JPS605605Y2 - Submillimeter wave band low loss transmission line - Google Patents

Submillimeter wave band low loss transmission line

Info

Publication number
JPS605605Y2
JPS605605Y2 JP2142181U JP2142181U JPS605605Y2 JP S605605 Y2 JPS605605 Y2 JP S605605Y2 JP 2142181 U JP2142181 U JP 2142181U JP 2142181 U JP2142181 U JP 2142181U JP S605605 Y2 JPS605605 Y2 JP S605605Y2
Authority
JP
Japan
Prior art keywords
transmission line
wave band
band low
submillimeter wave
loss transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2142181U
Other languages
Japanese (ja)
Other versions
JPS56134807U (en
Inventor
秀一 進藤
功 大友
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2142181U priority Critical patent/JPS605605Y2/en
Publication of JPS56134807U publication Critical patent/JPS56134807U/ja
Application granted granted Critical
Publication of JPS605605Y2 publication Critical patent/JPS605605Y2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/20Quasi-optical arrangements for guiding a wave, e.g. focusing by dielectric lenses

Landscapes

  • Waveguides (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【考案の詳細な説明】 本願考案は広帯域で低損失なサブミリ波帯伝送線路に関
するものである。
[Detailed Description of the Invention] The present invention relates to a broadband, low-loss submillimeter waveband transmission line.

従来、この種の伝送線路としては、第1図a。Conventionally, this type of transmission line is shown in Fig. 1a.

bに示す円形導波管TEo1モードを用いたもの、第2
図に示す誘導体レンズを用いた集束ビーム伝送系を用い
たものがあった。
The one using the circular waveguide TEo1 mode shown in b, the second
There was one that used a focused beam transmission system using a dielectric lens as shown in the figure.

しかし円形導波管TEo1モードは高次モードであるた
め、低損失伝送を行うためには、導波管はオーバーサイ
ズとなり曲りなどにおけるモード変換損失が増加すると
いう欠点がある。
However, since the circular waveguide TEo1 mode is a high-order mode, in order to perform low-loss transmission, the waveguide has to be oversized, resulting in an increase in mode conversion loss due to bending, etc.

また、誘導体レンズを用いた集束ビーム伝送系において
は、誘導体レンズの反射損失及び吸収損失があり、サブ
ミリ波帯などの超高周波帯域においてはこれらの損失が
大きくなる。
In addition, in a focused beam transmission system using a dielectric lens, there is reflection loss and absorption loss of the dielectric lens, and these losses become large in an ultra-high frequency band such as a submillimeter wave band.

また、レンズの設定位置のわずかなずれで伝送損失が増
加するという欠点があった。
Furthermore, there is a drawback that transmission loss increases due to a slight deviation in the set position of the lens.

本願考案はこれらの欠点を解決するため、回転楕円鏡を
用いた集束ビーム伝送系を用いたサブミリ波帯低損失伝
送線路で、以下図面について詳細に説明する。
In order to solve these drawbacks, the present invention is a submillimeter wave band low-loss transmission line using a focused beam transmission system using a spheroidal mirror, and will be described in detail below with reference to the drawings.

第3図は本願考案の実施例であり、焦点1を有する回転
楕円鏡2を、軸方向に徐々にずらした構造であり、伝送
の動作原理は第4図で説明できる。
FIG. 3 shows an embodiment of the present invention, which has a structure in which a spheroidal mirror 2 having a focal point 1 is gradually shifted in the axial direction, and the principle of transmission operation can be explained in FIG. 4.

第4図は焦点1を有する回転楕円鏡2を隣接する全く同
一の回転楕円鏡の焦点の一方を、焦点1と一致するよう
に連続的に配置したものである。
In FIG. 4, spheroidal mirrors 2 having a focal point 1 are successively arranged so that one of the focal points of adjacent identical spheroidal mirrors coincides with the focal point 1.

いま、3から電波が入射すると、回転楕円鏡2で反射、
集束され次の回転楕円鏡に達し、同様に伝送され5から
取り出すことができる。
Now, when a radio wave enters from 3, it is reflected by the spheroidal mirror 2,
It is focused and reaches the next spheroidal mirror, and is similarly transmitted and can be taken out from 5.

4から入射した場合も全く同様にして6から取り出すこ
とができる。
Even if the light is incident from 4, it can be taken out from 6 in exactly the same way.

このような伝送路における損失は、鏡面からのスピルオ
ーバによる回折損失、鏡面の熱損失によるものが考えら
れる。
Loss in such a transmission path is thought to be due to diffraction loss due to spillover from the mirror surface and heat loss from the mirror surface.

