JPS6056223A - Light wave front level meter - Google Patents

Light wave front level meter

Info

Publication number
JPS6056223A
JPS6056223A JP16431283A JP16431283A JPS6056223A JP S6056223 A JPS6056223 A JP S6056223A JP 16431283 A JP16431283 A JP 16431283A JP 16431283 A JP16431283 A JP 16431283A JP S6056223 A JPS6056223 A JP S6056223A
Authority
JP
Japan
Prior art keywords
optical path
optical system
light
path length
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16431283A
Other languages
Japanese (ja)
Inventor
Yoshiisa Narutaki
能功 鳴瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPTIC KK
Original Assignee
OPTIC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPTIC KK filed Critical OPTIC KK
Priority to JP16431283A priority Critical patent/JPS6056223A/en
Publication of JPS6056223A publication Critical patent/JPS6056223A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet

Abstract

PURPOSE:To elevate the measuring accuracy of plane level by coaxially using an optical path in common for the entire effective diameter of an object lens both in the light transmitting optical system and the light receiving optical system. CONSTITUTION:According to a command from a measurement control circuit 35, first, the calibrated optical path length is measured when light emitted from a light emitting diode reciprocates in reflection on a eflection sheet 7 on the back of a shutter plate. Then, the shutter plate 6 is opened with a motor 10 to measure the external optical path length up to the water surface. By a final measuring command, the shutter plate is returned to the original closed position to complete a single measurement. Meanwhile, an arithmetic unit 34 in an electric circuit subtracts the internal optical path length from the external optical path length and the real measured value is shown on a display 36 or recorded with a recorder.

Description

【発明の詳細な説明】 本発明は光波面レベル計に関し、例えば、光を水面に投
反射させて光が水面を往復する時間を測定して水位を計
測しようとするものであって、従来の水位計のように水
面にフロートを浮べたり本体と結合するワイヤー等を必
要とせず無接触で水位観測ができる画期的な光波水位計
を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical wavefront level meter, which measures the water level by projecting and reflecting light onto the water surface and measuring the time it takes for the light to travel back and forth on the water surface. The present invention provides an epoch-making light wave water level gauge that can perform contactless water level observation without requiring a float on the water surface or wires connected to the main body, unlike water level gauges.

本発明は主として水位計測に用いられるが、本原理を用
いれば各種液面、雪面、粉体等の高さ測定につき全く同
様な方法で観測できることは云うまでもない。
Although the present invention is mainly used for water level measurement, it goes without saying that by using this principle, the heights of various liquid levels, snow levels, powder, etc. can be measured in exactly the same way.

第1図及び第2図によって本発明を用いた光波水位計の
原理を説明すると、対物レンズ(2)は送元光学系の対
物レンズと受光光学系の対物レンズとを共用し、夫々の
光軸は同軸であり、その像窒間に光軸と45°の傾きを
もつ半透明鏡(3)を斜設し、対物レンズ(2)の直線
光軸上の焦点位置に発光素子(4)を、又半透明鏡(3
)の反射光軸上の焦点位置に受光素子(5)を夫々配置
している。
To explain the principle of a light wave water level meter using the present invention with reference to FIGS. 1 and 2, the objective lens (2) shares the objective lens of the sending optical system and the objective lens of the receiving optical system, and The axes are coaxial, and a semi-transparent mirror (3) with an inclination of 45° to the optical axis is installed obliquely between the images, and a light emitting element (4) is placed at the focal point on the linear optical axis of the objective lens (2). Also, a semi-transparent mirror (3
), the light receiving elements (5) are arranged at the focal positions on the reflection optical axis of each of them.

