
JP2745838B2 (en) Power generation system
JP2892104B2 (en) Automatic power system restoration device
JPS6343703Y2 (en)
JP2738446B2 (en) Switching method of low-voltage side load switching of transformer
JPH07107656A (en) Protecting device for electric power system
JP2842896B2 (en) Low-side load switching method of transformer between different banks
JP2799050B2 (en) Disconnector operation power supply switching device
JPH0338921Y2 (en)
JPS6228022Y2 (en)
JPH1066260A (en) Service and standby changeover apparatus for power system
JPS5983543A (en) Power source facility
JPH0236727A (en) High speed separation/recovery system of distribution line fault
RU2054780C1 (en) Power supply and distribution device for power supply systems
JPH0724449B2 (en) Uninterruptible power system
JPS61207138A (en) Power failure-free constant voltage/constant frequency powersource unit
JPS60249823A (en) Automatic power source switching device
JPS5956820A (en) Bus switching device
JPH04200246A (en) Noninterruptible changeover device for electric railway feeder system