JPS605613B2 - thermoplastic composite material - Google Patents

thermoplastic composite material

Info

Publication number
JPS605613B2
JPS605613B2 JP15346775A JP15346775A JPS605613B2 JP S605613 B2 JPS605613 B2 JP S605613B2 JP 15346775 A JP15346775 A JP 15346775A JP 15346775 A JP15346775 A JP 15346775A JP S605613 B2 JPS605613 B2 JP S605613B2
Authority
JP
Japan
Prior art keywords
weight
oil
resin
parts
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15346775A
Other languages
Japanese (ja)
Other versions
JPS5277153A (en
Inventor
義秋 後藤
宏 後藤
徹 相沢
幸男 佐々木
武彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP15346775A priority Critical patent/JPS605613B2/en
Publication of JPS5277153A publication Critical patent/JPS5277153A/en
Publication of JPS605613B2 publication Critical patent/JPS605613B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明はゴム変性耐衝撃性樹脂、粉末状無機質充填剤、
動物油および/または植物油からなる耐衝撃性、成形加
工性および成形収縮性のすぐれた熱可塑性複合材料に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a rubber-modified impact-resistant resin, a powdered inorganic filler,
The present invention relates to a thermoplastic composite material made of animal oil and/or vegetable oil and having excellent impact resistance, moldability, and molding shrinkage.

従来、熱可塑性樹脂に無機質充填剤を配合することはよ
く知られており、これらの最も代表的な例としては、ガ
ラス繊維強化樹脂が挙げられる。
Conventionally, it has been well known that inorganic fillers are blended into thermoplastic resins, and glass fiber reinforced resins are the most typical example thereof.

このガラス繊維強化樹脂は引張り強さや曲げ強さが大き
く、クリープ強度、熱変形温度、成形収縮性などが改善
された複合材料であり、熱可塑性樹脂やガラス繊維の夫
々単独からは得られない特徴ある製品を与えるため極め
て重視されている。また、無機質充填剤を配合した樹脂
材料は、使用する無機質充填剤が一般的に安価であるこ
とから、低コストでしかも新しい物質を備えた複合材料
が得られる点で樹脂製品に従事する者にとって魅力的で
あり、石油危機以来の省資源にも通した複合機能樹脂と
しての開発が積極的に進められている。しかしながら、
樹脂に無機質充填剤を添加する場合には、樹脂の耐衝撃
性や成形加工性が低下するのが通常であり、熱可塑性樹
脂および無機質充填剤の夫々の特徴生かされた複合材料
を作り上げることが極めて困難であるため、一般的には
熱可塑性樹脂と親和・性のある無機質充填剤との特定の
組み合わせを選択するか、または熱可塑性樹脂と無機充
填剤との界面をなじませる第3成分を添加して、複合材
料としての特性を求めているのが現状である。
This glass fiber reinforced resin is a composite material that has high tensile strength and bending strength, and has improved creep strength, heat distortion temperature, molding shrinkage, etc., and has characteristics that cannot be obtained from thermoplastic resin or glass fiber alone. Extreme emphasis is placed on giving certain products. In addition, since the inorganic fillers used in resin materials blended with inorganic fillers are generally inexpensive, they are useful for those involved in resin products because they can provide composite materials with new substances at low cost. It is attractive and is being actively developed as a multifunctional resin that can save resources for the first time since the oil crisis. however,
When an inorganic filler is added to a resin, the impact resistance and moldability of the resin usually decrease, making it difficult to create a composite material that takes advantage of the respective characteristics of the thermoplastic resin and the inorganic filler. Since this is extremely difficult, generally a specific combination of a thermoplastic resin and an inorganic filler with affinity is selected, or a third component is added that blends the interface between the thermoplastic resin and the inorganic filler. The current situation is to add them to obtain properties as a composite material.

