JPS6056045B2 - insulation spacer - Google Patents

insulation spacer

Info

Publication number
JPS6056045B2
JPS6056045B2 JP9504280A JP9504280A JPS6056045B2 JP S6056045 B2 JPS6056045 B2 JP S6056045B2 JP 9504280 A JP9504280 A JP 9504280A JP 9504280 A JP9504280 A JP 9504280A JP S6056045 B2 JPS6056045 B2 JP S6056045B2
Authority
JP
Japan
Prior art keywords
resin
intermediate layer
insulating spacer
sintered
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9504280A
Other languages
Japanese (ja)
Other versions
JPS5720316A (en
Inventor
哲男 川越
則和 江本
弘毅 高橋
幸人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP9504280A priority Critical patent/JPS6056045B2/en
Publication of JPS5720316A publication Critical patent/JPS5720316A/en
Publication of JPS6056045B2 publication Critical patent/JPS6056045B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure
    • H02G5/068Devices for maintaining distance between conductor and enclosure being part of the junction between two enclosures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure

Description

【発明の詳細な説明】 本発明は、埋込金具を有する熱硬化性樹脂注型品から
なる、管路気中送電線又はガス絶縁開閉装置等の管路内
に配置され、導体を支持絶縁する絶縁スペーサに関する
ものであり、注型品の埋込金具と注型樹脂との接合を改
善するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a thermosetting resin cast product having embedded fittings, which is disposed in a conduit such as a conduit aerial power transmission line or a gas insulated switchgear, and which supports and insulates a conductor. The present invention relates to an insulating spacer that improves the bond between the embedded metal fitting of a cast product and the cast resin.

埋込金具と注型樹脂との間には、注型樹脂の硬化収縮
によるストレスと、埋込金具と樹脂の熱膨張係数の差と
のために、注型後に加えられる機械的なりや熱ショック
、ヒートサイクルによつて、接合面に機械的損傷か生す
る。この損傷は埋込金具が大型であり、複雑な形状をも
ちそして過酷な条件にさらされる場合には、特に重大な
問題となる。そのような注型品である電気部品の例とし
て、第1図に示した管路気中送電線の絶縁スペーサSは
、絶縁ガスを充填した管路1内に導体2を支持絶縁する
が、数万アンペアに達することがある異常電流が流れた
場合に、導体に働く電磁力及び管路内のガス圧の異常な
上昇に耐えなければならない。またその絶縁スペーサは
、正常な課電状態における、通電による温度上昇や気候
の変化によるヒートサイクルに対して、長期にわたつて
耐えなければならない。 従来この種の絶縁スペーサは
、第1図に示すように、絶縁部3に、高電圧側電極4、
接地側電極6等の金具が埋め込まれている。
There is a risk of mechanical stress or thermal shock between the embedded metal fitting and the casting resin after casting due to the stress caused by curing and shrinkage of the casting resin and the difference in thermal expansion coefficient between the embedded metal fitting and the resin. , heat cycling causes mechanical damage to the joint surfaces. This damage is a particularly serious problem when the implant is large, has a complex shape, and is exposed to harsh conditions. As an example of such an electric component that is a cast product, an insulating spacer S for a conduit aerial power transmission line shown in FIG. 1 supports and insulates a conductor 2 in a conduit 1 filled with insulating gas. When an abnormal current that can reach tens of thousands of amperes flows, it must withstand the electromagnetic force acting on the conductor and the abnormal rise in gas pressure within the pipe. In addition, the insulating spacer must be able to withstand temperature increases due to energization and heat cycles due to changes in climate over a long period of time under normal energized conditions. Conventionally, this type of insulating spacer has an insulating part 3 with a high voltage side electrode 4, as shown in FIG.
Metal fittings such as the ground side electrode 6 are embedded.

特に高圧側電極4は、1電界の制御、2樹脂境界面のガ
ス密性と接着強度、3注型品の寸法精度の維持の機能を
考慮して、第2図のようなH形のものが使用されてきた
。このような機能を満足させる電極の形状は、注型品に
残存するストレスを制御する面からみれは、多くは好ま
しくない形状であり、それをカバーするためにその製造
には特別の技術を要した。 上記の一般方式の絶縁スペ
ーサから進んで、さらに電界の制御と、寸法精度の維持
を容易にするために、電極の電界制御機能と気密接着機
能を分離し、また簡単な形状の電極とした、第3図のよ
うな改善方式の絶縁スペーサが考えられる。
In particular, the high-voltage side electrode 4 is an H-shaped one as shown in Fig. 2, taking into consideration the functions of 1) controlling the electric field, 2) gas tightness and adhesive strength of the resin interface, and 3) maintaining the dimensional accuracy of the cast product. has been used. The shape of the electrode that satisfies these functions is often an undesirable shape from the perspective of controlling the stress remaining in the cast product, and special technology is required to manufacture it to compensate for this. did. Proceeding from the general type insulating spacer described above, in order to further control the electric field and maintain dimensional accuracy, we separated the electric field control function and the airtight adhesion function of the electrode, and created an electrode with a simple shape. An improved insulating spacer as shown in FIG. 3 can be considered.