発明素子f41は一般に発明タイオード又はレーザ−ダ
イオードを用い、第2図のブロックダイアクラムに示す
ように、水晶発振器(25)からの基準周波(15Ml
(z )でもって駆動回路(2(イ)を経て駆動され、
15M1(zの明暗の変調光として発光される。基準周
波数に15■z7i−用いれば、変調ブC波の一波長が
水面を往復する間隔がちょうど10mに対応するため、
その位相差を1/1000までデジタル位相計OQで計
測して1釧の精度で測定できる。
The inventive element f41 generally uses an inventive diode or a laser diode, and as shown in the block diagram of FIG.
(z) is driven via the drive circuit (2(a)),
It is emitted as modulated light with brightness and darkness of 15M1 (z). If 15z7i- is used as the reference frequency, the interval at which one wavelength of the modulated B-C wave travels back and forth on the water surface corresponds to exactly 10 m.
The phase difference can be measured up to 1/1000 with a digital phase meter OQ with an accuracy of one scale.

〜力受光素子(5)の出力は前置贈巾器C26)により
増巾され、ミキサー回路(30においてローカル発振器
GDを通して得られる水晶発振器(25)の出力さ加え
ら11て、ヘテロダイン検波が行6れる。ミキサー回路
c+olから得られる低周波信号はバンドパスフィルタ
ー(27)を通って雑音、不要帯域が除去され、更に水
位変化や水面のゆらぎにもとづく受光光量の変化が自動
利得調整回路(2p)により修正され、電気的出力が一
定1ヒされる。
The output of the power receiving element (5) is amplified by a preamplifier C26), and is added to the output of the crystal oscillator (25) obtained through the local oscillator GD in the mixer circuit (30) to perform heterodyne detection. The low frequency signal obtained from the mixer circuit c+ol is passed through a band pass filter (27) to remove noise and unnecessary bands, and the automatic gain adjustment circuit (2p ), the electrical output is fixed at a certain level.

自動利得調整回路(28)の出力はウィンドコンパレー
タc!9)に与えられ、所定のレベル巾以下及び以上の
信号はカットされる。即ち、出力信号が大レベルの場合
には歪が多く、また小レベルの場合にはS/Nが悪いの
で、何れの場合も計測を中断させる。出力レベルが適正
値になったときのみ計測を継続させるようζこ、ウィン
ドコンパレータρωから出力が生ずる。
The output of the automatic gain adjustment circuit (28) is the window comparator c! 9), and signals below and above a predetermined level width are cut. That is, when the output signal is at a high level, there is a lot of distortion, and when the output signal is at a low level, the S/N is poor, so the measurement is interrupted in either case. An output is generated from the window comparator ρω so that measurement is continued only when the output level reaches a proper value.

ウィンドコンパレータlI!q+の出力はディジタル位
相計03)に与えられる。この位相計03)は、水晶発
振器(24)の出力を分周器07)で分周した信号とウ
ィンドコンパレータ(291の出力との位相差に相当す
るパルス中(計測窓中)のパルス信号を作り、この中肉
に入るクロック発振器02からのクロックパルスを計数
して11位相差をディジタル値で出力するように構成さ
れたものである。このディジタル出力は、外乱及び装置
ごとの光学系の機械的ばらつきの補正を行う演算装置(
34Jを通って表示器(3G)に送られる0この結果、
任意の基準水位からの変化量を1.0 mまで、1mの
単位で水位計測しこれを表示させることができる。また
記録計を用いてアナロク記録させることもできる。
Wind comparator II! The output of q+ is given to a digital phase meter 03). This phase meter 03) detects a pulse signal within the pulse (measurement window) corresponding to the phase difference between the signal obtained by dividing the output of the crystal oscillator (24) by the frequency divider 07) and the output of the window comparator (291). It is configured to count the clock pulses from the clock oscillator 02 and output the 11 phase difference as a digital value. A calculation device that corrects for target variation (
As a result, 0 is sent to the display (3G) through 34J.
It is possible to measure and display the amount of change in water level from an arbitrary standard water level up to 1.0 m in units of 1 m. It is also possible to perform analog recording using a recorder.

