JPS6056111A - Power generating unit - Google Patents

Power generating unit

Info

Publication number
JPS6056111A
JPS6056111A JP16406483A JP16406483A JPS6056111A JP S6056111 A JPS6056111 A JP S6056111A JP 16406483 A JP16406483 A JP 16406483A JP 16406483 A JP16406483 A JP 16406483A JP S6056111 A JPS6056111 A JP S6056111A
Authority
JP
Japan
Prior art keywords
steam turbine
generator
load
turbine
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16406483A
Other languages
Japanese (ja)
Inventor
Yuichi Kitano
北野 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16406483A priority Critical patent/JPS6056111A/en
Publication of JPS6056111A publication Critical patent/JPS6056111A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To avoid the use of the commercial power supply so as to enhance profitability by providing a steam turbine and an internal combustion engine at each end of the rotary shaft of the A.C. power generator and further by, after actuating the plant by the internal combustion engine, switching the load to the steam turbine. CONSTITUTION:A double-end shaft type power generator is employed in a plant. A steam turbine 3 and a gas turbine 5 is connected mechanically to the right and left sides of the shaft via electrode clutches 6, 7 respectively. Initially, the clutch 6 is disconnected while the clutch 7 is connected so that the power generator is driven by the gas turbine 5. When the steam is generated after a predetermined period of time, the steam turbine is started and when its revolution is increased, clutch 6 is connected. Then after the governors of both turbines are adjusted, the load is transferred from the gas turbine 5 to the steam turbine 3, so that finally, the gas turbine is unloaded while all the load is placed on the steam turbine. According to this construction, the commercial power supply does not need to be used and consequently, fuel cost is reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は商用電源と並列しない発電装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a power generation device that is not parallel to a commercial power source.

[発明の技術的背景とその問題点〕 一般に化学プラント工場、ごみ焼却工場などでは副生す
る蒸気を利用して発電することが多く、このため工場内
にタービン発′峨機が設置され、この発電機から工場内
所要動力に電力を供給しているが、ごみ焼却工場のよう
に発電機が定常運転に入るまでに助燃作業が必要な場合
などは必然的に商用電源を必要とし、このため商用電源
と発電機とは並列運転が行なわれる。発電機が定常運転
に入り、その発電電力量が工場内で消費する所要電力量
よりも大きくなると、余剰電力は商用電源側に逆送電さ
れる。
[Technical background of the invention and its problems] In general, chemical plants, waste incineration plants, etc. often use by-product steam to generate electricity, and for this reason, turbine generators are installed in the plants. Electricity is supplied from the generator to the power required within the factory, but in cases such as garbage incineration plants where auxiliary combustion work is required before the generator can begin regular operation, a commercial power source is inevitably required. The commercial power source and generator are operated in parallel. When the generator enters steady operation and the amount of power it generates becomes larger than the required amount of power consumed within the factory, the surplus power is sent back to the commercial power source.

しかし最近のようにエネルギー事情が変化して、電力会
社の電力需要の伸びが鈍化し、設備利用率が減少してく
ると、電力会社側は自家発電設備との並列運転を拒否す
る方向にあり、たとえ並列運転が許可されても、逆送電
電力即ち充電電力の価格は低く抑えられる傾向にある。
However, as the energy situation has recently changed, the growth in power demand from power companies has slowed down and the capacity utilization rate has decreased, power companies are increasingly refusing to allow parallel operation with in-house power generation equipment. Even if parallel operation is permitted, the price of reverse transmission power, that is, charging power, tends to be kept low.

このため地方自治体などでは、発電設備の価格に対し電
力の売却は相当しないとの理由で、発電能力を下まわる
発電設備を設置して、工場内で消費する電力に見合った
発電量としたり、商用電源とは無関係の電力系統とする
ことが傾向として見受けられる。しかしこの場合プラン
ト立ち上り時点では発電設備が運転していないので、何
らかの方法で電力を確保する必要がある。
For this reason, local governments, etc., install power generation equipment that is lower than the power generation capacity to generate electricity that is commensurate with the power consumed within the factory, on the grounds that selling electricity is not worth the price of the power generation equipment. There seems to be a trend towards power systems that are unrelated to commercial power sources. However, in this case, since the power generation equipment is not in operation at the time the plant is started up, it is necessary to secure power by some means.