一方、ゴム質により耐衝撃性を付与されたABS樹脂や
HIポリスチレンなどのゴム変性耐衝撃性樹脂について
もガラス繊維や粉末状炭酸カルシウム(特公昭44一7
532号公報)などの種々の充填剤を配合することが知
られているが、ガラス繊維を配合する場合には樹脂の剛
性は改良されるものの耐衝撃性の低下がまぬがれず、粉
末状炭酸カルシウムの場合には樹脂の耐衝撃性低下がさ
らに著しく、耐衝撃性樹脂としての本来の特性が完全に
失なわれるため、実用化が困難である。
On the other hand, rubber-modified impact-resistant resins such as ABS resin and HI polystyrene, which have been given impact resistance by rubber, are also used for glass fibers and powdered calcium carbonate (Special Publications Publication No. 44-17).
It is known to incorporate various fillers such as (Japanese Patent Publication No. 532), but when glass fiber is incorporated, although the rigidity of the resin is improved, the impact resistance is inevitably reduced, and powdered calcium carbonate In this case, the impact resistance of the resin deteriorates even more significantly, and the original characteristics as an impact resistant resin are completely lost, making it difficult to put it into practical use.

したがって、ゴム変性耐衝撃性樹脂と無機質充填剤との
組み合わせについては、わずかにガラス織絶入ABS樹
脂が実用化されているにすぎず、このガラス繊維よりさ
らに経済的な粉末状無機質充填剤を用いて本来の耐衝撃
性と維持したゴム変性耐衝撃性樹脂複合材料を得ること
はほとんど不可能だと考えられてきた。そこで、本発明
者らはゴム変性耐衝撃性樹脂に対し炭酸カルシウム、ク
レーなどの粉末状無機質充填剤と配合する際の耐衝撃性
低下を極力抑制するとともに、成形加工性、寸法安定性
、剛性などが均衝してすぐれた複合材料を得るべく鋭意
検討した結果、ゴム変性耐衝撃性樹脂と粉末状無機質填
剤からなる組成物に対し、さらに特定の油脂を配合する
ことにより、上記目的が達成できることを見出し、本発
明に到達した。
Therefore, regarding the combination of rubber-modified impact-resistant resin and inorganic filler, only glass woven ABS resin has been put into practical use, and powdered inorganic filler, which is more economical than glass fiber, has been put into practical use. It has been considered almost impossible to obtain rubber-modified impact-resistant resin composites that maintain their original impact resistance. Therefore, the present inventors have attempted to minimize the decrease in impact resistance when compounding rubber-modified impact-resistant resins with powdered inorganic fillers such as calcium carbonate and clay, and to improve moldability, dimensional stability, and rigidity. As a result of intensive studies to obtain an excellent composite material with balanced properties, the above objective was achieved by further blending a specific oil and fat into a composition consisting of a rubber-modified impact-resistant resin and a powdered inorganic filler. We have discovered what can be achieved and arrived at the present invention.

すなわち、本発明はゴム変性耐衝撃性樹脂50〜9母重
量%および粉末状無機質充填剤2〜5の重量%からなる
組成物10の重量部に対し、動物油および/または植物
油を10〜3の重量部配合してなる熱可塑性複合材料を
提供するものである。
That is, in the present invention, animal oil and/or vegetable oil is added in an amount of 10 to 3 parts by weight to 10 parts by weight of a composition consisting of 50 to 9% by weight of a rubber-modified impact-resistant resin and 2 to 5% by weight of a powdered inorganic filler. The present invention provides a thermoplastic composite material in which the following components are blended in parts by weight.

本発明で使用するゴム変性耐衝撃性樹脂とは、ゴム質に
より耐衝撃性が付与されてなる熱可塑性樹脂であり、A
BS樹脂およびHIポリスチレンが代表的である。
The rubber-modified impact-resistant resin used in the present invention is a thermoplastic resin imparted with impact resistance by rubber.
BS resin and HI polystyrene are representative.