光波を用いた水位計測器に於いては、本体から光が発射
され水面u51で反射して受光されるまでの時間は極め
て短< (1,5xl O−8秒710m)、一つの測
定値を得るために10万回へ繰返し測定して平均値をめ
ても10秒以内に計測は完了する。
In water level measuring instruments that use light waves, the time it takes for light to be emitted from the main body, reflected on the water surface, and received is extremely short < (1,5xl O-8 seconds 710m), making it difficult to measure one measurement value. Even if the measurement is repeated 100,000 times and the average value is calculated, the measurement will be completed within 10 seconds.

この場合、測定精度は測定回数の平方根倍向上するため
、10万回の平均値の精度は単回測定′IIIKに比べ
約300倍向上する。
In this case, since the measurement accuracy is improved by the square root of the number of measurements, the accuracy of the average value of 100,000 times is improved by about 300 times compared to the single measurement 'IIIK.

光波水位計は前記送受光装置により水面までの長さを直
接計測するが、送光光波の位相や受信電気回路内での受
信信号の位相は電源電圧や温度変化等の外吐により刻々
変動するものであり、こ、11を除去するために必ず校
正光路を必要とする。
A light wave water level meter directly measures the length to the water surface using the light transmitting and receiving device, but the phase of the transmitted light wave and the phase of the received signal within the receiving electric circuit fluctuate moment by moment due to external discharges such as power supply voltage and temperature changes. Therefore, a calibration optical path is always required in order to remove this 11.

本発明はこの校正光路を極めて簡単な構造で形成し且つ
屋外計測器として本体内部を保饅する作用を併せそなえ
るものである。
The present invention forms this calibration optical path with an extremely simple structure, and also has the function of protecting the inside of the main body as an outdoor measuring instrument.

第1図に示すように、本体(11は常に観測井戸や河川
の水面上に設置されて外界の水蒸気や塵埃にさらされて
いるため、これ等が対物レンズ(2)の表面に付着した
り本体内への浸入を防ぐために常時は光波の入出射口部
にあたる対物レンズ(2)の全面をシャッター板(6)
で閉じるようにしている。このシャッター板(6)の裏
面に反射シート(7)又は反射プリズムを接着しただけ
で前記校正ブ0路を形成している。
As shown in Figure 1, the main body (11) is always installed above the water surface of an observation well or river and is exposed to water vapor and dust from the outside world, so these may adhere to the surface of the objective lens (2). In order to prevent light waves from entering the main body, a shutter plate (6) is used to cover the entire surface of the objective lens (2), which is the entrance/exit opening for light waves.
I'm trying to close it with The above-mentioned calibration path is formed simply by bonding a reflective sheet (7) or a reflective prism to the back surface of this shutter plate (6).

シャッター板(6)はその回動軸(8)と歯車(9)を
介してモーター110)により開閉自在な構造としてい
る。
The shutter plate (6) has a structure that it can be opened and closed by a motor 110) via its rotation shaft (8) and gear (9).

第2図の測定制御回路(3ωからの指令により、先ずシ
ャッター板裏面の反射シート(7)で発光タイオードか
らの発射光が反射往彷した校正光路長を計測し、次いで
シャッター板(6)がモーターaO)により第1図の(
6Fの位置に開いて水面までの外部光路長を測定して1
.最後の測定指令によりシャッター板は元の閉じた位置
に戻って一回の計測は終了する。
Based on the command from the measurement control circuit (3ω) shown in Figure 2, first the calibrated optical path length of the emitted light from the light emitting diode is reflected by the reflection sheet (7) on the back of the shutter plate, and then the shutter plate (6) The motor aO) causes the (
Open at the 6F position and measure the external optical path length to the water surface.
.. The last measurement command causes the shutter plate to return to its original closed position, completing one measurement.