第1図は従来の電源系統の概念図を示す。すなわちスチ
ームタービン3で駆動される発電機2は、商用電源1と
並列運転され、負荷4に給電する。
FIG. 1 shows a conceptual diagram of a conventional power supply system. That is, the generator 2 driven by the steam turbine 3 is operated in parallel with the commercial power source 1 and supplies power to the load 4.

プラント立ち上りの当初は負荷4は商用電源1から給電
されてプラントのプロセス運転に入るが、その結果とし
て蒸気が発生すると、タービン発電装置2,3が運転状
態に入り、発電機2から負荷4に給電するとともに、余
剰電力は商用電源1に送電される。
At the beginning of the plant start-up, the load 4 is supplied with power from the commercial power source 1 and the plant enters process operation, but when steam is generated as a result, the turbine generators 2 and 3 enter the operating state, and the load 4 is supplied from the generator 2 to the load 4. At the same time, surplus power is transmitted to the commercial power source 1.

し発明の目的〕 本発明は商用電源との並列運転は一切行なわず、他の電
源装置によってプラントを立ち上げ、発電に必要な蒸気
量が確保されると、平滑にスチームタービンに切り換え
る発電装置を得ることを目的とする。
[Object of the Invention] The present invention does not perform any parallel operation with a commercial power source, starts up the plant with another power source, and when the amount of steam necessary for power generation is secured, the power generation device smoothly switches to a steam turbine. The purpose is to obtain.

[発明の概要〕 本発明はガスタービン、レシプロコンジンナトの内燃機
関と、スチームタービンと、これら原動機に直結された
少くとも1台の発電機とから成り、プロセスの立ち上り
時は内燃機関により発電機を駆動し、プロセス立ち上り
後は自動的にスチームタービンにより発電機を駆動して
、商用電源と並列運転することなくプラントに給電する
ことを特徴とした発電装置である。
[Summary of the Invention] The present invention comprises a gas turbine, a reciprocating engine, a steam turbine, and at least one generator directly connected to these prime movers. This is a power generation device that is characterized by the fact that it automatically drives the generator using a steam turbine after the process starts up, and supplies power to the plant without running it in parallel with a commercial power source.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を第2図に示す。すなわち発電機2
を両軸方式とし、左右にそれぞれ電磁クラッチ6.7を
介してスチームタービン3とガスタービン5を機械的に
接続する。この場合、スチームタービン3とガスタービ
ン5との出力軸の回転数を等しくするよう適宜の減速機
を設けるものとする。当初クラッチ6を切り離しクラッ
チ7を閉として、ガスタービン5により発電機2を駆動
する。発電機2の発電電力は負荷4に供給されるが、プ
ラント立ち上り当初は負荷量は少ないため、ガスタービ
ン5は負荷4に見合った出力に自動的に制御される。成
る時間経過して蒸気が発生すると、スチームタービン3
が始動する。スチームタービン3の回転数が充分に上昇
し、クラッチ6の相対速度がはソ零に近づくと、これを
図示しない検出器で検出し、クラッチ6を閉とする。こ
の時点では発電機2はスチームタービン3とガスタービ
ン5の両者から駆動されるが、第3図に示すとおりガス
クーピン5の調定率曲線は位置5aにあり、この時点で
は全負荷電力りを負っており、スチームタービン3の調
定率曲線は位Wt、3aのため無負荷の状態である。つ
いで両横の図示しないガバナを調整して、ガスタービン
5からスチームタービン3へ負荷移行し、最終的に第4
図に示すように両横の調定率を曲線3b、5bとするこ
とによりガスタービン5は無負荷となり、スチームター
ビン3は全負荷状態となる。クラッチ7の両側の相対速
度は零であり、且つ無負荷であるから、このクラッチ7
を開としても大きな衝撃は発生しない。負荷4には発電
機2から内断なく給電される。
Next, an embodiment of the present invention is shown in FIG. i.e. generator 2
The steam turbine 3 and the gas turbine 5 are mechanically connected via electromagnetic clutches 6.7 on the left and right sides, respectively. In this case, an appropriate speed reducer is provided to equalize the rotation speeds of the output shafts of the steam turbine 3 and the gas turbine 5. Initially, the clutch 6 is disengaged and the clutch 7 is closed, and the gas turbine 5 drives the generator 2. The power generated by the generator 2 is supplied to the load 4, but since the amount of load is small at the beginning of the plant start-up, the gas turbine 5 is automatically controlled to an output commensurate with the load 4. When steam is generated after a period of time has elapsed, the steam turbine 3
starts. When the rotational speed of the steam turbine 3 increases sufficiently and the relative speed of the clutch 6 approaches zero, a detector (not shown) detects this and closes the clutch 6. At this point, the generator 2 is driven by both the steam turbine 3 and the gas turbine 5, but as shown in FIG. Since the regulation rate curve of the steam turbine 3 is at the position Wt, 3a, the steam turbine 3 is in a no-load state. Then, by adjusting the governors (not shown) on both sides, the load is transferred from the gas turbine 5 to the steam turbine 3, and finally the fourth
As shown in the figure, by setting the adjustment ratios on both sides to curves 3b and 5b, the gas turbine 5 becomes unloaded and the steam turbine 3 becomes fully loaded. Since the relative speed on both sides of the clutch 7 is zero and there is no load, this clutch 7
Even if you open it, no big impact will occur. Power is supplied to the load 4 from the generator 2 without interruption.

