JPS6056240A - Cryostat for optical - Google Patents

Cryostat for optical

Info

Publication number
JPS6056240A
JPS6056240A JP16319283A JP16319283A JPS6056240A JP S6056240 A JPS6056240 A JP S6056240A JP 16319283 A JP16319283 A JP 16319283A JP 16319283 A JP16319283 A JP 16319283A JP S6056240 A JPS6056240 A JP S6056240A
Authority
JP
Japan
Prior art keywords
light
window
cryostat
sample
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16319283A
Other languages
Japanese (ja)
Inventor
Koichiro Honda
耕一郎 本田
Akira Osawa
大沢 昭
Ritsuo Takizawa
滝沢 律夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16319283A priority Critical patent/JPS6056240A/en
Publication of JPS6056240A publication Critical patent/JPS6056240A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve accuracy of measurement of infrared spectroscopic measurement, by fitting lens means in a light-trasmission window mounted in a pair of parallel side-walls and installing a heat sump in the light-collecting position located between both lens means to accommodate a pecimen holder. CONSTITUTION:Infrared rays re collected through a light inlet window 2 consisting of a lens fit into a side-wall 1 of a cryostat 10 and a focus is built on a specimen 5, such as of silicone chip, etc. The speciment 5 is held at low temperature at approx. 77 deg.K or less by a heat sump 6 and the infrared rays, after passing through the specimen 5, are collected by a light outlet window 3 consisting of a lens and absorbed in a detector 7. By this arrangement, effective convergence of the infrared rays can be realized and further, incidence into the specimen can be attained without any discontinuities and concentrations of impurities, etc. included in a semiconductor crystal can be measured with high precision.

Description

【発明の詳細な説明】 本発明は光学測定用クライオスタットに関する。[Detailed description of the invention] The present invention relates to a cryostat for optical measurements.

さらに詳しく述べると、本発明は、例えばシリコン結晶
のような半導体中の不純物、例えば酸素、炭素等の吸収
スペクトルを赤外波長領域の光を用いて低温で測定する
場合等に有用なりライオスタットに関する。
More specifically, the present invention relates to a lyostat that is useful for measuring the absorption spectrum of impurities such as oxygen and carbon in a semiconductor such as a silicon crystal at a low temperature using light in the infrared wavelength region. .

技術の背景 半導体結晶からLSIを製作する場合など、秤々の原因
によって結晶欠陥、例えば微小欠陥、積層欠陥などが発
生する。これらの結晶欠陥は、歩留りの向上や素子の微
細化、高集積化などを目的とした場合、ぜひとも低減し
なければならない。
Background of the Technology When manufacturing LSIs from semiconductor crystals, crystal defects such as micro defects and stacking defects occur due to a variety of causes. These crystal defects must be reduced in order to improve yield, miniaturize devices, and increase integration.

ところで、結晶欠陥発生の主な原因として結晶中に含ま
れる不純物、特に酸素の存在が考えられるので、かかる
不純物の濃度及びその分布を定量的に知ってI、S工製
作プロセス中に発生する結晶欠陥を有利に制御すること
ができる。
By the way, impurities contained in the crystal, especially the presence of oxygen, are thought to be the main cause of crystal defects, so it is necessary to quantitatively know the concentration and distribution of such impurities and to investigate the occurrence of crystal defects during the I and S manufacturing processes. Defects can be advantageously controlled.

従来技術と問題点 半導体結晶中の不純物濃度を測定する方法として、物理
的測定法、光学的測定法、電気的測定法などがある。と
りわけ、光学的測定法、特に赤外分光測定法は、比軸的
に簡便でありかつ非破壊測定であるので、この技術分野
において多用されている。さらに、赤外分光測定法を実
施する場合には、その測定精度を高めるため、いわゆる
クライオスタットを使用して試料を冷却するのが一般的
である。但し、この場合、外部からの熱輻射を防ぐため
に光導窓を小さくしなければならず、その窓から導入す
る光の大半を力、トせざるを得ない。
Prior Art and Problems Methods for measuring the impurity concentration in semiconductor crystals include physical measurement methods, optical measurement methods, and electrical measurement methods. In particular, optical measurement methods, especially infrared spectrometry methods, are relatively simple and non-destructive, and are therefore widely used in this technical field. Furthermore, when performing infrared spectrometry, it is common to cool the sample using a so-called cryostat in order to improve the measurement accuracy. However, in this case, the light guide window must be made small to prevent heat radiation from the outside, and most of the light introduced through the window must be turned off.