回折損失は第5図において で与えられるフレネル数Nによってきまる。Diffraction loss is shown in Figure 5. It depends on the Fresnel number N given by .

Nが大きくなればなるほど、回折損失は小さくなる。The larger N becomes, the smaller the diffraction loss becomes.

従って、鏡面の大きさdとその間隔aを適当に選ぶこと
により回折損失を小さくすることができる。
Therefore, diffraction loss can be reduced by appropriately selecting the size d of the mirror surfaces and the interval a between them.

同様に楕円の長軸(B/2)と短軸(b/2)の比もc
lすなわちaに関係し、回折損失に関係するものである
Similarly, the ratio of the major axis (B/2) and minor axis (b/2) of the ellipse is c
It is related to l, that is, a, and is related to diffraction loss.

すなわち、焦点距離をeとすれば、e=27(B/2)
2− (b/2) 2であり、茨=詐の関係からc=
e=2 (B 2)2 (b 2)2となる。
That is, if the focal length is e, then e=27(B/2)
2- (b/2) 2, and from the relationship of thorn = fraud, c =
e=2 (B 2) 2 (b 2) 2.

また、ピッチCと楕円の弧の長さ加の関係で、c=2d
の場合は鏡面2がすきまなく配置でき、c>2dの場合
はすきまがあくことになるが、本考案の目的達成には何
ら関係がない。
Also, due to the relationship between the pitch C and the length of the arc of the ellipse, c=2d
In the case of , the mirror surfaces 2 can be arranged without any gaps, and in the case of c>2d, there will be gaps, but this has nothing to do with achieving the objective of the present invention.

従って、これらパラメータの値は伝送路設計上の条件を
満たす範囲内で任意に設定し得るものである。
Therefore, the values of these parameters can be set arbitrarily within a range that satisfies the transmission path design conditions.

また、熱損失は偏波によって異なってくるが、第4図の
ように電界が紙面に垂直な場合を考えると、熱損失りは
次式で与えられる。
The heat loss varies depending on the polarization, but if we consider the case where the electric field is perpendicular to the plane of the paper as shown in FIG. 4, the heat loss is given by the following equation.

ここで、fは周波数、σは鏡面の導電率、EQ=8.8
54X10−2(F/m)である。
Here, f is the frequency, σ is the conductivity of the mirror surface, EQ=8.8
54×10 −2 (F/m).

熱損失は鏡面の金属の導電率の大きなものを選ぶことに
より、小さくすることができる。
Heat loss can be reduced by selecting a metal with a high electrical conductivity for the mirror surface.

更に、本伝送路においては多重伝送が可能である。Furthermore, multiplex transmission is possible on this transmission path.

すなわち、第4図では、3と4からの入射電波により一
本の伝送路で二本の伝送路と等価の働きをすることがで
きる。
That is, in FIG. 4, one transmission line can function equivalently to two transmission lines due to the incident radio waves from 3 and 4.

更に、第4図で紙面に垂直な面内でも二本の伝送路と同
じ働きが可能で経済的な利点が大きいといえる。
Furthermore, as shown in FIG. 4, even in a plane perpendicular to the plane of the paper, the same function as two transmission lines can be performed, which can be said to have a great economical advantage.

本考案では、2つの焦点1を有する楕円の一部を2つの
焦点を通る軸を中心として回転楕円鏡を、上記焦点1を
軸方向に連続的にずらしながら形成するので、その断面
は第3図のようになる。
In the present invention, a spheroidal mirror is formed from a part of an ellipse having two focal points 1 with the axis passing through the two focal points continuously shifted in the axial direction. It will look like the figure.

したがって、その動作は第4図および第5図で説明した
原理と全く同一である。
Therefore, its operation is exactly the same as the principle explained in FIGS. 4 and 5.

即ち、隣接する反対側の鏡面は焦点1を共用するので、
入射した波は鏡面で反射され、隣接する反対側の鏡面に
達する。
That is, since the adjacent mirror surfaces on the opposite side share focal point 1,
The incident wave is reflected by the mirror surface and reaches the adjacent mirror surface on the opposite side.

これが繰り返されることによって、入射波は第4図およ
び第5図と同様に伝送されることになり、同図と同一の
作用効果を奏することにならる。
By repeating this, the incident wave will be transmitted in the same manner as in FIGS. 4 and 5, and the same effect as in FIGS. 4 and 5 will be achieved.