ここでいうゴム質とはポリウレタン、ブタジェンースチ
レン共重合ゴム、ブタジェンーアクリロニトリル共重合
ゴム、ポリクロロプレン、エチレンープロピレン共重合
ゴム、アクリルゴムなどであり、これらのゴム質で変性
される樹脂相とは、スチレン、Qータチルスチレなどの
芳香族ビニル単量体、アクリロニトリルなどのシアン化
ビニル単量体、メタクリル酸メチルなどのアクリル酸ま
たはメタクリル酸ェステル単量体を主成分とし、必要に
応じて他の共重合可能なビニル単量体を含む重合体、例
えばポリスチレン、スチレンーアクリロニトリル共重合
体、スチレン/ァクリロニトリル/メタクリル酸メチル
共重合体およびこれらとポリ塩化ビニルなどの他の重合
体とのブレンド物などである。ゴム質による変性手段と
しては、主としてゴム質の存在下で樹脂相を形成するビ
ニル単量体を乳化重合法、乳化一懸濁重合法、塊状重合
法などでグラフト重合する方法が採用されるが、こうし
て得られるグラフト重合体またはゴム質を熱可塑性樹脂
とブレンドして変性することも可能である。これらゴム
変性耐衝撃性樹脂のゴム含量は通常8〜5の重量%であ
り、さらには酸化防止剤、金属石けんなどの少量の添加
剤を含むものであっても良い。本発明で使用する粉末状
無機質充填剤とは炭酸カルシウム、クレー、タルク、石
こう、けし、そつ士、ホワイトカーボン、メタけい酸カ
ルシウム、ガラス粉末、カーボンブラック、アスベスト
、シラスバルーンなどから選択した少なくとも1種であ
り、中でも炭酸カルシウムが最も良好な耐衝撃性を与え
るため好ましい。
The rubber materials mentioned here include polyurethane, butadiene-styrene copolymer rubber, butadiene-acrylonitrile copolymer rubber, polychloroprene, ethylene-propylene copolymer rubber, acrylic rubber, etc., and resins modified with these rubber materials. The phase is mainly composed of aromatic vinyl monomers such as styrene and Q-tatylstyrene, vinyl cyanide monomers such as acrylonitrile, and acrylic acid or methacrylic acid ester monomers such as methyl methacrylate. Polymers containing other copolymerizable vinyl monomers, such as polystyrene, styrene-acrylonitrile copolymers, styrene/acrylonitrile/methyl methacrylate copolymers, and blends thereof with other polymers such as polyvinyl chloride. Things, etc. As a modification method using a rubbery substance, a method is mainly adopted in which vinyl monomers forming a resin phase are graft-polymerized in the presence of a rubbery substance by emulsion polymerization, emulsion-suspension polymerization, bulk polymerization, etc. It is also possible to modify the thus obtained graft polymer or rubber by blending it with a thermoplastic resin. The rubber content of these rubber-modified impact-resistant resins is usually 8 to 5% by weight, and may also contain small amounts of additives such as antioxidants and metal soaps. The powdered inorganic filler used in the present invention is at least one selected from calcium carbonate, clay, talc, gypsum, poppy seed, sotsuji, white carbon, calcium metasilicate, glass powder, carbon black, asbestos, shirasu balloon, etc. Among them, calcium carbonate is preferred because it provides the best impact resistance.

これら粉末状無機充填剤、平均粒子径は入手できる範囲
において特に制限しないが、通常は0.01〜20仏の
ものが好ましく、場合によってはウィスカ状のものも使
用可能である。粉末状無機質充填剤の配合量はゴム変性
耐衝撃性樹脂のゴム含量および充填剤の種類により多少
変動するが、一般的にはゴム変性耐衝撃性樹脂に対し2
〜5の重量%、好ましくは5〜35重量%であり、5の
重量%以上配合する場合には耐衝撃性の低下が一層激し
くなるため好ましくない。これらゴム変性耐衝撃性樹脂
と粉末状無機質充填剤からなる組成物は、ゴム変性耐衝
撃性樹脂自体の耐衝撃性が著しく低下しているが、さら
に動物油および/または植物油も配合することにより組
成物の耐衝撃性を実用的な範囲に回復せしめることがで
きる。本発明で使用する動物油とは、動物から採取され
る油脂(脂肪、油)の少なくとも1種であり、例えば魚
油、鮮油、肝油などの水産動物油類および牛脂、豚脂、
羊脂などの陸産動物類が挙げられる。
The average particle diameter of these powdered inorganic fillers is not particularly limited as long as they are available, but those of 0.01 to 20 F are usually preferred, and whisker-like fillers can also be used in some cases. The blending amount of the powdered inorganic filler varies somewhat depending on the rubber content of the rubber-modified impact-resistant resin and the type of filler, but generally it is 2% for the rubber-modified impact-resistant resin.
The content is 5 to 5% by weight, preferably 5 to 35% by weight, and if it is blended in more than 5% by weight, the drop in impact resistance becomes even more severe, which is not preferable. These compositions consisting of rubber-modified impact-resistant resin and powdered inorganic filler have significantly reduced impact resistance of the rubber-modified impact-resistant resin itself, but by adding animal oil and/or vegetable oil to the composition. It is possible to restore the impact resistance of objects to a practical range. The animal oil used in the present invention is at least one type of oil (fat, oil) collected from animals, such as aquatic animal oils such as fish oil, fresh oil, liver oil, beef tallow, pork fat,
Examples include land animals such as mutton fat.