試料に入射する光がカットされることは必然的に測定精
度の低下を惹味し、したがって、クライオスタット使用
のメリットを否定することとなる。
Cutting off the light incident on the sample inevitably reduces measurement accuracy, thus negating the benefits of using a cryostat.

グδ明の目的 本発明の目的は、赤外分光測定法を実施するに際して、
試料に入射する光をカットすることなく吸光を行なうの
を可能ならしめ、よって、測定のS/N比の改魯を通じ
て測定イ[“1度の向上を保証するような光学測定用タ
ライオスタアト企提供することにある。
Purpose of the present invention The purpose of the present invention is to:
It is possible to absorb light without cutting off the light incident on the sample, thus improving the measurement signal-to-noise ratio by improving the measurement speed by 1 degree. It's about doing.

発明の構成 本発明者らは、上記目的を達成すべく研究の結果、クラ
イオスタットの側壁部に形成された光導入窓及び光導t
J!T窓のそれぞれの開口に所定の波長を有する光を集
光可能なレンズ手段をはめ込むのが有効であることを見
い出した。すなわち、本発明による光学測定用クライオ
スタットは、少なくとも一対の平行なm1ll !I;
4と、該0;す壁の対応する部分に互いに一定のhll
’ltlを隔ててvljけられた一対の先導窓と、該光
導豚のそれぞれにはめ込まれた所定の波長を有する光を
集光可能なレンズ手段と、該レンズ手段の中間に位置す
る集光位;riに試料を保持するためのものであって、
その試イS(を冷却するための熱だめが4+Jd才され
た試料ホルダーとを含んでなることを特徴とする。
Structure of the Invention In order to achieve the above object, the present inventors have discovered, as a result of research, a light introduction window and a light guide t formed in the side wall of a cryostat.
J! It has been found that it is effective to fit lens means capable of condensing light having a predetermined wavelength into each opening of the T window. That is, the cryostat for optical measurement according to the present invention has at least a pair of parallel m1ll! I;
4 and 0;
a pair of leading windows separated by 'ltl and vlj, a lens means fitted in each of the light guides and capable of condensing light having a predetermined wavelength, and a light convergence position located between the lens means. ; for holding the sample in the ri;
The sample holder is characterized in that the sample holder includes a heat sink for cooling the sample S(4+Jd).

ここで、”レンズ手段”とは、一般的なレンズ包含する
。かかるレンズ手段として、例えば、クリラムハロゲン
化物からなるKR3−5(商品名)ガラスを有利に使用
し得るということが判明した。
Here, the "lens means" includes a general lens. It has been found that as such a lens means, for example KR3-5 glass made of Krylam halide can be used advantageously.

発明の実施例 次に、添付の第1図を参I!・、1しながら本発明の詳
細な説明する。
Embodiments of the Invention Next, please refer to the attached FIG. 1! A detailed explanation of the present invention will be given below.