この改善方式のスペーサを製造するには、第1図の一般
方式の絶縁スペーサ以上に、接合部の接合強度及び気密
性を強固にし、ヒートサイクルに対しても十分その性能
を保証しなければならない。以上述べたように、本発明
の目的は、導体を電気的に支持絶縁する絶縁スペーサに
おいては、電極と樹脂部との接合を強固にすることによ
つて、耐電圧特性、機械的強度及ひ気密性の改善をはか
ることにある。また、本発明の目的は、前記したような
改善方式の絶縁スペーサを実用化できる程度にまで、電
極と樹脂との接合を高め、また電界制御のシールドが容
易に形成できるようにすることにある。
To manufacture a spacer using this improved method, the joint strength and airtightness of the joint must be stronger than that of the general method insulating spacer shown in Figure 1, and its performance must be sufficiently guaranteed against heat cycles. . As described above, an object of the present invention is to improve the withstand voltage characteristics, mechanical strength, and The purpose is to improve airtightness. Another object of the present invention is to improve the bond between the electrode and the resin to the extent that the improved insulating spacer described above can be put to practical use, and to facilitate the formation of a shield for electric field control. .

そこで本発明は、熱硬化性樹脂で注型した埋込金具を有
する絶縁スペーサにおいて、該埋込金具の表面の少なく
とも一部に、該埋込金具と焼結した多孔性金属焼結層を
注型樹脂全厚の6〜50%の厚さに設け、該多孔性金属
焼結層に樹脂を十分含浸硬化させて注型したことを特徴
とする絶縁スペーサてある。本発明によつて得られる絶
縁スペーサは、第1に、埋込金具と注型樹脂との間に、
注型樹脂が含浸されている多孔性金属焼結層てある中間
層を設け、その中間層は金属と樹脂との中間的な諸特性
、特に熱膨張係数を有している。
Therefore, the present invention provides an insulating spacer having an embedding fitting molded with a thermosetting resin, in which a porous metal sintered layer sintered with the embedding fitting is poured onto at least a portion of the surface of the embedding fitting. There is an insulating spacer characterized in that the porous metal sintered layer is provided at a thickness of 6 to 50% of the total thickness of the mold resin, and is cast after sufficiently impregnating and hardening the resin into the porous metal sintered layer. In the insulating spacer obtained by the present invention, firstly, between the embedded metal fitting and the casting resin,
An intermediate layer is provided, which is a porous sintered metal layer impregnated with a casting resin, which intermediate layer has properties intermediate between those of metal and resin, in particular a coefficient of thermal expansion.

第2に、中間層と埋込金具との境界ては、機械的(中間
層が埋込金具とも焼結している)と化学的(中間層に十
.分含浸した樹脂が埋込金具と接着している)な接合を
しており、そして中間層と樹脂との境界は化学的(接着
面積の極めて広い樹脂装着をしている)な結合が生じて
おり、埋込金具と注型樹脂との接合は極めて強固てある
といえる。そして絶縁!スペーサにおいては、耐電圧特
性、機械的特性や、気密性が保証でき、ヒートサイクル
によつても長期間にわたり信頼性の高いスペーサが得ら
れる。第4図は、改善方式のスペーサとして用いた中く
間層付高電圧側電極の断面図てある。
Second, the boundary between the intermediate layer and the embedded metal is mechanically (the intermediate layer is also sintered with the embedded metal) and chemically (the resin that has sufficiently impregnated the intermediate layer is connected to the embedded metal). The boundary between the intermediate layer and the resin is chemically bonded (the resin is attached with an extremely wide bonding area), and the embedded metal fittings and the casting resin are bonded together. It can be said that the bond between the two is extremely strong. And insulation! In the spacer, voltage resistance characteristics, mechanical characteristics, and airtightness can be guaranteed, and a spacer that is highly reliable over a long period of time even when subjected to heat cycles can be obtained. FIG. 4 is a sectional view of a high voltage side electrode with an intermediate layer used as a spacer of the improved method.