また、植物油とは植物から採取される油脂(脂肪、油)
の少なくとも1種であり、例えばアマニ油、キリ油、ェ
ノ油等の乾性油、ゴマ油、ナタネ油、綿実油、大豆油な
どの半乾性油、ツバキ油、オリーブ油、ヒマシ油などの
不乾性油、ャシ油、パーム核油、木ろうなどが挙げられ
る。
In addition, vegetable oil is oil (fat, oil) extracted from plants.
For example, drying oils such as linseed oil, tung oil, and eno oil; semi-drying oils such as sesame oil, rapeseed oil, cottonseed oil, and soybean oil; non-drying oils such as camellia oil, olive oil, and castor oil; Examples include coconut oil, palm kernel oil, and wood wax.

これら油脂の使用量は、ゴム変性耐衝撃性樹脂および粉
末状無機質充填剤の種類、特に充填剤の吸油系数により
最適範囲が相違するが、一般的にはゴム変性耐衝撃性樹
脂および粉末状無機質充填剤からなる組成物10の重量
部に対して10〜3の重量部配合される。油脂の配合量
が1の重量部では耐衝撃性回復効果が得られず、3の重
量部以上では複合材料の成形性が低下し、実用性に乏し
くなるため好ましくない。ゴム変性耐衝撃性樹脂、粉末
状無機質充填剤および油脂の配合手段としては例えば樹
脂と充填剤からなる組成物に油脂をブレンドする方法、
樹脂、充填剤および油脂の3者を同時に混合する方法、
樹脂の重合時に充填剤および/または油脂を配合する方
法などが挙げられ、混糠べレタィズに際しては通常のロ
ール、バンバリーミキサー、ベレタィザ−などが使用で
きる。
The optimum amount of these oils and fats to be used differs depending on the type of rubber-modified impact-resistant resin and powdered inorganic filler, especially the number of oil absorption systems of the filler, but in general, rubber-modified impact-resistant resin and powdered inorganic filler are used. The filler is added in an amount of 10 to 3 parts by weight based on 10 parts by weight of the filler composition. If the amount of oil and fat added is 1 part by weight, no impact resistance recovery effect can be obtained, and if the amount is more than 3 parts by weight, the moldability of the composite material decreases, making it impractical, which is not preferable. Examples of methods for blending the rubber-modified impact-resistant resin, powdered inorganic filler, and fats and oils include blending the fats and oils into a composition consisting of the resin and the filler;
A method of simultaneously mixing resin, filler, and oil and fat;
Examples include a method of blending fillers and/or fats and oils during polymerization of the resin, and a common roll, Banbury mixer, beletizer, etc. can be used for beletizing the mixed bran.

配合時には脂肪酸アミド、脂肪酸、金属せつけん、アル
コールなどの滑剤、リン酸ェステル、フタル酸ェステル
、脂肪酸ェステル、グリコールェステルなどの可塑剤な
どの各種添加剤を添加することができ、特にオレィン酸
(不飽和脂肪酸)と添加する場合には、複合材料の耐衝
撃性を一層向上させることができる。本発明の複合材料
は通常の射出成形、押出成形などにより良好な成形性の
もとに成形することができ、得られる成形品は低温から
常温にかけての成形性が良好であって、実用価値が大き
い。
When compounding, various additives such as lubricants such as fatty acid amides, fatty acids, metal soaps, and alcohols, and plasticizers such as phosphate esters, phthalate esters, fatty acid esters, and glycol esters can be added.In particular, oleic acid ( (unsaturated fatty acids), the impact resistance of the composite material can be further improved. The composite material of the present invention can be molded with good moldability by ordinary injection molding, extrusion molding, etc., and the molded product obtained has good moldability from low temperature to room temperature, and has practical value. big.