さらに、本考案の伝送路は、楕円の曲率を有する丸棒に
巻き付けることにより実現でき、長距離伝送路の製造が
極めて容易であり、かつ、精度よく製造できる利点を有
する。
Further, the transmission line of the present invention can be realized by winding it around a round bar having an elliptical curvature, and has the advantage that it is extremely easy to manufacture a long-distance transmission line and can be manufactured with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、 bは従来の伝送路の一例を示す横断面図及
び縦断面図、第2図は従来の伝送路の他の例を示す断面
図、第3図は本願考案の実施例の断面図、第4図は伝送
線路の原理を説明するための断面図、第5図は第4図の
伝送線路の作用を説明するための断面図である。 1・・・・・・焦点、2−回転楕円鏡、3,4・・・・
・・入力電波、5,6・・・・・・出力電波。
1a and 1b are cross-sectional views and vertical sectional views showing an example of a conventional transmission line, FIG. 2 is a sectional view showing another example of a conventional transmission line, and FIG. 3 is a cross-sectional view showing an example of the conventional transmission line. 4 is a sectional view for explaining the principle of the transmission line, and FIG. 5 is a sectional view for explaining the operation of the transmission line in FIG. 4. 1...focal point, 2-spheroidal mirror, 3, 4...
...Input radio waves, 5, 6... Output radio waves.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 2つの焦点F1.F2を有する楕円の一部を2つの焦点
を通る軸を中心として回転して得られる回転楕円鏡を、
上記焦点を回転に伴って軸方向に連続的にすらし、鏡面
がらせん状となるように形成することを特徴とするサブ
ミリ波帯低損失伝送線路。
Two focal points F1. A spheroidal mirror obtained by rotating a part of an ellipse with F2 around an axis passing through two focal points,
A submillimeter wave band low-loss transmission line, characterized in that the focal point is formed continuously in the axial direction as it rotates, and the mirror surface is formed in a spiral shape.
JP2142181U 1975-08-22 1981-02-19 Submillimeter wave band low loss transmission line Expired JPS605605Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2142181U JPS605605Y2 (en) 1975-08-22 1981-02-19 Submillimeter wave band low loss transmission line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10176075A JPS5226478A (en) 1975-08-22 1975-08-22 Sub-millimeter wave band low loss transmission line
JP2142181U JPS605605Y2 (en) 1975-08-22 1981-02-19 Submillimeter wave band low loss transmission line

Publications (2)

Publication Number Publication Date
JPS56134807U JPS56134807U (en) 1981-10-13
JPS605605Y2 true JPS605605Y2 (en) 1985-02-21

Family

ID=14309178

Family Applications (2)

Application Number Title Priority Date Filing Date
JP10176075A Pending JPS5226478A (en) 1975-08-22 1975-08-22 Sub-millimeter wave band low loss transmission line
JP2142181U Expired JPS605605Y2 (en) 1975-08-22 1981-02-19 Submillimeter wave band low loss transmission line

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP10176075A Pending JPS5226478A (en) 1975-08-22 1975-08-22 Sub-millimeter wave band low loss transmission line

Country Status (1)

Country Link
JP (2) JPS5226478A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265206B2 (en) * 2002-11-27 2009-05-20 株式会社 東北テクノアーチ Non-contact conductivity measurement system

Also Published As

Publication number Publication date
JPS56134807U (en) 1981-10-13
JPS5226478A (en) 1977-02-28

Similar Documents

Publication Publication Date Title
US3008100A (en) Circular to rectangular guide coupling system
US2442951A (en) System for focusing and for directing radio-frequency energy
EP0086351B1 (en) Geodesic dome/lens antenna
Garrett et al. Fresnel zone plate antennas at millimeter wavelengths
US7119755B2 (en) Wave antenna lens system
AU685410B2 (en) Waveguide lens and method for manufacturing the same
US4321604A (en) Broadband group delay waveguide lens
US4079382A (en) Frequency multiplexer employing a blazed diffraction grating
JPS605605Y2 (en) Submillimeter wave band low loss transmission line
JPH11195910A (en) Structure of conversion section for nonradioactive hybrid dielectric line and its device
US7102459B1 (en) Power combiner
US4673905A (en) Corrugated elliptical waveguide or horn
US2504333A (en) Radio wave device
JP2001168601A (en) Circularly polarized wave generator
CN108646330B (en) Total-transmission wave zone plate
US3911440A (en) Antenna feed system
US3460046A (en) Lasers and optical resonators with beam twisting
US2572628A (en) Wave-guide transmission system
JPH03504187A (en) Converter for circular waveguide higher order mode to mirror line principal mode
JPS60153023A (en) Beam splitter device for high output laser
SU1394291A1 (en) H-sectoral horn
JPH02260702A (en) Horn antenna
RU2024123C1 (en) Multifocal open resonator
JPS6184102A (en) Corrugated horn
JPS6027201A (en) Linearly polarized wave/circularly polarized wave converter