プラントが立ち上り、発電機2がスチームタービンで駆
動されると、以後月単位で連続運転に入るため、発電の
ための燃料費は不要となる。また発電設備の信頼性を上
げるために、第2図の如き発電装置を複数台設けること
も可能である。この場合は各発電機相互間の同期化が必
要である。
Once the plant is started up and the generator 2 is driven by the steam turbine, it will be in continuous operation on a monthly basis from then on, so there will be no need for fuel costs for power generation. Furthermore, in order to increase the reliability of the power generation equipment, it is also possible to provide a plurality of power generation devices as shown in FIG. In this case, it is necessary to synchronize each generator.

また本発明の他の一実施例として、第5図のようにガス
タービンの代りにガス・エンジン、ディーゼルエンジン
等のレシプロエンジンの使用も可能である。即ち第4図
に於て、エンジン9に発電機8を直結し、発電機2と8
から負荷に給電する。
Further, as another embodiment of the present invention, a reciprocating engine such as a gas engine or a diesel engine can be used instead of the gas turbine as shown in FIG. That is, in FIG. 4, generator 8 is directly connected to engine 9, and generators 2 and 8 are connected directly to engine 9.
Supplies power to the load from

発電機8は2に較べて回転数が遅いため別個となるカ、
モしエンジン9の出力回転数がスチームタービン30回
転数と等しく出来れば、もちろん第2図の如き構成とな
る。作動は前述の実施例と同じく、当初エンジン9によ
り発電機8を駆動して、負荷4に給電する。プラントが
立ち上り、蒸気が発生すると、スチームタービン3が始
動して発電−機2を駆動する。発電機2は発電機8と並
列運転するために、図示しない同期投入装置により同期
化される。同期化直後は前述の実施例の第3図と同じく
、発電機2は無負荷であるが、図示しないガバナーの制
御により発電機8から2へ負荷移行する。発電機8が無
負荷になると、負荷4へは発電機2から供給され、エン
ジン9は停止する。
Generator 8 has a lower rotation speed than generator 2, so it is separate.
If the output rotation speed of the steam engine 9 can be made equal to the rotation speed of the steam turbine 30, the configuration as shown in FIG. 2 will of course be obtained. The operation is the same as in the previous embodiment, in which the engine 9 initially drives the generator 8 to supply power to the load 4. When the plant starts up and steam is generated, the steam turbine 3 is started and drives the generator 2. The generator 2 is synchronized by a synchronization device (not shown) in order to operate in parallel with the generator 8. Immediately after synchronization, the generator 2 is under no load, as in FIG. 3 of the above-described embodiment, but the load is transferred from the generator 8 to the generator 2 under the control of a governor (not shown). When the generator 8 becomes unloaded, the load 4 is supplied from the generator 2, and the engine 9 is stopped.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、商用電源の受電、商用電源との並列運
転装置などは一切不要となり、まだ商用電源受電のため
の基本料金も不要となる上に、プラント立ち上げ時の数
時間のみ軽油、重油もしくはLNGを使用するのみで、
以後燃料費は必要ないだめ経済的なゴミ焼却プラント用
の発電装置を得ることができる。
According to the present invention, there is no need for receiving power from a commercial power source or a device for parallel operation with a commercial power source, and there is no need to pay any basic charges for receiving power from a commercial power source. By only using heavy oil or LNG,
Thereafter, there is no need for fuel costs, so an economical power generation device for a waste incineration plant can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の発電装置の構成図、第2図は本発明の発
電装置の一実施例を示す構成図、第3図及び第4図は第
2図の特性説明図、第5図は本発明の他の実施例を示す
構成図である。 2・・・発11E機3・・・スチームタービン5・・・
ガスタービン 6,7・・・クラッチ8・・・発電機 
9・1.エンジン 代理人弁理士 則 近 憲 佑 (ほか1名)第1I!
1 第2図 乙 第4図 ≦ 乙
FIG. 1 is a block diagram of a conventional power generation device, FIG. 2 is a block diagram showing an embodiment of the power generation device of the present invention, FIGS. 3 and 4 are explanatory diagrams of characteristics of FIG. 2, and FIG. It is a block diagram which shows another Example of this invention. 2...Aircraft 11E 3...Steam turbine 5...
Gas turbine 6, 7...Clutch 8...Generator
9.1. Engine agent patent attorney Kensuke Chika (and 1 other person) 1st I!
1 Figure 2 Figure B Figure 4 ≦ Figure B