以下に実施例を挙げて本発明の効果をさらに詳述する。
実施例 1 蒸留水5の重量部、固形分50%のポリブタジェンラテ
ックス(平均粒子蓬0.25〆、ゲル含有率92%)1
0の重量部および重合開始助剤として硫酸第1鉄0.0
1重量部、デキストリン10重量部、ピロリン酸ナトリ
ウム0.5部を健投機をそなえた小型重合容器に初期仕
込みした。
The effects of the present invention will be explained in further detail with reference to Examples below.
Example 1 5 parts by weight of distilled water, 50% solids polybutadiene latex (average particle size 0.25, gel content 92%) 1
0 parts by weight and 0.0 parts by weight of ferrous sulfate as a polymerization initiation aid.
1 part by weight, 10 parts by weight of dextrin, and 0.5 part of sodium pyrophosphate were initially charged into a small polymerization vessel equipped with a sieve.

さらに、t−ドデニルメルカプタン0.25重量部を添
加したスチレンモノマー35重量部とアクリロニトリル
モノマ−15重合部からなる混合液を準備し、次いで重
合開始剤キュメン・ハィドロ・パナ材シド0.24重量
部と乳化剤ラウイン酸ナトリウム酸ナトリウム24重量
部を蒸留水25重量部に乳化した。
Furthermore, a mixed solution consisting of 35 parts by weight of styrene monomer to which 0.25 parts by weight of t-dodenyl mercaptan was added and 15 parts by weight of acrylonitrile monomer was prepared, and then 0.24 parts by weight of the polymerization initiator Cumen Hydro Panawood Sid was prepared. 24 parts by weight of sodium laurate and emulsifier were emulsified in 25 parts by weight of distilled water.

この2つの溶液を初期仕込ポリブラジンラテックス混合
液にそれぞれ等速仕込み速度で滴下し60℃、熟成時間
3雌ごを含む4時間の乳化重合を行なった。
These two solutions were added dropwise to the initially charged polybrazine latex mixture at a uniform charging speed, and emulsion polymerization was carried out at 60° C. for 4 hours including 3 maturation times.

重合完了したラテツクスを1.5%硫酸で凝固し、次い
でアルカリで中和し、遠心分離をしてグラフト率40%
のABS樹脂パウダー凶を得た。本ポリマーのグラフト
率は40±5%に保持されるものである。また、別に水
10の重量部に懸濁剤としてポリビニルアルコール0.
3重量部を入れ、次いで重合開始剤アゾビスィソブチロ
ニトリル0.2重量部と連鎖移動剤n−オクチルメカプ
タン0.2の重量部熔解したスチレンモノマー2母重量
部、アクリロニトリルモノマ−la重量部を添加し、8
0午04時間懸濁重合してスチレンーアクリロニトリル
共重合ビーズ■を得たo■と‘B}をゴム分17%にな
るようにブレンドして得られたABS樹脂に種々な平均
粒子を有する炭酸カルシウムと20qoで褐色粘性液体
である牛脂を第1表に示した配合方法で配合し、200
仇pm回転の粉末混合機で5〜1雌ご間鷹梓混合した。
The polymerized latex was coagulated with 1.5% sulfuric acid, then neutralized with alkali, and centrifuged to achieve a grafting rate of 40%.
ABS resin powder was obtained. The grafting rate of this polymer is maintained at 40±5%. Separately, 10 parts by weight of water and 0.0 parts polyvinyl alcohol as a suspending agent were added.
3 parts by weight of the polymerization initiator azobisisobutyronitrile, 0.2 parts by weight of the chain transfer agent n-octylmecaptan, 2 parts by weight of the dissolved styrene monomer, and the weight of the acrylonitrile monomer la. Add 8 parts
Styrene-acrylonitrile copolymer beads ■ obtained by suspension polymerization for 0:04 hours were blended with o■ and 'B} so that the rubber content was 17%, and carbonic acid having various average particles was added to the ABS resin obtained. Calcium and 20 qo of beef tallow, which is a brown viscous liquid, are blended according to the blending method shown in Table 1.
The powder was mixed for 5 to 1 minutes using a powder mixer with a rotation speed of 100 pm.