この間電気回路内の演算装置C34+では、前記外部光
路長から内部光路長を差引いて真の測定値を表示器(3
6)に表示させるか記録計に記録させる。尚(111は
本体の外カバー、叫は電気回路、17)は外部i]蒜及
び出力を記録計等に接続するコネクターである。
During this time, the arithmetic unit C34+ in the electric circuit subtracts the internal optical path length from the external optical path length and displays the true measured value on the display (3).
6) Display or record on a recorder. Note that (111 is the outer cover of the main body, 17 is the electric circuit, and 17 is the connector for connecting the external garlic and output to a recorder, etc.).

さて本発明装置を用いて実際に水位観測を行う場合本体
は、第6図、第4図に示すようCζ安定な架台圓の上に
3本の整準ねじ021により円型気泡管0階の気泡が中
央にくるようにして据えられる。このとき送光光波は対
物レンズを経て平行光線として水面に垂直に投射される
。水面からの反射光は約4%であるが、波のない水面で
あれば反射光は垂直方向に反射し対物レンズの全有効経
に入射して光電計測される。
Now, when actually performing water level observation using the device of the present invention, the main body is placed on the Cζ stable pedestal circle with three leveling screws 021 as shown in FIGS. Place the bubble in the center. At this time, the transmitted light wave passes through an objective lens and is projected perpendicularly onto the water surface as a parallel light beam. Approximately 4% of the light is reflected from the water surface, but if the water surface has no waves, the reflected light will be reflected in the vertical direction and will be incident on all effective apertures of the objective lens, where it will be photoelectrically measured.

しかし一般には水面は波やゆらぎがあるため消波装置(
i印を用いて水面のゆらぎがない水平面とする。消波装
置は円筒パイプa〜の下部lこガラスピーズ(4)等を
入れパイプ側面に多数の孔0!1をあけたものである0
消波装置を用いても波が除去できない場合や反射率の悪
い液面を測定する場合、例えば第4図に示すようにボア
ホール同円にプリズム状の多数の凹凸のある再帰反射板
(22)をフロート□□□に取付けて液面に浮べればよ
い。
However, in general, the water surface has waves and fluctuations, so a wave dissipating device (
Use the i mark to make a horizontal surface with no fluctuations on the water surface. The wave dissipating device consists of a cylindrical pipe a with glass beads (4) placed in the lower part and a large number of holes drilled on the side of the pipe.
When waves cannot be removed even with a wave absorber or when measuring a liquid surface with poor reflectivity, for example, as shown in Figure 4, a retroreflector plate (22) with many prismatic irregularities in the same circle as the borehole is used. All you have to do is attach it to the float □□□ and let it float on the liquid surface.

しかしこうした消波装置や反射板付フロートを用いても
液面の僅かなゆらぎにより受信信号のレベルが変化する
ため前述するように本発明光波水位計には自動利得調整
回路c!印と、低入力信号レベルの場合は計測を停止さ
せちれるウィンドコンパレーター(2)とを用いて、い
かなる水面の状態に対しても正しい計測が出来る機能を
有している。
However, even if such a wave canceling device or a float with a reflector is used, the level of the received signal changes due to slight fluctuations in the liquid level, so as mentioned above, the optical water level meter of the present invention has an automatic gain adjustment circuit c! It has a function that allows accurate measurements for any water surface condition by using a wind comparator (2) that can stop measurement if the input signal level is low.

以上説明したように本発明光波水位計は全く水面とは無
接触で水位観測でき、且つ水蒸気や塵埃に対してもレン
ズ面や本体内を気密に保護さねているため、外界の悪環
墳下で長期的に安定した観測が出来る。またシャッター
板(6)の裏面の反射シー1171による校正光学系は
、装置を小型簡素化するのに適し且つ反射シートに多数
のプリズム状凹凸を有する再帰性反射体を用いるため回
動機構の精度も必要とせず製造コストを大巾に低減でき
る等のすぐれた特長がある。
As explained above, the light wave water level meter of the present invention can observe the water level without any contact with the water surface, and since the lens surface and the inside of the main body are airtightly protected from water vapor and dust, it is possible to observe the water level without contacting the water surface. This allows for long-term stable observations. In addition, the calibration optical system using the reflective sheet 1171 on the back surface of the shutter plate (6) is suitable for downsizing and simplifying the device, and since the reflective sheet uses a retroreflector having many prismatic irregularities, the rotation mechanism is accurate. It has excellent features such as being able to significantly reduce manufacturing costs without requiring any additional equipment.