Claims (1)

【特許請求の範囲】[Claims] 交流電力を発生する発電機と、この発電機の回転の1端
に連結されたスチームタービンと、前記発電機の回転軸
の他端に連結された内燃機関とからなる発電装置。
A power generation device comprising a generator that generates alternating current power, a steam turbine connected to one rotating end of the generator, and an internal combustion engine connected to the other end of the rotating shaft of the generator.
JP16406483A 1983-09-08 1983-09-08 Power generating unit Pending JPS6056111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16406483A JPS6056111A (en) 1983-09-08 1983-09-08 Power generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16406483A JPS6056111A (en) 1983-09-08 1983-09-08 Power generating unit

Publications (1)

Publication Number Publication Date
JPS6056111A true JPS6056111A (en) 1985-04-01

Family

ID=15786092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16406483A Pending JPS6056111A (en) 1983-09-08 1983-09-08 Power generating unit

Country Status (1)

Country Link
JP (1) JPS6056111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176254A1 (en) * 2011-06-20 2012-12-27 熱技術開発株式会社 Closed-cycle gas turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176254A1 (en) * 2011-06-20 2012-12-27 熱技術開発株式会社 Closed-cycle gas turbine

Similar Documents

Publication Publication Date Title
US7715950B2 (en) Non-inverter based distributed energy resource for use in a dynamic distribution system
US8093739B2 (en) System and method for fixed frequency power generation
US7920942B2 (en) Control of combined storage and generation in distributed energy resources
US4382188A (en) Dual-range drive configurations for synchronous and induction generators
EP2778352B1 (en) Systems and methods for variable speed operation of combustion engines for power generation
US4401938A (en) Variable-speed drive for control of induction generators
US9425719B2 (en) Transmission of energy
US6563229B2 (en) Standby power system
Kassem et al. Robust control of an isolated hybrid wind–diesel power system using linear quadratic Gaussian approach
US20060022524A1 (en) Distributed power generation, conversion, and storage system
US20150123623A1 (en) Prime mover generator system for simultaneous synchronous generator and condenser duties
US4059770A (en) Uninterruptible electric power supply
US4049972A (en) Turbo-alternator plant
CN108054967A (en) Diesel generating system and its control method based on brushless dual-feed motor
EP1595325A1 (en) Distributed power generation, conversion, and storage system
JP2018207574A (en) Microgrid control system and method
JP2022505734A (en) Hybrid synchronous capacitor and power generator
JPS6056111A (en) Power generating unit
US11965584B2 (en) Method for operating a train system for a mechanical driven equipment
UA144166U (en) MULTIFUNCTIONAL POWER PLANT
JPH06225598A (en) Electric power generation system
US11092080B2 (en) Systems and methods for starting gas turbines
Hendry et al. Synchronous condensing using the generator of peak load plant
WO2021071596A1 (en) Method and system for reducing a startup time of a genset
KR200325409Y1 (en) Output augmentation system