次いで、スクリュー径4仇肋◇、スクリューL/D=2
2、回転数80仇pmシリンダー温度23000、ダィ
温度210℃の条件で押出機からべレタィズし、各べレ
ットの耐衝撃性を評価した。なお、アィゾット衝撃強度
はASTM−D−256一56に従い1/2×1′2イ
ンチ試験片を各べレットより成形して、1/10インチ
ノッチを入れて測定した値である。
Next, the screw diameter is 4, and the screw L/D is 2.
2. The pellets were pelletized from an extruder under the conditions of a rotational speed of 80 pm, a cylinder temperature of 23,000, and a die temperature of 210° C., and the impact resistance of each pellet was evaluated. The Izod impact strength is a value measured by molding a 1/2 x 1'2 inch test piece from each pellet and making a 1/10 inch notch in accordance with ASTM-D-256-56.

結果を第1表に示す。第1 ※ 牛脂添加前後の衝撃強度の上昇を向上率で示した。The results are shown in Table 1. 1st *The increase in impact strength before and after adding beef tallow is shown as an improvement rate.

第1表に示したように、衝撃強度22.4kg・cm′
弧(ノッチ付)のA茂樹脂にio%〜30%炭酸カルシ
ウムを添加すると、衝撃値は2.8〜4。5k90肌′
肌(ノッチ付)と下がり、炭酸カルシウムの粒度分布に
ほとんど関係なく低下して、本釆の衝撃樹脂としての特
性をほとんど失ってしまう。
As shown in Table 1, impact strength is 22.4 kg・cm'
When adding io%~30% calcium carbonate to arc (notched) Amo resin, the impact value is 2.8~4.5k90 skin'
It deteriorates with the skin (notched), and decreases almost regardless of the particle size distribution of calcium carbonate, causing the main pot to lose almost all of its properties as an impact resin.

かかる衝撃強度のおちた樹脂に牛脂を添加していくと衝
撃強度は再び高くなり、実用に十分供するようになり、
本発明による衝撃改良の効果は顕著である。
When beef tallow is added to the resin whose impact strength has decreased, the impact strength increases again and becomes suitable for practical use.
The impact improvement effect of the present invention is remarkable.

衝撃強度向上率で示されるように、ABS樹脂に牛脂を
添加しても10.7%しか改善されないが、ABS/炭
酸カルシウム組成物に牛脂を添加すると111〜235
%も衝撃強度が向上する。実施例 2実施例1で製造し
たABS樹脂に平均粒子径0.08仏の炭酸カルシウム
「 日艶華CCR(日石カルシウム製)および平均粒子
6。
As shown in the impact strength improvement rate, adding beef tallow to ABS resin only improves it by 10.7%, but adding beef tallow to ABS/calcium carbonate composition improves it by 111-235%.
% also improves impact strength. Example 2 The ABS resin produced in Example 1 was coated with calcium carbonate having an average particle size of 0.08 mm and Nisseki CCR (manufactured by Nisseki Calcium) and an average particle size of 6.

3仏炭酸カルシウムSS#30(日東粉化製)を第2表
のように配合し、さらに2000で黄色透明液体である
ヒマシ油を添加して200仇pm回転の粉末混合機で5
〜10分燈幹混合した。
3. Blend French calcium carbonate SS #30 (manufactured by Nitto Funka) as shown in Table 2, add castor oil, a yellow transparent liquid, at 2000 pm and mix with a powder mixer rotating at 200 pm.
Stir mixed for ~10 minutes.

次いでスクリュー径40側?「スクリューL/D=22
、回転数80仇pm、シリンダー温度230℃、ダィ温
度210ooの条件で押出機からべレタィズし、実施例
1と同機に各材料のアィゾット衝撃強度を評価した。結
果を第2表に示す。
Next is the screw diameter 40 side? "Screw L/D=22
The materials were pelletized from an extruder under the following conditions: rotation speed 80 pm, cylinder temperature 230° C., and die temperature 210 oo, and the Izod impact strength of each material was evaluated using the same machine as in Example 1. The results are shown in Table 2.

第2表 また、ヒマシ油をA茂樹脂に添加した場合とABS/炭
酸カルシウム組成物に添加した時の比鮫を衝撃強度向上
率(ヒマシ油添加前後の衝撃値の変化率)で表し、第3
に示した。
Table 2 also shows the impact strength improvement rate (rate of change in impact value before and after adding castor oil) when castor oil is added to A-mo resin and when added to ABS/calcium carbonate composition. 3
It was shown to.