更に本発明の実施例においては、既述のように送光光路
と受光光路とを分離するために半透明鏡(3)が用いら
れている。半透明鏡は光透過損失が大きく、この種の計
測用光学系には不利であって、一般には送光光路中に反
射プリズムや小径ミラーを挿入して受光光路を形成する
ような光学系が用いられている。この場合、対物レンズ
の有効径を送光光路部分と受光光路部分で2分したよう
な光路が構成され、対物レンズの視野が制限されること
になる。一方、本実施例のように半透明鏡を用いると、
対物レンズの有効径に関して送光光路と受光光路とが共
通になり、視野角度は十分に確保される。水面のように
状態変動の激しい面や粉体、雪などのように凹凸の多い
面からの反射光に基いて計測する場合には、極力広い面
積からの反射光を受光すると平均効果によって測定精度
はより高められる。従って半透明鏡を用いて送光光路及
び受光光路を同軸共有することにより、測定光路の有効
視野が広がり、より高精度の計測値を得るこさができる
Furthermore, in the embodiment of the present invention, a semi-transparent mirror (3) is used to separate the light transmitting optical path and the light receiving optical path as described above. Semi-transparent mirrors have a large light transmission loss, which is disadvantageous for this type of measurement optical system.In general, optical systems that insert a reflecting prism or small-diameter mirror into the transmitting optical path to form the receiving optical path are used. It is used. In this case, an optical path is formed in which the effective diameter of the objective lens is divided into two by a light transmitting optical path portion and a light receiving optical path portion, and the field of view of the objective lens is limited. On the other hand, if a semi-transparent mirror is used as in this example,
Regarding the effective diameter of the objective lens, the transmitting optical path and the receiving optical path are common, and a sufficient viewing angle is ensured. When measuring based on reflected light from a surface whose condition fluctuates rapidly such as a water surface, or from a surface with many irregularities such as powder or snow, it is best to receive reflected light from as wide an area as possible to improve measurement accuracy due to the averaging effect. is enhanced. Therefore, by using a semi-transparent mirror to coaxially share the light transmitting optical path and the light receiving optical path, the effective field of view of the measuring optical path is expanded, and it is possible to obtain measurement values with higher precision.

また本発明の実施例においては、既述のように校正光路
も送光光路及び受光光路と共用されている。この種の計
測光学系においては、一般に、校正光路はプリズム等を
用いて測定光路の近傍に独立して設けられることが多く
、上述と同様に御1定視野を狭くする要因となる。この
ため本実施例では第1図のように対物レンズ(2)の外
側に反射シート(7)又はプリズムを測定光路に対して
挿脱自在に設けて、測定光路を利用して校正光路が形成
されるようにしている。これによって校正時以外は対物
レンズ(2)の視野が妨害さ才することかなく、また測
定光路自体の校正データが得られて校正誤差が減小する
という優れた効果を得ることができる。
Further, in the embodiment of the present invention, as described above, the calibration optical path is also used in common with the light transmission optical path and the light reception optical path. In this type of measurement optical system, the calibration optical path is generally provided independently in the vicinity of the measurement optical path using a prism or the like, which causes a narrowing of the constant field of view as described above. Therefore, in this embodiment, as shown in Fig. 1, a reflective sheet (7) or a prism is provided outside the objective lens (2) so that it can be inserted into and removed from the measurement optical path, and a calibration optical path is formed using the measurement optical path. I'm trying to make it happen. As a result, the field of view of the objective lens (2) is not obstructed except during calibration, and calibration data for the measurement optical path itself can be obtained, resulting in an excellent effect of reducing calibration errors.