材質か砲金てある高電圧側電極41を、押型の中に収め
、その周囲の中間層42に相当する箇所に、150〜2
00μ粒度の砲金粉を混合し、圧粉成形し、水素気中8
00〜900℃で20〜3吟間保持することによつて、
高電圧側電極とも焼結させた空孔率25%の中間層を形
成させることができた。中間層を形成する金属は、銅一
錫系、鉛一青銅系、鉄一銅系、アルミニウムー銅系等、
電極とも焼結てき、多孔性焼結金属を形成できるものて
あれば何れでもよく、金属繊維を用いることによつて空
孔率等を自由に選択することができる。その他焼結させ
るべき材料の全部又は一部を、ノ溶射、メッキ、蒸着、
スパッターによつて電極に付着させ、焼結して中間層を
形成させることができる。
A high voltage side electrode 41 made of material or gunmetal is placed in a mold, and a 150 to 2
Gunmetal powder with a particle size of 0.00μ is mixed, compacted, and heated in a hydrogen atmosphere.
By holding at 00 to 900°C for 20 to 3 minutes,
It was possible to form an intermediate layer with a porosity of 25%, which was also sintered with the high voltage side electrode. The metals forming the intermediate layer include copper-tin, lead-bronze, iron-copper, aluminum-copper, etc.
Any material that can be sintered with the electrode to form a porous sintered metal may be used, and by using metal fibers, the porosity etc. can be freely selected. All or part of the material to be sintered may be sprayed, plated, vapor-deposited,
It can be applied to the electrode by sputtering and sintered to form the intermediate layer.

樹脂は中間層の中まて含浸されており、中間層と樹脂層
との熱膨張係数の差は少い。
The resin is impregnated into the intermediate layer, and the difference in thermal expansion coefficient between the intermediate layer and the resin layer is small.

したがつて多孔性焼結金属層の外形は相当複雑な形状を
与えても、中間層と樹脂部との境界面て剥離等の現象が
起ることがない。多孔性金属焼結層に注型樹脂を十分含
浸した中間層は注型樹脂の全厚(中間層と樹脂部の合計
厚さ)の6〜50%の厚さに設ける。この厚さが6%未
満であると中間層の効果が不充分であり、また50%を
超えると樹脂の絶縁特性が悪くなるので好ましくない。
この中間層の絶対値は通常の絶縁スペーサの形状寸法か
らすれば少なくとも8wnの厚さである。このことは、
第5A図のように中間層53の焼結金属層を電界制御用
のシールド部を理想的に構成させることができ、機械的
、電気的両特性をハイレベルに維持させることがてきる
。同様第5B図はポスト形絶縁スペーサてあつて、機械
的強度(特に曲け強度)を向上させるため埋込電極構造
にすると、逆に電気的特性(絶縁耐力)か低下し、これ
を改善する目的て、電界制御用のシールドを中間層て構
成させたものである。第6図は第5B図のポスト形絶縁
スペーサの使用状態を示す断面図で、ポスト形絶縁スペ
ーサPは、絶縁ガス充填管路1内の導体2を図示のこと
く支持絶縁する。エポキシ樹脂など注型樹脂を多孔性中
間層に十分含浸させるには、真空含浸をするのがよい。
Therefore, even if the porous sintered metal layer has a fairly complex external shape, phenomena such as peeling will not occur at the interface between the intermediate layer and the resin portion. The intermediate layer, which is a porous sintered metal layer sufficiently impregnated with casting resin, is provided to have a thickness of 6 to 50% of the total thickness of the casting resin (the total thickness of the intermediate layer and the resin portion). If this thickness is less than 6%, the effect of the intermediate layer will be insufficient, and if it exceeds 50%, the insulation properties of the resin will deteriorate, which is not preferable.
The absolute value of this intermediate layer is at least 8wn thick given the typical insulating spacer geometry. This means that
As shown in FIG. 5A, the sintered metal layer of the intermediate layer 53 can be ideally configured as a shield part for electric field control, and both mechanical and electrical characteristics can be maintained at a high level. Similarly, Fig. 5B shows a post-shaped insulating spacer, and if a buried electrode structure is used to improve mechanical strength (especially bending strength), the electrical properties (dielectric strength) will decrease, and this can be improved. For this purpose, a shield for electric field control is provided as an intermediate layer. FIG. 6 is a sectional view showing how the post-shaped insulating spacer of FIG. 5B is used. The post-shaped insulating spacer P supports and insulates the conductor 2 in the insulating gas-filled conduit 1, as shown in the figure. In order to sufficiently impregnate the porous intermediate layer with a casting resin such as an epoxy resin, vacuum impregnation is preferably performed.