第3表 第2表および第3表から明らかなように、ヒマシ油の添
加による耐衝撃向上効果は顕著である。
As is clear from Tables 2 and 3 of Table 3, the effect of improving impact resistance by adding castor oil is significant.

実施例 3固形分50%にポリブタジェンラテツクス6
の重量部に蒸留水20の重量部、重合開始助剤として硫
酸第1鉄0.0a重量部、デキストリン2.の重量部、
ピロリン酸ナトリウム1碇都を加え、次いでスチレンモ
ノマー100重量部、アクリロニトリルモノマー6の重
量部と連鎖移動剤n−オクチルメチルカプタン0.5重
量部を入れ、この混合溶液を還流除熱器と蝿枠機を備え
た小型重合装置に入れた。
Example 3 Polybutadiene latex 6 with a solid content of 50%
20 parts by weight of distilled water, 0.0 parts by weight of ferrous sulfate as a polymerization initiation aid, and 2.0 parts by weight of dextrin. parts by weight,
Add 1 part of sodium pyrophosphate, then add 100 parts by weight of styrene monomer, 6 parts by weight of acrylonitrile monomer and 0.5 parts by weight of n-octylmethylcaptan as a chain transfer agent. It was placed in a small polymerization apparatus equipped with a frame machine.

さらに、乳化剤としてオレィン酸カリ5重量部、重合開
始剤キュメン・ハィドロ・バナオキシド0.5重量部を
蒸留水5広重量部に乳化して、この乳化液を上記ポリブ
タジェンラテックスーモノマー混合溶液に添加して、7
0q04時間で乳化重合した。
Furthermore, 5 parts by weight of potassium oleate as an emulsifier and 0.5 parts by weight of cumene hydrovanoxide as a polymerization initiator were emulsified in 5 parts by weight of distilled water, and this emulsion was added to the above polybutadiene latex monomer mixed solution. Add 7
Emulsion polymerization was carried out at 0q04 hours.

重合終了後のラテックスに1.5%硫酸で凝固、水酸化
ナトリウム溶液で中和、遠心分離、乾燥の各処理を施し
ABS樹脂パウバーを得た。このABS樹脂/ぐゥバー
に平均粒子径0.08仏沈降性炭酸カルシウム日艶姿C
CR(白石カルシウム製)と2000で褐色液体の鯨油
および20こ○で滑色透明液体のやし油を第4表に示し
た配合処方でブレンドし、200仇pmの回転粉末混合
機で蝿梓後スクリュー径3Q帆0の押し出し機でべレタ
ィズし、実施例1と同様にアィゾット衝撃強度を測定し
た。結果を第4表に示す。第4表 実施例 4 実施例1で製造したABS樹脂にタルクMS(日本タル
ク製)石こう(東レ製)およびユニオンクし−(竹原化
学製)の各無機充填剤と大豆油を第5表に示した配合処
方で配合し衝撃強度を測定した。
After the polymerization, the latex was coagulated with 1.5% sulfuric acid, neutralized with a sodium hydroxide solution, centrifuged, and dried to obtain an ABS resin powder. This ABS resin/Guber has an average particle size of 0.08, and is a precipitated calcium carbonate with a glossy appearance C.
Blend CR (manufactured by Shiraishi Calcium) with whale oil, a brown liquid at 2,000 pm, and coconut oil, a smooth transparent liquid at 20 pm, according to the formulation shown in Table 4, and mix it with a rotary powder mixer at 200 pm. It was pelletized using an extruder with a rear screw diameter of 3Q and a sail of 0, and the Izod impact strength was measured in the same manner as in Example 1. The results are shown in Table 4. Table 4 Example 4 Inorganic fillers such as Talc MS (manufactured by Nippon Talc), gypsum (manufactured by Toray Industries) and Union Kushi (manufactured by Takehara Chemical) and soybean oil are added to the ABS resin produced in Example 1 as shown in Table 5. The impact strength was measured using the following formulation.

第5表 第5表から明らかなように、クレー、石こう、夕ルクと
ABS樹脂からなる組成物に大豆油を添加すると衝撃強
度が向上する。
Table 5 As is clear from Table 5, impact strength is improved when soybean oil is added to a composition consisting of clay, gypsum, turk, and ABS resin.