また副次的な効果として、測定時以外は校正つ0路を形
成するための反射物を取付けたシャッター板(6)が対
物レンズ(2)の外側全面をおおって、レンズ面や本体
内を水蒸気や塵埃に対して保諦するきいう好ましい機能
も得られる。
In addition, as a secondary effect, the shutter plate (6) equipped with a reflector to form a calibration zero path covers the entire outer surface of the objective lens (2) except during measurement, allowing it to penetrate inside the lens surface and body. A desirable feature of protection against water vapor and dust is also obtained.

本発明は上述の如く送光光学系と受光光学系とが対物レ
ンズの有効径の全面について光路を同軸共有しているか
ら、限られた径の対物レンズの視野を十分大きくとるこ
とができ、面レベルの計測精度を高めることができる。
In the present invention, as described above, since the light transmitting optical system and the light receiving optical system coaxially share the optical path over the entire effective diameter of the objective lens, the field of view of the objective lens with a limited diameter can be made sufficiently large. Surface level measurement accuracy can be improved.

また対物レンズを蓋うシャッターに反射体を取付けて校
正光学系を構成したので、光学系が簡素化されるさ共に
、送光光学系及び受光光学系によって構成される内部光
路自体の校正を正確に行うことができる上、計測時以外
はシャッターを閉じることにより対物レンズ面や本体内
部を水蒸気や塵埃に対して保護することができる。
In addition, the calibration optical system is constructed by attaching a reflector to the shutter that covers the objective lens, which simplifies the optical system and allows for accurate calibration of the internal optical path itself, which is comprised of the transmitting optical system and the receiving optical system. In addition, by closing the shutter when not measuring, the objective lens surface and the inside of the main body can be protected from water vapor and dust.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した光波水位計の光学的構造を示
す略断面図、第2図は電気回路を示すブロックダイアグ
ラム、第6図は消波装置を用いて水位観測する場合の一
実施例を示す略断面図、第4図は消波装置を用いずにフ
ロートに再帰反射板を取付けて水位観測をする場合の実
施例を示す略断面図である。 なお図面に用いられた符号において、 (II・・・・・・・・・・・・・・・本体(2)・・
・・・・・・・・・・・・・対物レンズ(3)・・・・
・・・・・・・・・・・半透明鏡(4)・・・・・・・
・・・・・・・・発光素子(5)・・・・・・・・・・
・・・・・受光素子(6)・・・・・・・・・・・・・
・・シャッター板(7)・・・・・・・・・・・・・・
・反射シート又は反射プリズム(8)・・・・・・・・
・・・・・・・回動軸(9)・・・・・・・・・・・・
・・・歯車00)・・・・・・・・・・・・・・・モー
ターUυ・・・・・・・・・・・・・・・本体の外カバ
ー(12+・・・・・・・・・・・・・・・整準ねじ0
3)・・・・・・・・・・・・・・・円型気泡管(+4
1・・・・・・・・・・・・・・・架台u51・・・・
・・・・・・・・・・・水面(le・・・・・・・・・
・・・・・・電気回路(17)・−・・・・・・・・・
・・・・コネクター(国・・・・・・・・・・・・・・
・消波パイプ(1,1・・・・・・・・・・・・・・・
消波パイプ小孔Cυ・・・・・・・・・・・・・・・グ
ラスピース(2)・・・・・・・・・・・・・−・ボア
ホール(2渇・・・−・・・・・・・・・・・再帰反射
板(ハ)・・・・・・・・・・・・・・・フロート(2
41・・・・・・・・・・・・・・・発光素子駆動回路
(251・・・・・・・・・・・・・・・水晶発振器(
1)・・・・・・・・・・・・・・・前置増巾器(5)
・・・・・・・・・・・・・・・バンドパスフィルター
(イ)・・・・・・・・・・・・・・・自動利得調整回
路e9)・・・・・・・・・・・・・・・ ウィンドコ
ンパレーター(至)・・・・・・・・・・・・・・・ミ
キサーOυ・・・・・・・・・・・・・・・ローカル発
振器02・・・・・・・・・・・・・・・クロック発振
器■・・・・・・・・・・・・・・・デジタル位相計(
34)・・・・・・・・・・・・・・・演算装置cl!
51・・・・・・・・・・・・・・・測定指令回路■・
・・・・・・・・・・・・・・表示器G7)・・・・・
・・・・・・・・・・分周器である。 代理人 土星 勝 I 常包芳男 I 杉浦俊爾 第1図 /ン /ノ 0 1グ/− 第3図 第4図
Fig. 1 is a schematic cross-sectional view showing the optical structure of a light wave water level meter to which the present invention is applied, Fig. 2 is a block diagram showing an electric circuit, and Fig. 6 is an example of an example of water level observation using a wave dissipating device. A schematic sectional view showing an example. FIG. 4 is a schematic sectional view showing an embodiment in which water level observation is carried out by attaching a retroreflector to a float without using a wave dissipating device. In addition, in the symbols used in the drawings, (II...................................Body (2)...