含浸は、注型樹脂の温度を比較的高くして含浸させるの
がよい。注型樹脂の硬化は、残存するストレスが最小で
あるプログラムで実施されなければならない。
The impregnation is preferably carried out at a relatively high temperature of the casting resin. Curing of the casting resin must be carried out in a program that results in minimal residual stress.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の一般方式の絶縁スペーサを示す断面図
、第2A図及び第2B図は第1図において用いられる高
電圧側の埋込電極の夫々断面図及び平面図を示す。 第3図は改善方式の絶縁スペーサを示す断面図てある。
第4図は本発明に用いる多孔性金属焼結層を設けた高電
圧側電極の構造を示す断面図である。第5A図は、電界
制御用シールドを兼用させた多孔性金属焼結層を設けた
高電圧側電極の断面図である。第4図及び第5A図は改
善方式に用いる電極の断面図、第5B図はポスト形絶縁
スペーサの断面図である。第6図は第5B図の絶縁スペ
ーサの使用状態を示す断面図である。1・・・・・・接
地ケース、2・・・・・・導体、3・・・・・・絶縁ス
ペーサ絶縁部、4・・・・・・高電圧側電極、5・・・
・・・金属性フランジ、6・・・・・・接地側電極、3
2・・・・・・電界制御用シールド、42・・・・・・
多孔性金属焼結層(中間層)、53・・・・・・シール
ドを兼用させた中間層、51・・・・・・埋込電極。
FIG. 1 is a sectional view showing a conventional general type insulating spacer, and FIGS. 2A and 2B are a sectional view and a plan view, respectively, of a buried electrode on the high voltage side used in FIG. 1. FIG. 3 is a sectional view showing an improved type of insulating spacer.
FIG. 4 is a sectional view showing the structure of a high voltage side electrode provided with a porous metal sintered layer used in the present invention. FIG. 5A is a sectional view of a high voltage side electrode provided with a porous metal sintered layer that also serves as a shield for electric field control. 4 and 5A are cross-sectional views of electrodes used in the improved method, and FIG. 5B is a cross-sectional view of a post-shaped insulating spacer. FIG. 6 is a sectional view showing how the insulating spacer of FIG. 5B is used. 1... Grounding case, 2... Conductor, 3... Insulating spacer insulation part, 4... High voltage side electrode, 5...
... Metal flange, 6 ... Ground side electrode, 3
2... Electric field control shield, 42...
Porous metal sintered layer (intermediate layer), 53...Intermediate layer that also serves as a shield, 51...Embedded electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 熱硬化性樹脂で注型した埋込金具を有する絶縁スペ
ーサにおいて、該埋込金具と焼結した多孔性金属焼結層
を少なくとも8mmの厚さに設け、該多孔性金属焼結層
に樹脂を十分含浸硬化させて注型したことを特徴とする
絶縁スペーサ。
1 In an insulating spacer having an embedded metal fitting casted with a thermosetting resin, a porous metal sintered layer sintered with the embedded metal fitting is provided with a thickness of at least 8 mm, and the porous metal sintered layer is coated with resin. An insulating spacer characterized by being sufficiently impregnated and cured and cast.
JP9504280A 1980-07-14 1980-07-14 insulation spacer Expired JPS6056045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9504280A JPS6056045B2 (en) 1980-07-14 1980-07-14 insulation spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9504280A JPS6056045B2 (en) 1980-07-14 1980-07-14 insulation spacer

Publications (2)

Publication Number Publication Date
JPS5720316A JPS5720316A (en) 1982-02-02
JPS6056045B2 true JPS6056045B2 (en) 1985-12-07

Family

ID=14127007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9504280A Expired JPS6056045B2 (en) 1980-07-14 1980-07-14 insulation spacer

Country Status (1)

Country Link
JP (1) JPS6056045B2 (en)

Also Published As

Publication number Publication date
JPS5720316A (en) 1982-02-02

Similar Documents

Publication Publication Date Title
AU6304298A (en) Improvements relating to electrical surge arresters
US5050032A (en) Sealed envelope based on a filamentary winding, and application to a composite lightning arrester
JP2000510316A (en) Conductor winding structure of large electric machine
EP1571684A1 (en) Solid-state insulated switchgear, resin molding and method of manufacturing the resin molding thereof
US3044151A (en) Method of making electrically conductive terminals
US4392070A (en) Insulated coil assembly and method of making same
JPS6136710B2 (en)
JPS6056045B2 (en) insulation spacer
EP0075471B1 (en) Electrical bushing and method of manufacture thereof
CN1079983C (en) Frame isolator
JPS6333368B2 (en)
US20080136578A1 (en) Method for Sheathing a Varsitor Block with an Electrically Insulating Sheath, as well as a Varsitor Block for a Surge Arrester
US2916713A (en) Miniature transformers and chokes
US1416036A (en) Insulation and method of making same
CA1192639A (en) Electrical bushing and method of manufacturing thereof
JPH02303311A (en) Molded insulator
JPH03198613A (en) Molded insulator
JPH0528894Y2 (en)
JPS61167352A (en) Manufacture of pole
JPS6141121B2 (en)
KR960015428B1 (en) Method and apparatus for forming an insulating film on the surface of a solid body
JPS6013370B2 (en) insulation spacer
JPH039207Y2 (en)
JPH04200218A (en) Buried electrode for prefabricated joint
US2523219A (en) Molded plastic stress-distributing bushing