実施例 5 市販日Iポリェスチレン樹脂(旭ダゥ製)にケィ湊土シ
ムゴン(日本タルク製)およびクレーの各無機充填剤お
よびヒマシ油を第6表のように配合して、混練、ベレタ
イズ、成形し、ァィゾット衝撃強度を測定した。
Example 5 Commercially available polystyrene resin (manufactured by Asahi Dow) was blended with inorganic fillers such as Kei Minato Simgon (manufactured by Nippon Talc) and clay, and castor oil as shown in Table 6, and kneaded, beletized, and molded. Then, the Wizodt impact strength was measured.

第6表 HIポリスチレン樹脂−無機充填剤の系もヒマシ油を添
加することにより衝撃強度が回復する。
Table 6 HI Polystyrene resin-inorganic filler system also recovers impact strength by adding castor oil.

Claims (1)

【特許請求の範囲】[Claims] 1 ゴム変性耐衝撃性樹脂50〜98重量%および粉末
状無機質充填材2〜50重量%からなる組成物100重
量部に対し、動物油および/または植物油10〜30重
量部配合してなる熱可塑性複合材料。
1. Thermoplastic composite made by blending 10 to 30 parts by weight of animal oil and/or vegetable oil to 100 parts by weight of a composition consisting of 50 to 98% by weight of rubber-modified impact-resistant resin and 2 to 50% by weight of powdered inorganic filler. material.
JP15346775A 1975-12-24 1975-12-24 thermoplastic composite material Expired JPS605613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15346775A JPS605613B2 (en) 1975-12-24 1975-12-24 thermoplastic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15346775A JPS605613B2 (en) 1975-12-24 1975-12-24 thermoplastic composite material

Publications (2)

Publication Number Publication Date
JPS5277153A JPS5277153A (en) 1977-06-29
JPS605613B2 true JPS605613B2 (en) 1985-02-13

Family

ID=15563192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15346775A Expired JPS605613B2 (en) 1975-12-24 1975-12-24 thermoplastic composite material

Country Status (1)

Country Link
JP (1) JPS605613B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649805B2 (en) * 1985-12-19 1994-06-29 ミヨシ油脂株式会社 Rubber softener
EP2792689A1 (en) * 2013-04-18 2014-10-22 LANXESS Deutschland GmbH Oil extended functionalized styrene-butadiene copolymer
CN109517314A (en) * 2018-10-23 2019-03-26 厦门富桂通科技有限公司 A kind of nano-antibacterial door cabinet board material
CN114249959B (en) * 2021-12-21 2023-05-09 天津金发新材料有限公司 Stress whitening resistant high-fluidity ABS composition, and preparation method and application thereof

Also Published As

Publication number Publication date
JPS5277153A (en) 1977-06-29

Similar Documents

Publication Publication Date Title
JP4790888B2 (en) Polymer articles having a textured surface and a matte appearance
CA1175187A (en) High-notched-impact polymers having improved weather resistance
TW199180B (en)
JPH0725973B2 (en) Impact resistant thermoplastic resin composition
US4607080A (en) Thermoplastic resin composition
JPS61163958A (en) Imact resistant modified polyester compound
US4275178A (en) Powdery graft-copolymer composition
JPH10510303A (en) Elastomer graft polymer
EP0196041B1 (en) Thermoplastic resin composition having a matt appearance
JPH0788415B2 (en) Transparency and impact improver for polyvinyl chloride
JPS605613B2 (en) thermoplastic composite material
JP3933277B2 (en) Thermoplastic resin composition
JPH02272050A (en) Transparent thermoplastic resin composition
US5047473A (en) Flexible polymer mixtures
DE3841669A1 (en) polymer mixture
EP0143991A2 (en) Impact-resistant methacrylic resin composition
EP0347726B1 (en) Polyvinyl chloride resin composition
JPH0481443A (en) Polyvinyl chloride resin composition
JPH0735458B2 (en) Acrylic resin composition
JPH0331353A (en) Polymer mixture for soft sheet
JPH0660275B2 (en) Impact-resistant thermoplastic resin composition having good translucency and plating properties
JPS5910386B2 (en) Manufacturing method for resin molded product with pearlescent luster
JPS63230759A (en) Transparent impact-resistant resin composition
JPS5898317A (en) Antistatic resin composition
JPS5928584B2 (en) Impact resistant thermoplastic resin composition