・・・・・・・・・・・・Objective lens (3)・・・・
・・・・・・・・・・・・Semi-transparent mirror (4)・・・・・・
......Light emitting element (5)...
...... Light receiving element (6) ......
・Shutter board (7)・・・・・・・・・・・・・・・
・Reflective sheet or reflective prism (8)...
・・・・・・Rotation axis (9)・・・・・・・・・・・・
・・・Gear 00)・・・・・・・・・・・・Motor Uυ・・・・・・・・・・・・Outer cover of main body (12+・・・・・・・・・・・・・・・Leveling screw 0
3)・・・・・・・・・・・・・・・Circular bubble tube (+4
1・・・・・・・・・・・・・・・ Frame u51・・・・
・・・・・・・・・・・・Water surface (le・・・・・・・・・
・・・・・・Electrical circuit (17)・-・・・・・・・・・
...Connector (Country...)
・Wave-dissipating pipe (1, 1・・・・・・・・・・・・・・・
Wave-dissipating pipe small hole Cυ・・・・・・・・・・・・・Glass piece (2)・・・・・・・・・・・・・−・Borehole (2 thirst・・・−・・・・・・・・・・Retroreflector (c)・・・・・・・・・・・・Float (2
41・・・・・・・・・・・・Light emitting element drive circuit (251・・・・・・・・・・・・Crystal oscillator (
1)・・・・・・・・・・・・Preamplifier (5)
・・・・・・・・・・・・・・・Band pass filter (a)・・・・・・・・・・・・Automatic gain adjustment circuit e9)・・・・・・・・・・・・・・・・・・・・・ Wind comparator (to)・・・・・・・・・・・・Mixer Oυ・・・・・・・・・・・・Local oscillator 02・・・・・・・・・・・・・・・・・Clock oscillator■・・・・・・・・・・・・・・・Digital phase meter (
34)・・・・・・・・・・・・Arithmetic device cl!
51・・・・・・・・・・・・Measurement command circuit ■・
・・・・・・・・・・・・Display unit G7)・・・・・・
・・・・・・・・・It is a frequency divider. Agent Masaru Saturn I Yoshio Tsuneko I Shunji Sugiura Figure 1/n/no 0 1g/- Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 測定面に対向する対物レンズの光軸上に置かれた半透明
鏡を介して実質的に同軸状に配置された送光光学系及び
受光光学系と、上記対物レンズの前面を開閉自在に蓋う
シャッターと、このシャッターに取付けらね、上記送光
光学系及び受光光学系の一部を校正光学系として利用す
るための反射体とを具備し、校正時には上記反射体が介
在された送元光学系及び受光光学系でもって内部光路長
を計測し、面レベル測定時には上記シャッターを開いて
上記対物レンズの有効径のハに全面について光路を同軸
共用した上記送光光学系及び受光光学系でもって測定面
が介在された外部光路長を計測し、測定面までの外部光
路長と上記内部光路長との差により面レベルを計測する
ようにした光波面レベル計。
A light transmitting optical system and a light receiving optical system are arranged substantially coaxially through a semi-transparent mirror placed on the optical axis of the objective lens facing the measurement surface, and a lid that can be opened and closed in front of the objective lens. a shutter, and a reflector that is not attached to the shutter and is used as a calibration optical system for part of the light transmitting optical system and the light receiving optical system; The internal optical path length is measured by the optical system and the light receiving optical system, and when measuring the surface level, the shutter is opened and the light transmitting optical system and the light receiving optical system share the optical path coaxially over the entire surface of the effective diameter of the objective lens. An optical wavefront level meter that measures the length of an external optical path with a measurement surface interposed therebetween, and measures the surface level based on the difference between the external optical path length to the measurement surface and the internal optical path length.
JP16431283A 1983-09-07 1983-09-07 Light wave front level meter Pending JPS6056223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16431283A JPS6056223A (en) 1983-09-07 1983-09-07 Light wave front level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16431283A JPS6056223A (en) 1983-09-07 1983-09-07 Light wave front level meter