赤外線の光源(図示せず)として、例えば、炭化硅素を
焼結させた棒からなるグローバー光源を使用する。この
光源からの赤外線をクライオスタット10の側壁1には
め込まれたKRS −5レンズからなる光導入窓2によ
り集光する。クライオスタットの側■t1は、図示され
る通り、一対の平行な側壁であり、そして対応する部分
に一対の光導窓(光導入窓2及び光導出窓6)を有する
。側壁1はステンレス製である。光導入窓2の集光位置
には試料5(ここではヘキ開により形成されたシリコン
チップ)が配置されているので、窓2により集光された
赤外線がこの試料5上で焦点を結ぶ。試料5は、図示さ
れる通り、それを低γ晶(77°に以下)に冷却するた
めの熱だめ(液体窒素又は液体ヘリウム)6を装備した
例えば銅製(熱伝導度にすぐれているので好んで銅が用
いられる)の試料ホルダー4により保持されている。
As an infrared light source (not shown), for example, a glober light source made of a rod made of sintered silicon carbide is used. Infrared rays from this light source are focused by a light introduction window 2 made of a KRS-5 lens fitted into the side wall 1 of the cryostat 10. As shown, the side t1 of the cryostat is a pair of parallel side walls, and has a pair of light guiding windows (light introducing window 2 and light leading window 6) in corresponding parts. The side wall 1 is made of stainless steel. Since the sample 5 (here, a silicon chip formed by cleavage) is placed at the condensing position of the light introducing window 2, the infrared rays condensed by the window 2 are focused on the sample 5. As shown in the figure, the sample 5 is made of copper (preferable because of its excellent thermal conductivity) equipped with a heat sink (liquid nitrogen or liquid helium) 6 to cool it to a low γ crystal (below 77°). The specimen is held by a specimen holder 4 (of which copper is used).

さらに、この試料ホルダー4には、図示されていないけ
れども、惣村の銅製ラジエーションシールドを取り付け
ることも可能である。試料5に入射した光は、それを透
過した後、前記光導入窓2と同じようにKR3−5レン
ズからなる光導出窓6により再び集光され、クライオス
タット1o外に配置された検出器7に吸光される。検出
器7(例えば、HyOdTθ光導電形検出器)により赤
外#18吸収スペクトルを姿見祭可能である。
Furthermore, although not shown in the drawings, it is also possible to attach a Somura copper radiation shield to this sample holder 4. After passing through the sample 5, the light incident on the sample 5 is focused again by a light output window 6 made of a KR3-5 lens in the same way as the light introduction window 2, and is absorbed by a detector 7 placed outside the cryostat 1o. be done. The infrared #18 absorption spectrum can be observed with the detector 7 (for example, a HyOdTθ photoconductive type detector).

本発明の実施において、光導入窓2に入射する赤外線の
入射方向は問題とされない(この窓に集光機能があるか
ら)。すなわち、赤外入射光はななめ入射でも可能であ
る。
In implementing the present invention, the direction of incidence of infrared rays incident on the light introduction window 2 does not matter (because this window has a light condensing function). That is, diagonal incidence of infrared light is also possible.

発明の効果 本発明によれば、赤外入射光を効果的に収束させかつカ
ットすることなく試料に入射させることができるので、
測定精度を著しく向上させることができる。
Effects of the Invention According to the present invention, incident infrared light can be effectively converged and made incident on the sample without being cut.
Measurement accuracy can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による光学測定用クライオスタットの
好ましい一例を示した略示図である。 図中、1は側壁、2は光導入窓、3は光導出窓、4は試
料ホルダー、5は試料、6は熱だめ、7は検出器、干し
て10はクライオスタットである。
FIG. 1 is a schematic diagram showing a preferred example of a cryostat for optical measurements according to the present invention. In the figure, 1 is a side wall, 2 is a light introduction window, 3 is a light output window, 4 is a sample holder, 5 is a sample, 6 is a heat sink, 7 is a detector, and 10 is a cryostat.