Publications (1)

Publication Number Publication Date
JPS6056223A true JPS6056223A (en) 1985-04-01

Family

ID=15790744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16431283A Pending JPS6056223A (en) 1983-09-07 1983-09-07 Light wave front level meter

Country Status (1)

Country Link
JP (1) JPS6056223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054319A (en) * 1990-09-12 1991-10-08 Fling John J Liquid level sensor and method
JPH04130978U (en) * 1991-05-21 1992-12-01 株式会社オーシヤン Convenient table for daily life

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390967A (en) * 1977-01-20 1978-08-10 Tadashi Iizuka Measuring instrument for snow level and liquid level

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390967A (en) * 1977-01-20 1978-08-10 Tadashi Iizuka Measuring instrument for snow level and liquid level

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5054319A (en) * 1990-09-12 1991-10-08 Fling John J Liquid level sensor and method
JPH04130978U (en) * 1991-05-21 1992-12-01 株式会社オーシヤン Convenient table for daily life

Similar Documents

Publication Publication Date Title
US4165936A (en) Coaxial transmitting and receiving optics for an electro-optic range finder
US5461473A (en) Transmitter and receiver units for spatial position measurement system
US3915575A (en) Reflector arrangement
CN108594257A (en) Tachogenerator and its scaling method based on Doppler effect and measurement method
GB2024558A (en) Laser Range Finder
CN108594258A (en) Amendment type tachogenerator and its calibration based on Doppler effect and measurement method
US7826039B2 (en) Target acquisition device
CN109342758A (en) Novel velocity sensor
US20210041237A1 (en) Surveying Instrument
JPS6056223A (en) Light wave front level meter
US11428784B2 (en) Distance measuring apparatus with high signal dynamics and a reference light path matched thereto
US20220390566A1 (en) Optical assembly for lidar detection system
US5781305A (en) Fiber optic transmissometer
JPS62108172A (en) Correcting method for offset error of range finder
CN108646047A (en) Based on tachogenerator of the Doppler effect with correcting principle and calibration and measurement method
JP2006053055A (en) Laser measuring apparatus
RU2804833C1 (en) Transmitter-receiver optical device
WO2010044699A1 (en) Distance measuring method and a device for carrying out said method
CN1121608C (en) Long-distance infrared thermoscope able to fully stabilize object and regulse focus
RU2738588C1 (en) Combined lidar
GB2366107A (en) Technique for increasing the optical signal/noise ratio of a laser range finder
CN109141294A (en) A kind of angle measuring sensor and its scaling method and measurement method
JP3227336B2 (en) Gas concentration measurement device
CN219368939U (en) Double-vision camera and related human body temperature measurement system
SU1281952A1 (en) Device for measuring lens spectral transmittance factor