Claims (1)

【特許請求の範囲】[Claims] 1、 少なくとも一対の平行な側壁と、該側壁の対応す
る部分に互いに一定の距離を隔てて開けられた一対の先
導窓と、該光導窓のそれぞれにはめ込まれた所定の波長
を有する光を集光可能なレンズ手段と、該レンズ手段の
中間に位置する集光位置に試料を保持するためのもので
あってその試料を冷却するための熱だめが付設された試
料ホルダーとを含んでなることを特徴とする光学測定用
クライオスタット。
1. At least a pair of parallel side walls, a pair of leading windows opened at a certain distance from each other in corresponding parts of the side walls, and light having a predetermined wavelength fitted in each of the light guiding windows is collected. comprising a lens means capable of transmitting light; and a sample holder for holding a sample at a light focusing position located between the lens means and provided with a heat sink for cooling the sample. A cryostat for optical measurements featuring:
JP16319283A 1983-09-07 1983-09-07 Cryostat for optical Pending JPS6056240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16319283A JPS6056240A (en) 1983-09-07 1983-09-07 Cryostat for optical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16319283A JPS6056240A (en) 1983-09-07 1983-09-07 Cryostat for optical

Publications (1)

Publication Number Publication Date
JPS6056240A true JPS6056240A (en) 1985-04-01

Family

ID=15769013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16319283A Pending JPS6056240A (en) 1983-09-07 1983-09-07 Cryostat for optical

Country Status (1)

Country Link
JP (1) JPS6056240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014056A2 (en) * 1998-12-23 2000-06-28 CSP Cryogenic Spectrometers GmbH Sensing device
GB2550897A (en) * 2016-05-27 2017-12-06 Oxford Instruments Nanotechnology Tools Ltd Cryogenic cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014056A2 (en) * 1998-12-23 2000-06-28 CSP Cryogenic Spectrometers GmbH Sensing device
EP1014056A3 (en) * 1998-12-23 2000-10-25 CSP Cryogenic Spectrometers GmbH Sensing device
GB2550897A (en) * 2016-05-27 2017-12-06 Oxford Instruments Nanotechnology Tools Ltd Cryogenic cooling system
GB2550897B (en) * 2016-05-27 2020-12-23 Oxford Instruments Nanotechnology Tools Ltd Cryogenic cooling system

Similar Documents

Publication Publication Date Title
Briggs Optical effects in bulk silicon and germanium
Hussain et al. Circular dichroism beamline B23 at the Diamond Light Source
Fujisawa et al. Small-angle X-ray scattering station at the SPring-8 RIKEN beamline
US20140231945A1 (en) Temperature-adjusted spectrometer
KR19990088623A (en) Surface state monitoring method and apparatus
WO2023051617A1 (en) Measurement method and system for nitrogen element in nitrogen-doped monocrystalline silicon
JPS6056240A (en) Cryostat for optical
Čermák et al. Laser-induced emission spectroscopy of matrix-isolated carbon molecules: experimental setup and new results on C 3
US10317338B2 (en) Method and assembly for determining the carbon content in silicon
Mino et al. Study of epitaxial selective area growth In 1− x Ga x As films by synchrotron μ-XRF mapping
JPH07502344A (en) Reflection-free polarimetry system for small volume sample cells
KR20220160981A (en) Residual gas and surface ion analysis system with moisture content measurement using condensation temperature
CN113109282A (en) Wide-wavelength-coverage photo-thermal deflection spectrum testing device
Abe et al. Note: Reliable, robust measurement system for trace moisture in gas at parts-per-trillion levels using cavity ring-down spectroscopy
Visser et al. Construction of a liquid He cryostat insert for high spatial resolution photoluminescence experiments on GaAs
CN110749584A (en) Portable fluorescence spectrometer
JPH10170343A (en) Temperature measuring apparatus
JPH11305053A (en) X-ray optical element and its manufacture, and x-ray analyzing apparatus
JPS6056241A (en) Measuring apparatus of concentration of impurity
JPH033946B2 (en)
Kyele et al. A transparent two-dimensional in situ beam-position and profile monitor for synchrotron X-ray beamlines
JPS63157434A (en) Measuring method for impurity concentration of p-type silicon crystal
JP3313994B2 (en) Photothermal bending spectrometer and spectroscopy
Tubbs Optical microabsorption spectroscopy
Strong APPARATUS FOR SPECTROSCOPIC STUDIES IN THE INTERMEDIATE INFRARED REGION—20 TO 40μ